首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The genetics of resistance to green leafhopper, Nephotettix virescens (Distant), in rice varieties ‘IR36’ and ‘Maddai Karuppan’ and breeding line ‘IR20965‐11‐3‐3’ was studied. The reactions of F1 hybrids, F2 populations and F3 lines from the crosses of test varieties with the susceptible variety ‘TN1’ revealed that resistance in ‘IR36’ and ‘Maddai Karuppan’, is governed by single recessive genes while resistance in ‘IR20965‐11‐3‐3’ is controlled by a single dominant gene. Allele tests with the known genes for resistance to green leafhopper revealed that the recessive gene of ‘IR36’ is different from and inherited independently of Glh1, Glh2, Glh3, Glh4, Glh5, Glh8 and Glh9t. This gene is designated as glh10t. The recessive gene of ‘Maddai Karuppan’ and the dominant gene of ‘IR20965‐11‐3‐3’ are also non‐allelic to Glh1, Glh2, Glh3, Glh4, Glh5 and Glh8t. Thus, the dominant gene of IR20965‐11‐3‐3 is designated as Glh11t. The allelic relationships of the recessive gene of ‘Maddai Karuppan’ with glh8 and glh10t should be investigated.  相似文献   

2.
The inheritance of resistance to rice gall midge (Ranchi biotype) was studied in 12 resistant cultivars by crossing with susceptible cultivars. By the study of F1, F2, F3, B1 and B2 generations, it was found that resistance was governed by a single dominant gene in ‘Surekha’, ‘Phalguna’, ‘Rajendra Dhan 202’, ‘IET 7918’‘IET 6187’, ‘BG 404-1’; by duplicate dominant genes in ‘W 1263’, ‘RPW 6-17’ and ‘WGL 48684’ and a monogenic recessive gene in ‘OB 677’ and ‘BKNBR 1008-21’. The allelism test of the resistant genes in the test cultivars with already known genes Gm1 and Gm2 was carried out. A single dominant gene that conveyed the resistance in ‘RPW 6–17’, ‘IET 7918’ and ‘IET 6187’ was allelic to Gm1 and segregated independently of Gm2. The resistance in ‘Phalguna’, ‘Rajendra Dhan 202’, ‘W 1263’ and ‘RPW 6–17’, ‘IR 36’ and ‘WGL 48684’ was governed by Gm2 gene which was independent of Gm1. Two additional genes were identified and designated as Gm3 and gm4. Three test cultivars ‘BG 404-1’, ‘W 1263’ and ‘WGL 48684’ were found to have Gm3 gene for resistance which was non-allelic and segregated independently of Gm1 and Gm2. Thus the cultivars ‘W 1263’ and ‘WGL 48684’ had two resistance genes Gw2 and Gm3 together. The cultivar ‘RPW 6–17’ also had two resistance genes Gm1 and Gm2 together. The recessive gene gm4 which conditioned the resistance in ‘OB 677’ and ‘BKNBR 1008-21’ was nonallelic to and segregated independently of Gm1, Gm2 and Gm3 genes. Linkage studies of the resistance gene with pigment characters were carried out in ‘Purple gora/IR 36’ cross. The resistance gene Gm2 was found to be linked with the genes governing the pigmentation in node, apiculus and stigma with crossover values of 15.78, 31.57 and 35.78 % respectively. By the trisomic analysis, it was found that the Gm2 gene was located on chromosome 3.  相似文献   

