首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The brown planthopper (Nilaparvata lugens Stål) is one of the most destructive pests of rice crops in Asian countries including China, Vietnam, Thailand, etc. Evolution of resistance in this pest insect to isoprocarb, buprofezin, pymetrozine, imidacloprid and other neonicotinoid insecticides has been reported. In order to investigate the current status of resistance to commonly used insecticides, nine field populations of N. lugens were collected from Central China, East China and South China, and resistance to insecticides was monitored from 2009 to 2012. All the 9 field populations collected in 2012 had developed extremely high resistance to imidacloprid, with resistance ratios (RR) ranging from 209.3 to 616.6. Resistance to imidacloprid was much higher in 2012 than in 2009. The RR of thiamethoxam varied from 17.4 to 47.1, and the RR of nitenpyram varied from 1.4 to 3.7 in 2012. Of the 9 field populations, six populations showed higher resistance to nitenpyram in 2012 than in 2011. RR for buprofezin varied from 110.1 to 221.6 in 2012 whereas resistance was at a medium level (RR 20.4 ∼ 39.4-fold) in 2009. RR for pymetrozine ranged from 34.9 to 46.8 in 2012. As for isoprocarb, RR ranged from 21.7 to 38.1 in 2012. The obvious increase in resistance to widely applied insecticides indicates that insecticide resistance management strategies are urgently needed to prevent or delay further increase of insecticide resistance in N. lugens.  相似文献   

2.
A strain (BEYO 2) of Tetranychus urticae was selected with fenpyroximate for 14 selections. The resulting strain (named FPY 14) became resistant to fenpyroximate. The present study examines the inheritance of fenpyroximate resistance, the toxicity of some insecticides and acaricides, detoxification enzymes [esterase, glutathione S-transferase (GST), and monooxygenase (P450)], and the synergistic ratios of certain synergists [piperonyl butoxide (PBO), S-benzyl-O,O-diisopropyl phosphorothioate (IBP), and triphenyl phosphate (TPP)] in the FPY 14 strain of T. urticae. A spray tower-Petri dish method was used in the selection and toxicity studies. The level of fenpyroximate resistance was 64.43-fold higher in the FPY 14 strain and 1.06-fold higher in the BEYO 2 strain compared to the GSS (German susceptible strain) strain. The FPY 14 strain was 7.80-, 6.90-, 6.43-, 4.78- and 2.78-fold more resistant to abamectin, chlorpyrifos, propargite, clofentezine and amitraz, respectively. Fenpyroximate resistance is inherited as an incompletely dominant trait with no sex linkage. None of the synergists showed a significant synergistic effect. In the FPY 14 strain, the activities of esterase, GST and P450 enzymes were 1.92-, 1.06- and 3.96-fold higher, respectively, when compared to the susceptible GSS strain. The P450 and esterase enzymes might play a role in the mechanism of resistance to fenpyroximate.  相似文献   

3.
Susceptibility to insecticides was investigated by collecting field populations of brown planthopper from different locations of southern Karnataka,India(Gangavati,Kathalagere,Kollegala,Soraba and Mandya).All the field populations differed in their susceptibility to insecticides.In general,Soraba and Mandya populations were more susceptible to insecticides compared to Gangavati and Kathalagere populations.The resistance ratios varied greatly among the populations viz.,chlorpyriphos(1.13-to 16.82-fold),imidacloprid(0.53-to 13.50-fold),acephate(1.34-to 5.32-fold),fipronil(1.13-to4.06-fold),thiamethoxam(1.01-to 2.19-fold),clothianidin(1.92-to 4.86-fold),dinotefuran(0.82-to 2.22-fold),buprofezin(1.06-to 5.43-fold)and carbofuran(0.41-to 2.17-fold).The populations from Gangavati,Kathalagere and Kollegala exhibited higher resistance to some of the old insecticides and low resistance to new molecules.  相似文献   

4.
The degree of insecticide resistance, synergism effects, acetylcholinesterase (AChE) activity kinetics, specific activities of detoxification enzymes and cross-resistance were investigated in omethoate resistant and relatively susceptible strains of Aphis gossypii Glover. The resistant cotton aphid strain (ORR) exhibited 231.3-fold resistance to omethoate compared to the susceptible strain (OSS). Synergist piperonyl butoxide (PBO) dramatically increased the toxicity of omethoate in the resistant strain, while triphenyl phosphate (TPP) and diethyl maleate (DEM) did not exhibit synergism effects. The calculated AChE activity, Vmax and Km ratios of ORR to OSS were 0.1, 0.2 and 0.4, respectively. Based on analysis of IC50 indices, enzyme inhibition experiments showed that AChE from the ORR strain was 10.6-, 3.2-, 6.2-, 10.5- and 4.4-fold more insensitive to inhibition by eserine, omethoate, paraoxon, paraoxon-methyl and malaoxon, respectively, than that from the OSS strain. The cytochrome P450-mediated O-demethylation activity (3.7-fold) and ethoxycoumarin-O-deethylase activity (2.6-fold) in the ORR strain were significantly higher than in the OSS strain. Specific activity of carboxylesterase (CarE) and glutathione S-transferase (GST) were not significantly different in both the ORR and OSS strains. Bioassay results indicated the ORR strain had developed high levels of cross-resistance to chlorpyrifos (24.2-fold), malathion (21.1-fold), acephate (10.2-fold), esfenvalerate (30.6-fold), methomyl (22.4-fold), carbofuran (33.2-fold), but had negative cross-resistance to bifenthrin (0.4-fold). Overall, these results demonstrate that reduced AChE sensitivity, combined with increased cytochrome P450 monooxygenase detoxification, plays an important role in the high levels of omethoate resistance and can cause cross-resistance to other insecticides in the ORR strain.  相似文献   

5.
The melon and cotton aphid Aphis gossypii Glover (Hemiptera; Aphididae) is one of the most serious pests worldwide. We surveyed insecticide susceptibility in A. gossypii field populations to 12 insecticides (6 neonicotinoids, 3 pyrethroids and 3 others) to examine resistance ratios. The levels of insecticide resistance were extremely high, especially to neonicotinoids, such as acetamiprid, clothianidin, thiacloprid and imidacloprid. To identify the neonicotinoid resistance mechanisms, we used an imidacloprid-resistant (IMI-R) strain as a model strain. IMI-R showed an extremely high resistance ratio and also cross-resistance to all the test neonicotinoids. However, there was little or no cross-resistance to the other insecticides, including sulfoxaflor. Synergist tests and enzyme activity assays suggested the absence of resistance mechanisms based on enhanced detoxification enzymes, such as cytochrome P450, esterase and glutathione S-transferase. One point mutation was found in the beta1 subunit loop D region of the nicotinic acetylcholine receptor (nAChR) of the IMI-R strain. This R81T point mutation was also found in field populations collected from 5 regions. Therefore, the R81T point mutation was identified as an important mechanism of imidacloprid resistance in A. gossypii.  相似文献   

6.
The sweetpotato whitefly, Bemisia tabaci (Gennadius), has become a major threat to agriculture worldwide. The development of insecticide resistance in B. tabaci has necessitated the exploration of new management tactics. The toxicity of imidacloprid and buprofezin to various life stages of B. tabaci was determined in the laboratory. Also, the sublethal effects of both insecticides were studied on demographic and biological parameters of B. tabaci. Both insecticides were very toxic against first stage larvae of the pest with LC50 values of 1.0 and 19.3 ppm for buprofezin and imidacloprid, respectively. Toxicities decreased between successive stages (LC50 values ranging from 1.0 to 2854.0 ppm). The LC50 values of imidacloprid for adult males, females and eggs were 11.8, 71.6 and 151.0 ppm, respectively. Buprofezin had no significant effect on adults and eggs. The sublethal concentration of imidacloprid had no significant effect on demographic and biological parameters of B. tabaci but the maximal value for the mean generation time (T) (18.8 day) was observed in imidacloprid treatment. Buprofezin significantly decreased stable population and biological parameters of B. tabaci except it did not decrease the rate of population increase or the sex ratio of offspring.  相似文献   