3.
The inheritance of resistance to green leafhopper, Nephotettix impicticeps Ichi, was studied in 11 cultivars of rice, Oryza saliva L. These resistant cultivars were crossed with the susceptible cultivar ‘TN1’. The materials consisted of F1, F2 and F3 populations including parents which were assessed by the bulk screening test. It was found that resistance in the cultivars TR36′, UPR254-35-3′-2′, ‘Jhingasail’, ‘Govind’, ‘RP825-45-1-3’, ‘MRC603-303’, ‘RD4’, and ‘Irat104 ’ was conditioned by a single dominant gene, whereas resistance in ‘Ptb8’ IR9805-97-1′, and ‘BG367-7’ was controlled by one recessive gene. The test on the allelic relationships of the resistance genes in the test cultivars with the known genes Glb1 and Glb2 revealed that the single dominant gene that conveyed the resistance in ‘UPR254-35-3-2’ and ‘Jhingasail’ was allelic to Glh1 and segregated independently of Glh2. The resistance in ‘Govind’ and ‘RP82S-45-1-3’ was governed by the Glh2 gene which was independent of Glh1. The test cultivars ‘IR36’;. ‘MRC603-303’, ‘RD4’. and Irat104 ’ had a dominant gene for resistance which was nonallelic to Glb1 and Glb2. The recessive gene which conditioned the resistance in ‘Ptb8’, ‘IR9805-97-1’, and ‘BG367-1’ segregated independently of Glh1 and Glh2. Eleven trisomics in an ‘TR36’ background were crossed with ‘Java’, a cultivar susceptible to green leafhopper. The segregation pattern of the F2 and backcross generations revealed that the Glb6 gene was located on chromosome 5.  相似文献   

4.
Forty resistant rice cultivars were studied for theinheritance of resistance to bacterial blight usingPhilippine races of Xanthomonas oryzae pv.oryzae (Xoo). Results showed that all thevarieties have at least two recessive genes forresistance. One of these genes governs resistance torace 1 (PXO61) while the other gene confers resistanceto race 6 (PXO99). In addition to the recessivegenes, nine of the varieties possess another dominantgene which also confers resistance to race 1.Allelism tests revealed that the recessive genesgoverning resistance to race 1 in 39 varieties areallelic to xa5 while the dominant genes in thenine varieties are allelic to Xa4. Therecessive gene conferring resistance to race 1 incultivar Sada Diga is inherited independently of xa5. Similarly, the recessive genes governingresistance to race 6 in all the varieties arenon-allelic to xa13. The allelic relationshipsof these genes with xa-24(t), a new recessivegene identified in cultivar DV86 which conveysresistance to race 6 are now being investigated.  相似文献   

5.
Summary Six chickpea lines resistant to Ascochyta rabiei (Pass.) Lab. were crossed to four susceptible cultivars. The hybrids were resistant in all the crosses except the crosses where resistant line BRG 8 was involved. Segregation pattern for diseases reaction in F2, BCP1, BCP2 and F3 generations in field and glasshouse conditions revealed that resistance to Ascochyta blight is under the control of a single dominant gene in EC 26446, PG 82-1, P 919, P 1252-1 and NEC 2451 while a recessive gene is responsible in BRG 8. Allelic tests indicated the presence of three independently segregating genes for resistance; one dominant gene in P 1215-1 and one in EC 26446 and PG 82-1, and a recessive one in BRG 8.Research paper No. 3600  相似文献   

6.
Genetic basis of adult plant leaf rust resistance in three released Indian wheat cultivars viz. DWR195, RAJ3765 and HP1731 was investigated through detailed inheritance study under controlled polythene house condition at Flowerdale, India. The F2, F3, F4 and F5 generations were analyzed with the most frequent and virulent Indian leaf rust pathotype 121R63-1. Two complementary recessive genes imparted resistance in DWR195, two complementary dominant genes governed the resistance of RAJ3765 whereas two independent dominant genes were involved in the resistance of HP1731. The genes responsible for adult plant resistance in the three cultivars were not allelic. The two complementary genes of DWR195 and two independent dominant genes of HP1731 have been isolated as single gene lines. Utilization of resistance from HP1731, which carries two independent dominant genes, will be easy as compared to DWR195 and RAJ3765.  相似文献   

7.
Summary The genetic constitution of two bread wheat accessions from the International Spring Wheat Rust Nurseries (E 5883 and E 6032) has been studied for reaction to four Indian races of stem rust. Analysis of E 5883 has revealed that for each of the races 15C, 21 and 40 a single dominant gene operates for resistance. The dominant gene against race 15C was identified as Sr6. The dominant genes for resistance against races 21 and 40 were found to be different from the genes described so far. Resistance against race 122 is controlled by a single recessive gene producing characteristically a 2 type of reaction. This gene was identified as Sr8.The resistance of E 6032 against each of the races 15C, 21 and 40 is controlled by two genes, one dominant and one recessive, which act independently. Dominant genes effective against 15C, 21 and 40 were conclusively identified as Sr6, Sr5 and Sr9b, respectively. From the correlated behaviour against races 15C and 40 as well as from the phenotypes of the resistance reactions rhe same recessive gene, undescribed so far, operates against the two races. The second recessive gene operating against race 21 was also observed to be different from those so far designated. E 6032 was, however, found to be susceptible to races 122.The presence of Sr6 both in E 5883 and E 6032 against race 15C was further confirmed through F2 and F3 segregation data.  相似文献   

8.
Soybean Cyst nematode (SCN) Heterodera glycines Ichinohe is the most serious pest of soybean [Glycine max (L.) Merr.] in the world and genetic resistance in soybean cultivars have been the most effective means of control. Nematode populations, however, are variable and have adapted to reproduce on resistant cultivars over time due mainly to the narrow genetic base of SCN resistance in G. max. The majority of the resistant cultivars trace to two soybean accessions. It is hoped that new sources of resistance might provide durable resistance. Soybean plant introductions PI 467312 and PI 507354, are unique because they provide resistance to several nematode populations, i.e. SCN HG types 0, 2.7, and 1.3.6.7 (corresponding to races 3, 5, and 14) and HG types 2.5.7, 0, and 2.7 (corresponding to races 1, 3, and 5), respectively. The genetic basis of SCN resistance in these PIs is not yet known. We have investigated the inheritance of resistance to SCN HG types 0, 2.7, and 1.3.6.7 (races 3, 5, and14) in PI467312 and the SCN resistance to SCN HG types 2.5.7 and 2.7 (races 1 and 5) in PI 507354. PI 467312 was crossed to ‘Marcus’, a susceptible cultivar to generate F1 hybrids, 196 random F2 individuals, and 196 F2:3 families (designated as Pop 467). PI 507354 and the cultivar Hutcheson, susceptible to all known SCN races, were crossed to generate F1 hybrids, 225 random F2 individuals and 225 F2:3 families (designated as Pop 507). The F2:3 families from each cross were evaluated for responses to the specific SCN HG types in the greenhouse. Chi-square (χ2) analyses showed resistance from PI 467312 to HG types 2.7, and 1.3.6.7 (races 5 and 14) in Pop 467 were conditioned by one dominant and two recessive genes (Rhg rhg rhg) and resistance to HG type 0 (race 3) was controlled by three recessive genes (rhg rhg rhg). The 225 F2:3 progenies in Pop 507 showed a segregation of 2:223 (R:S) for response to both HG types 2.5.7 and 2.7 (corresponding to races 1 and 5). The Chi-square analysis showed SCN resistance from PI 507354 fit a one dominant and 3 recessive gene model (Rhg rhg rhg rhg). This information will be useful to soybean breeders who use these sources to develop SCN resistant cultivars. The complex inheritance patterns determined for the two PIs are similar to the three and four gene models for other SCN resistance sources known to date.  相似文献   

9.
W. Tadesse    S. L. K. Hsam    F. J. Zeller 《Plant Breeding》2006,125(4):318-322
A total of 50 wheat (Triticum aestivum L.) cultivars were evaluated for resistance to tan spot, using Pyrenophora tritici‐repentis race 1 and race 5 isolates. The cultivars ‘Salamouni’, ‘Red Chief’, ‘Dashen’, ‘Empire’ and ‘Armada’ were resistant to isolate ASC1a (race 1), whereas 76% of the cultivars were susceptible. Chi‐squared analysis of the F2 segregation data of hybrids between 20 monosomic lines of the wheat cultivar ‘Chinese Spring’ and the resistant cultivar ‘Salamouni’ revealed that tan spot resistance in ‘Salamouni’ was controlled by a single recessive gene located on chromosome 3A. This gene is designated tsn4. The resistant cultivars identified in this study are recommended for use in breeding programmes to improve tan spot resistance in common wheat.  相似文献   