7.
灰飞虱对几类杀虫剂的抗性和敏感性   总被引:7,自引:3,他引:4  
采用点滴法和稻茎浸渍法分别测定了2006年4月采自江苏省无锡市和浙江省湖州市灰飞虱种群对9种杀虫剂的抗性及17种杀虫剂的敏感性。点滴法测定结果表明,无锡种群和湖州种群对吡虫啉均产生了高水平抗性,抗性倍数分别为79.6倍和44.6倍;对残杀威的抗性倍数分别为76.6倍和40.1倍,属高水平抗性;对甲萘威的抗性倍数分别为29.8倍和45.3倍,属中等-高水平抗性;对二嗪磷、杀螟硫磷、仲丁威、丁硫克百威、醚菊酯、氰戊菊酯的抗性倍数为1.4~8.1倍,属敏感-低水平抗性。毒力测定结果表明氟虫腈、丁烯氟虫腈对无锡和湖州灰飞虱3龄若虫的毒力最高,LC50值为0.21~041 mg/L;噻虫嗪、烯啶虫胺、毒死蜱、吡蚜酮、异丙威、敌敌畏为田间药效试验的推荐用药。还讨论了灰飞虱抗药性的治理。  相似文献   

8.
1996-2007年间采用稻茎浸渍法测定了我国8省(区)27个褐飞虱种群对噻嗪酮的敏感性。 在1996-2002年间, 江苏\[江浦(JPZY)、仪征(YZZY)和南通(NTZY)\]、安徽\[安庆(AQNS)\]、广西\[南宁(GXNY)和桂林(GLNS)\]褐飞虱种群对噻嗪酮均为敏感至敏感性下降 (抗性倍数为0.3~3.5倍)。 在2005-2007年间,监测到江苏 \[江浦(JPZY), 2005年\]和海南\[陵水(HNLS),2007年\]褐飞虱种群对噻嗪酮达中等水平抗性(抗性倍数分别为28.8倍和19.4倍);其余种群如广西\[南宁(GXNY)和桂林(GLNS)\]、湖南\[常德(CDTY)\]、浙江\[余姚(YYLJ)\]、江西\[新建(XJSM)\]、安徽\[和县(HXLY)、潜山(QSMC)\]及江苏\[南通(NTZY)\]等地褐飞虱种群对噻嗪酮为低水平抗性(抗性倍数为5.6~9.1倍);而江西\[上高(SGMS)\]、浙江\[兰溪(LXYC)\]和湖北\[孝感(XGXC)\]3个褐飞虱种群对噻嗪酮仍为敏感至敏感性下降(抗性倍数2.5~4.1倍)。室内饲养22代,用噻嗪酮对1996年采自安徽\[安庆(AQNS)\]的褐飞虱间断筛选13代,它的LC50下降了30%,筛选前后抗性水平没有明显差异;随后连续筛选15代,抗性倍数达1157.7倍。上述结果表明,褐飞虱对噻嗪酮已产生低到中等水平抗性,如果连续单一使用噻嗪酮,褐飞虱将具有产生高水平抗性的风险。此外,还对褐飞虱的抗性治理进行了讨论。  相似文献   

9.
褐飞虱对吡虫啉敏感性的时空变化及现实遗传力   总被引:12,自引:0,他引:12  
为科学用药,采用稻茎浸渍法测定了我国7省(区)42个田间褐飞虱种群对吡虫啉的敏感性时空变化。结果表明,在1996-2003年,除了1997年广西桂林种群为低水平抗性(6.3倍)外,苏、皖、桂3省13个种群对吡虫啉为敏感至敏感性下降(<5倍);然而,2005年苏、浙、皖、赣、湘、桂6省(区)16个大田种群对吡虫啉的抗性迅速上升,达高水平至极高水平抗性(79~811倍);2006年,除江苏通州大田种群的抗性为627倍外,苏、浙、皖、赣、湘、桂、闽7省(区)11个种群的抗性为150~322倍,比2005年有一定程度下降,这可能与暂停使用吡虫啉有关。室内用吡虫啉对褐飞虱筛选18代,其抗性由筛选前的208.3倍上升到筛选后的1110.8倍,抗性现实遗传力(h2)为0.1414。这暗示褐飞虱对吡虫啉产生高水平抗性后,如继续使用吡虫啉防治,其抗性可能会进一步上升。还讨论了稻褐飞虱抗药性的治理策略。  相似文献   

10.
为了筛选防治褐飞虱的高毒农药的替代药剂,于2005-2006年, 采用稻茎浸渍法测定了6类20余种杀虫剂对广西南宁、桂林,湖南常德和江苏南京褐飞虱种群的室内毒力。结果表明,噻嗪酮、氟虫腈、噻虫嗪、烯啶虫胺、毒死蜱、异丙威、猛杀威、丁硫克百威等8种药剂对褐飞虱具有较高的毒力,可作为替代高毒药剂的候选品种。采用稻茎浸渍法对1个室内褐飞虱种群用吡虫啉筛选23代后,褐飞虱对吡虫啉的抗性从筛选前的200.1倍上升至筛选后的1298.5倍(上升了5.5倍);高抗吡虫啉的褐飞虱种群对氯噻啉、噻虫啉和啶虫脒表现出明显的交互抗性,而对呋虫胺、噻虫嗪和烯啶虫胺则无明显的交互抗性。 还讨论了褐飞虱的抗性治理策略。  相似文献   

11.
Tetranychus urticae (two-spotted spider mite) and Bemisia tabaci (sweet potato whitefly), two of the most important agricultural pests worldwide, have developed resistance to almost all chemical classes of insecticides. Here we investigated the efficacy of the ketoenols spirodiclofen and spiromesifen against, respectively, T. urticae and B. tabaci populations from Greece with variable levels of resistance to other pesticides in order to evaluate their potential role in insecticide resistance management strategies for sustainable control of both pests. No resistance of T. urticae populations against spirodiclofen was observed. Nine out of ten T. urticae populations exhibited moderate levels of resistance to pirimiphos-methyl (up to 23-fold), pyridaben (up to 39-fold) and fenazaquin (up to 42-fold). Two of them exhibited high resistance ratios (RR) to bifenthrin (RR = 81, 351) and one to fenbutatin oxide (RR = 146). Moreover these nine populations were not cross resistant to spirodiclofen (RR < 5). A single population from greenhouse roses exhibited high resistance levels to most of the pesticides tested (RR = 8413, 1494, 434, and 74 to bifenthrin, fenbutatin oxide, abamectin and pirimiphos-methyl, respectively) showed decreased susceptibility to spirodiclofen (RR = 12). In B. tabaci the variation in response to spiromesifen treatments was very low among the eleven field populations. Most of them exhibited high levels of resistance to imidacloprid, and alpha-cypermethrin. The LC50 of spiromesifen ranged from 4.5 to 14 mg/l and the corresponding LC95 values were in general well below the recommended field doses. Ketoenol resistance risk potential was also investigated by applying constant selection pressure under laboratory conditions against populations from both species, but no increase in LC50s was detected. Ketoenols can be used for resistance management purposes for both pests in Greece as an effective chemical tool in rotation with other pesticides.  相似文献   