10.
Angular leaf spot is one of the major diseases of the common bean. The extensive genetic variability of this pathogen requires the constant development of new resistant cultivars. Different sources of resistance have been identified and characterized. For the State of Minas Gerais, Brazil, four main resistance sources were found: Mexico 54, AND 277, MAR 2 and Cornell 49-242. Independent characterization of these genotypes demonstrates that resistance in all four sources is dominant and monogenic. However, there are no studies on the relationship and independence of these genes. In the present work, allelism tests were carried out to understand the relationship among the resistance genes present in these four resistance sources. The data revealed a much higher complexity in the resistance inheritance of these genes than previously reported. It was demonstrated that Cornell 49-242 possesses a dominant gene (Phg-3); Mexico 54 possesses three genes, denominated Phg-2, Phg-5 and Phg-6. In MAR 2, two genes were found, one independent designated Phg-4 and the other, an allelic form of Phg-5, denominated of Phg-52. Allelic forms were also found in AND 277, Phg-22, Phg-32 and Phg-42. These results have special importance for breeding programs aiming to pyramid resistance genes.  相似文献   

11.
J. E. Parlevliet 《Euphytica》1976,25(1):249-254
Summary The three Dutch isolates studied carried virulence genes against the resistance genes Pa, Pa-2, Pa-4 and Pa-5, substantiating the widespread occurrence of these virulences in Western Europe as reported by others. The cultivars Cebada Capa, La Estanzuela, Gondar and Dabat carry the same dominant to semi-dominant gene, which is also found in Forrajera Klein and H2212. It is proposed to designate this gene Pa-7. This gene segregated independently from the Pa-3 gene in Rika x (Baladi x Rika) substantiating the data of Johnson (1968), but disagreeing with those of Roane & Starling (1970). EP 75 seems to carry a single dominant or semi-dominant gene conferring an intermediate resistance to the isolates used. This gene, tentatively designated as Pa-z, is different from the Pa, Pa-2, Pa-4, Pa-5 and Pa-7 genes. The intermediate resistance of Monte Christo is probably based on gene(s) different from EP 75.  相似文献   

12.
Summary Inheritance of resistance to the Punjab isolate of Xanthomonas campestris pv. oryzae of bacterial blight disease of rice was studied in seven breeding lines resistant to the disease. The results revealed that resistance in breeding lines PAU 122-73-1-4-1, PAU 164-102-1-2-1-1-1, KJT 24, IR 5657-33-2-1-2 and IR 22082-41-2-2 was controlled by single dominant genes allelic to the dominant gene which confers resistance to the Punjab isolate in Patong 32. Resistance to the Punjab isolate in breeding lines IET 7172 and RP 2151-40-1 was found to be controlled by single recessive resistance genes allelic to one of the recessive resistance genes present in BJ 1. The two genes are independently inherited and are being used to develop bacterial blight resistant varieties.  相似文献   

13.
A total of 59 old wheat cultivars grown in Germany prior to 1960 were tested for mildew response using a collection of 12 differential isolates of Erysiphe graminis DC f. sp. tritici Marchal (Blumeria graminis (DC) Speer f. sp. tritici). Nineteen cultivars did not possess any major resistance gene and 25 were characterized by susceptible or intermediate responses. Fifteen cultivars revealed isolate-specific response patterns that could not be attributed to known major resistance genes or gene combinations. Many of the old German cultivars inherited a mildew-resistance gene from the Canadian cultivar ‘Garnet’ which is tentatively designated M1-Ga. Cultivars ‘Bretonischer Bartweizen’ (designated M1-Br) and ‘Adlungs Alemannen’ (designated M1-Ad) appeared to carry unknown resistance genes. Among 18 winter wheat cultivars released in the former GDR. eight showed susceptibility to all isolates used. Cv. “Borenos” carries resistance gene Pm3c. Five cultivars possess gene Pm4b. two cultivars gene pm5 and one cultivar a combination of genes Pm2 and Pm4b. Cultivar ‘Zentos’ was resistant to almost all isolates used. Its resistance might be conditioned by different unknown major resistance genes.  相似文献   