12.
Spodoptera exigua is a phytophagous pest that causes critical economic losses in vegetable crops, and insecticides are commonly used against it in vegetable growing areas. However, excessive and frequent applications of insecticides cause resistance in S. exigua. The current resistance in field populations of S. exigua collected from Huizhou, Guangdong Province, China to 12 insecticides was investigated. S. exiguahad developed very high resistance to lambda cyhalothrin (2925- to 3449-fold), chlorpyrifos (>1786-fold), emamectin benzoate (174- to 867-fold), and metaflumizone (60.3- to 942-fold). High resistance to tebufenozide (51.5- to 75.4-fold) and chlorfluazuron (60.4- to 63.0-fold) was also found. Synergism assays revealed that the resistance to metaflumizone and lambda cyhalothrin was associated with esterase and microsomal oxidases, respectively. The resistance to emamectin benzoate was not affected by detoxification enzymes inhibitors and might be conferred by other mechanisms. The selection of the field population by metaflumizone for 10generations in the laboratory resulted in a 6.1-fold increase in metaflumizone resistance but did not lead to increases in resistance to other insecticides. After metaflumizone selection, susceptibilities to spinosad and endosulfan did not change, and the susceptibilities to indoxacarb, methomyl, pyridalyl, tebufenozide, chlorfluazuron, emamectin benzoate and lambda cyhalothrin decreased slightly. However, no statistically significant differences in the resistance levels were observed among the selected population, its starting strain and the unselected strain. The resistance to chlorantraniliprole noticeably decreased in unselected strain and the strain subjected to selection for 10 generations compared with their starting strains. Lack of cross-resistance to tested insecticides suggested the involvement of multiple mechanisms of resistance and the need for wise application of these insecticides for the management of S. exigua.  相似文献   

13.
Resistance levels in five field strains of Bemisia tabaci Q-biotype in eastern China to six representative insecticides were determined, and the frequencies of synaptic acetylcholinesterase ace1 mutation (F331W) and para-type voltage gated sodium channel mutations (L925I and T929V) were detected using polymerase chain reaction-based monitoring techniques. Compared with the reference strain, the field strains exhibited low to high resistance to two neonicotinoids (RF 8.68-75 for imidacloprid and 7.48-46.40 for nitenpyram). Low resistance to dichlorvos (RF 1.37-2.83) and cypermethrin (RF 2.61-8.69) were observed in these strains. All strains were susceptible to abamectin and carbosulfan. The F331W mutation in ace1 gene was fixed in all field strains, the frequencies of the L925I mutation and T929V mutation in sodium channel gene were in the range of 39.6-70% and 63-86.7%, respectively. Information on insecticide resistance status and resistance allele frequency reported in this study provided baseline data for management of insecticide resistance of Q-biotype B. tabaci in eastern China.  相似文献   

14.
The Asian citrus psyllid, Diaphorina citri Kuwayama being a vector of huanglongbing (HLB), citrus greening disease is the most destructive pest of citrus and the management of D. citri is crucial for successful control of HLB. We evaluated adult populations of D. citri from twelve districts of Punjab, Pakistan for resistance to seven different insecticides. Different levels of resistance ratios were observed for all insecticides (chlorpyrifos, bifenthrin, imidacloprid, acetamiprid, thiamethoxam, nitenpyram and chlorfenapyr). Field collected populations of D. citri were highly resistant to imidacloprid as compared to the susceptible population. The resistance ratios were in range of 236.6–759.5, 55.5–212.8, 13.1–46.4, 31.4–216.7, 8.6–89.4-fold for imidacloprid, acetamiprid, chlorfenapyr, nitenpyram, and thiamethoxam, respectively and 39.8–107.1 and 32.7–124.5-fold in case of conventional insecticides i.e., bifenthrin and chlorpyrifos, respectively. Nitenpyram and thiamethoxam, with no or very low resistance should be used in combination or in rotation with other pest management tactics for managing resistance in D. citri. The correlation analysis of the LC50's of insecticides showing positive and negative correlations among different insecticides in all tested populations, suggests mechanism of cross-resistance. Imidacloprid showed a positive correlation with acetamaprid, but a negative correlation with thiamethoxam from the neonicotenoid group, while the resistance to chlorfenpyr positively correlated with chlorpyrifos and bifenthrin in the pyrethroid group. Multiple resistance mechanisms could be the reason behind the development of such a high resistance in the D. citri.  相似文献   