14.
Summary The formation of single flowers of 5 petals and 5 sepals is determined by the homozygous recessive state, dd, of the doubleness gene, D/d, which is epistatic to modifying genes determining flower type. In the presence of the dominant allele, i.e. genotypes DD or Dd, the flowers are semi-double or double. Owing to the D allele alone, the single frequency of 5 petals and 5 sepals is doubled to 10 petals and 10 sepals, of which up to 5 are petaloid, to give a semi-double flower. In addition, in the presence of the D allele, three modifying loci M1/m1, M2/m2, and M3/m3 are activated to give a series of distinct doubles with integral multiples of the basic perianth number. The homozygous recessive genes m1m1 and m2m2 both add an increment of 10 perianth parts, and m3m3 adds an increment of 20 perianth parts. In heterozygotes, M1m1, M2m2 and M3m3, the dominant alleles inhibit the incremental effect of their corresponding recessive alleles. The single flower cultivars investigated probably have the genotype dd, M1M1, M2M2, M3M3 and the semi-double cultivars the genotype Dd, M1m1, M2M2, M3M3.The single flowers have a nectariferous spur, characteristic of the genus, adnate to the pedicel. As the spur is absent from semi-double and double flowers, its presence is assumed to be either a pleiotropic effect of the single flower gene, or to be controlled by an unidentified gene tightly linked with it.  相似文献   

15.
Genes for Powdery Mildew Resistance in Cultivars of Spring Wheat   总被引:1,自引:0,他引:1  
M  Heun  G. Fischbeck 《Plant Breeding》1987,99(4):282-288
Twenty-three cultivars of spring wheat were inoculated with nineteen different powdery mildew isolates; their ruction patterns hive been compared with those of twenty-two cultivars/lines carrying identified powdery mildew resistance genes. Applying the gene-for-gene hypothesis, it is evident that three cultivars have none of the resistance genes used, seven others (including ‘Solo’) may carry Pm4b, only. The resistance pattern of ‘Selpek’ is identical to A/-1 resistant cultivars of winter wheat and may be explained by the presence of Pm5. The resistance pattern of Pm5 (Mt-i) cultivars is very different from a number of ‘Kolibri’-related cultivars of spring wheat. Since either all or nothing of that specific pattern has been transferred to all cross progenies of ‘Kolibri’, a single gene is assumed to oe responsible for it, preliminarily designated as Ml-k. The cultivar ‘Mephisto’ carries the ‘Normandie’ resistance (Pwl 2, 9). In five cultivars to spring wheat the combined effects of at least two of the above-mentioned sources have been found. Despite the fact that ‘Normandie’ and ‘Sappo’ are not closely related. ‘Sappo’ shows the complete ‘Normandie’ resistance pattern plus that of Pm4b. The same is true for ‘Planet’ and ‘Walter’.  相似文献   

16.
S. Rajaram  N. H. Luig 《Euphytica》1972,21(2):363-376
Summary Resistance to several Australian strains of Puccinia graminis f. sp. tritici in four entries of the 1963 International Spring Wheat Rust Nursery, viz 25 (W3300), 318 (W3301), 386 (W3302) and 409 (W3303), was shown to have in each case a complex basis. In W3300 seedling resistance was controlled by Sr5, Sr9b, and a third, dominant gene, designated SrN, which conditioned resistance to all Australian strains. W3301 possessed the recessive gene sr17, and a new gene, srK1, which was effective against 16 of the 18 strains used. A third gene, SrK2, operated in adult plants only.W3302 was shown to carry Sr11, and two genes, SrM1 and srM2, both apparently derived from Marquillo. Five already known genes, viz Sr5, Sr6 Sr8, Sr9b and sr17, and an undescribed dominant gene SrR were isolated from W3303. SrR appeared to be allelic with SrN.The present studies suggest that worldwide resistance shown by the four entries was due in each instance to a combined effect of genes already catalogued by Sr numbers and new genes. In each entry the new genes, either singly or in combination, provided resistance to Australian strains which have genes for virulence on the designated genes.  相似文献   