15.
The cotton whitefly Bemisia tabaci, (Genn.) is an important pest of field crops, vegetables and ornamentals worldwide. Neonicotinoids are considered an important group of insecticides being used against B. tabaci for several years. B. tabaci has developed resistance to some of the compounds of the group. This study was designed to investigate if the selection of B. tabaci with acetamiprid would give a broad-spectrum of cross-resistance and to genetically classify the resistance. At G1 a low level of resistance to acetamiprid, imidacloprid, thiamethoxam, thiacloprid and nitenpyram was observed with resistance ratios of 3-fold, 8-, 9-, 6- and 5-fold, respectively, compared with a laboratory susceptible population. After selection for eight generations with acetamiprid, resistance to acetamiprid increased to 118-fold compared with the laboratory susceptible population. Selection also increased resistance to imidacloprid, thiamethoxam, thiacloprid, nitenpyram, endosulfan and bifenthrin but no change in susceptibility to fipronil was observed. Furthermore resistance in a field population was stable in the absence of acetamiprid selection pressure. Genetic crosses between resistant and susceptible populations indicated autosomal and incompletely recessive resistance. Further genetic analysis suggested that resistance could be controlled by a single factor. The high level of cross-resistance and stability of incomplete resistance in the field population is of some concern. However, lack of cross-resistance between acetamiprid and fipronil or unstable resistance in the resistant population could provide options to use alternative products which could reduce acetamiprid selection pressure.  相似文献   

16.
The parasitoid Eretmocerus mundus Mercet (Hymenoptera: Aphelinidae) is one of the key natural enemies of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). Lethal and sublethal effects of imidacloprid and buprofezin on emergence and key biological and population parameters of E. mundus exposed during different developmental stages were studied. Dose–response bioassays were carried out on adult wasps using a leaf dipping method. The emergence rates of adults were reduced significantly by the field-recommended concentrations of the insecticides. However, the emergence rates were not affected either by the stage of the parasitoid at the time of exposure (larval and pupal stages), and there was no interaction between treatments and time of exposure. No significant mortality of E. mundus adults was observed following buprofezin treatment. The LC50 of imidacloprid on adults was 4.75 ppm. The results showed that the longevity and fecundity of E. mundus adults were reduced significantly by the two insecticides, though the sex ratio of E. mundus offspring was not affected. Population parameters of the parasitoid such as R0, rm and T were also significantly reduced by the insecticides. Our results indicated that, in addition to lethal effects, sublethal effects should also be considered when these insecticides are applied in IPM programs for this pest.  相似文献   

17.
我国主要稻区褐飞虱对常用杀虫剂的抗性监测   总被引:11,自引:1,他引:10  
为了明确目前褐飞虱对常用药剂的抗性现状,以便制定防治褐飞虱的科学用药策略,于2010-2011年间,在室内采用稻茎浸渍法监测了我国主要稻区19个褐飞虱种群对五种常用杀虫剂的抗性。结果表明,2010年全部监测种群对噻嗪酮均处于中等水平抗性(RR为11.3~23.4倍),2011年除广西桂林、江西上高2个褐飞虱种群为中等水平抗性(15.3~19.7倍)外,其他80%监测种群均已达高水平抗性(40.7~119.7倍),抗性明显上升;两年19个褐飞虱监测种群对吡虫啉均为高到极高水平抗性(82.3~1935.8倍),与2006-2009年相比,吡虫啉抗性有再次升高趋势;2010年褐飞虱对噻虫嗪的抗性为低到中等水平抗性(6.1~14.4倍),2011年除广西桂林种群为低水平抗性外,其他8个种群均为中到高水平抗性(12.8~62.3倍),较前一年明显上升;两年18个监测种群对毒死蜱均处于敏感到低水平抗性阶段;对吡蚜酮的抗性2010年7个监测种群为敏感-低水平抗性(1.9~5.1倍),2011年全部褐飞虱监测种群均已达中等水平抗性(15.7~25.4倍),暗示随着吡蚜酮的大量广泛使用,褐飞虱对其抗性较高,需要引起生产上的密切关注。为科学治理水稻褐飞虱,应严格执行无交互抗性的杀虫剂间的合理轮用或混用。  相似文献   

18.
Tobacco whitefly, Bemisia tabaci is an important polyphagous insect pest which has developed resistance to various insecticides worldwide. Mixtures of insecticides with different modes of action may delay the onset of resistance. Bioassays were performed to investigate the effects of various mixtures of neonicotinoid and insect growth regulator (IGR) insecticides against a susceptible and a resistant strain. The results of the study showed that potentiation ratio (PR) of all neonicotinoids + buprofezin or pyriproxyfen mixtures at 1:1, 10:1 and 20:1 ratios was greater than 1 suggesting synergistic interactions between insecticides. Maximum potentiation occurred at the 1:1 ratio (PR = 1.69–7.56). The PRs for mixture of acetamiprid, thiamethoxam, thiacloprid or nitenpyram with buprofezin or pyriproxyfen at 1:10 and 1:20 ratios were less than 1 indicating antagonistic interactions. Addition of synergists, S, S, S, tri-butyl phosphorotrithioate (DEF) or piperonyl butoxide (PBO) in the insecticide solutions largely overcame the resistance to all tested neonicotinoids, indicating that the resistance was associated with esterases or mono-oxygenases, respectively. Likewise, addition of both DEF and PBO in mixture with neonicotinoids and IGRs also suggested a similar mechanism of resistance in B. tabaci to the tested insecticide groups. The mechanism of synergism between neonicotinoids and IGRs is unclear. Implications of using mixtures to counteract pesticide resistance are discussed. Mixtures of neonicotinoids with buprofezin or pyriproxyfen at a 1:1 ratio could be used to restore the efficacy of these neonicotinoids against B. tabaci.  相似文献   

19.
The effects of extracts of different parts of the perennial tropical plant Balanites aegyptiaca (L) Del., including various solvent extracts of roots, methanol extracts from leaves, fruits, flowers and roots, partially purified saponins obtained from its roots and a standard saponin were studied on the life cycle (adult longevity, number of eggs, crawlers, adults, weight of adults and % wax content) of a laboratory-reared parthenogenic line of the mealy bug, Maconellicoccus hirsutus (Homoptera: Pseudococcidae). Extracts derived from various parts of B. aegyptiaca (leaves, fruits, flowers, and roots in methanol) affected the life cycle of M. hirsutus with a methanol root extract being the most effective at a concentration of 500 μg ml−1. Partially purified saponin of B. aegyptiaca and the commercial bark saponin extract (Sigma) from Quillaja saponaria at a concentration of 500 μg ml−1 were effective in reducing the longevity of M. hirsutus. Significant reductions in oviposition by M. hirsutus were found for all the extracts at a concentration of 500 μg ml−1. Extracts also affected the number of emerging crawlers, number of adults as well as the weight and wax content of emerging adults. These studies suggest that B. aegyptiaca plant extracts and saponins can be useful botanical insecticides for the protection of crops from mealy bugs.  相似文献   

20.
Cotton mealybug Phenacoccus solenopsis Tinsley is an important pest of cotton in Pakistan, and its management is difficult due to the development of insecticide resistance. This research was conducted to characterize the bifenthrin resistance in populations of P. solenopsis and different parameters such as cross-resistance, realized heritability and possible resistance mechanisms were studied to improve the management of this important pest. A field-collected population was selected with bifenthrin in the laboratory for 14 generations and developed a resistance of 178-fold. The realized heritability of bifenthrin resistance was 0.54 in the selected population. The toxicity of bifenthrin was synergized by the addition of either piperonylbutoxide (PBO) or S,S,S tributylphosphorotrithioate (DEF) which suggests a general metabolic resistance due to possible involvement of mono-oxygenases or esterases. However, the resistant population did not develop a significant cross-resistance to either buprofezin, chlorpyrifos or lambda-cyhalothrin. These data suggest that alternative insecticide-based management programs can be developed for this pest in the short-term, but resistance management strategies which can reduce the sole reliance on insecticides are still needed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号