17.
Summary Genetics of field resistance to Alternaria triticina was studied in a diallel set of crosses using ten cultivars of wheat which included eight resistant and two susceptibles.Susceptibility if NP 830 was found to be controlled by a dominant gene and that of NP 891 by two dominant complementary genes. The resistant cultivars NP 824, NP 835, NP 852, C 281, E 5477, E 5550, E 5878 and UP 303 carry the recessive alleles of the genes present in NP 830 and NP 891.All the resistant cultivars used in the study carried identical gene(s) for resistance to A. triticina. The gene(s) responsible for resistance appear to have come from NP 4 and Turkey, both of which seem to have evolved simultaneously in nature.The gene(s) for susceptibility in NP 830 and NP 891 were found to be different. It is assumed that these genes come from either Motia (Triticum durum) or Khapli (T. dicoccum) in NP 830 and from Gaza (T. durum) in NP 891.  相似文献   

18.
Summary The genetics of resistance to whitebacked planthopper, Sogatella furcifera (Horvath) in ten resistant cultivars was studied. The reactions of the F1, F2 and F3 populations of resistant varieties with Taichung Native 1, a suspectible check, showed that WBPH resistance is monogenic in nature and governed by dominant gene(s) in Ptb 19 and IET 6288 and recessive gene in eight cultivars viz. ARC 5838, ARC 6579, ARC 6624, ARC 10464, ACR 11321, ARC 11320, Balamawee and IR 2415-90-4-3. Allelic relationship of resistance gene(s) in the test cultivars revealed recessive gene in IR 2415-90-4-3, ARC 5838 and ARC 11324 to be allelic but it was non allelic to the resistance gene in ARC 6624. Cultivars ARC 6579, ARC 11321 and Balamawee have identical gene among themselves but their relationship with IR 2415-90-4-3, ARC 5838, ARC 11324 and ARC 6624 is unknown. The recessive gene in ARC 10464 is non-identical to all other cultivars having the recessive gene except ARC 6624 with which its relationship needs further investigation.  相似文献   

19.
Inheritance of resistance to race 4 of Ascochyta rabiei was studied in fifteen chickpea accessions known internationally for Ascochyta blight (AB) resistance. Resistance in ILC 200, ILC 5921, ILC 6043 and ILC 6090 was governed by a single recessive gene. Resistance in ILC 202 and ILC 2956 was conferred by two recessive complementary genes. In the case of ILC 5586, resistance was controlled by two dominant complementary genes and in the case of ILC 2506, two recessive genes with epistasis interaction were responsible for resistance. Resistance in ILC 3279, ILC 3856 and ILC 4421 was controlled either by three recessive genes or two recessives duplicated genes and in ILC 72, ILC 182 and ILC 187 resistance was polygenic in nature. The study provided insights into the genetics of Ascochyta blight resistance, and these could be used in crossing programmes to develop durable resistance. While the virulence spectrum of the pathogen in a region plays a crucial role in the deployment of resistance, ILC72, ILC182, ILC200, ILC442 and ILC6090 could provide acceptable level of resistance if incorporated into commercial cultivars.  相似文献   

20.
Summary A set of 105 European wheat cultivars, comprising 68 cultivars with known seedling resistance genes and 37 cultivars that had not been tested previously, was tested for resistance to selected Australian pathotypes of P. triticina in seedling greenhouse tests and adult plant field tests. Only 4% of the cultivars were susceptible at all growth stages. Twelve cultivars lacked detectable seedling resistance to leaf rust, and among the remaining cultivars, 10 designated genes were present either singly or in combination. Lr13 was the most frequently detected gene, present in 67 cultivars, followed by the rye-derived gene Lr26, present in 19 cultivars. Other genes present were Lr1, Lr3a, Lr3ka, Lr10, Lr14a, Lr17b, Lr20 and Lr37. There was evidence for unidentified seedling resistance in addition to known resistance genes in 11 cultivars. Field tests with known pathotypes of P. triticina demonstrated that 57% of the cultivars carried adult plant resistance (APR) to P. triticina. The genetic identity of the APR is largely unknown. Genetic studies on selected cultivars with unidentified seedling resistances as well as all of those identified to carry APR are required to determine the number and inheritance of the genes involved, to determine their relationships with previously designated rust resistance genes, and to assess their potential value in breeding for resistance to leaf rust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号