首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
A study was conducted under controlled environment conditions in a phytotron to determine the nature of the inheritance of resistance Helminthosporium leaf blight (HLB) in a synthetic hexaploid wheat line, ‘Chirya‐3’, against the isolate KL‐8 of Bipolaris sorokiniana from the major wheat growing region of India. Crosses were made between two susceptible lines ‘WH 147’ and ‘Chinese Spring’. Analyses of F1 and F2 populations of these two crosses (‘WH 147’בChirya‐3’ and ‘Chinese Spring’בChirya‐3’) showed that resistance against the isolate in ‘Chirya‐3’ was governed by two recessive genes functioning in a complementary interaction giving an F2 segregation pattern of 1 : 15 (resistant : susceptible). The segregation pattern of the resistant F2 progenies in F3 families from both crosses confirmed that two homozygous recessive genes were responsible for resistance to the isolate of Bipolaris sorokiniana in the synthetic line ‘Chirya‐3’. It is proposed that the genes be designated as hlbr1 and hlbr2.  相似文献   

2.
Six intervarietal crosses involving two resistant and three susceptible genotypes of mungbean were attempted with the objectives to determine the mode of inheritance of gene‐specific Mungbean Yellow Mosaic Virus (MYMV) resistance. An infector row technique along with artificial inoculation was used for evaluating parents, F1, F2 and F3 plants for MYMV resistance. Disease scoring for MYMV indicated that F1s were highly susceptible as were the susceptible parents while resistant parent exhibited resistant reaction. The F2 progeny segregated in the ratio of 9 S:3 MS:3 MR:1 R suggesting that the resistance was governed by digenic recessive genes (rm1 and rm2). When one gene (rm1) was present in the homozygous recessive condition in different plants, it conferred moderately susceptible (MS) reaction, whereas when other gene (rm2) was in homozygous condition, moderately resistant (MR) reaction was obvious. When both genes (rm1 and rm2) were present together in the homozygous recessive condition, resistant reaction (R) was observed. The F2 segregation explained on the basis of phenotypic expression was further confirmed by F3 segregation.  相似文献   

3.
A. K. Joshi    S. Kumar    R. Chand  G. Ortiz-Ferrara   《Plant Breeding》2004,123(3):213-219
Three F1 progenies and their families in the segregating generations (F3, F4, F5 and F6), obtained after crossing resistant × susceptible wheat genotypes were studied in the field to determine the genetics of resistance to spot blotch caused by Bipolaris sorokiniana. Spot blotch scores in the F1 generation showed absence of dominance. Individually threshed F2 plants were used to advance the generations. Progenies (200‐250) of resistant genotypes Acc. No. 8226, Mon/Ald, Suzhoe#8 crossed with susceptible ‘Sonalika’ were evaluated in the F3, F4, F5 and F6 generations under induced epiphytotic conditions. Based on disease score distribution in individual progeny rows, F3 progenies were grouped into four classes: homozygous resistant, homozygous susceptible, segregating resistant and segregating susceptible. Resistance appeared to be under the control of three additive genes. The presence of three genes was also noted in the distribution of F4 and F5 lines. In the case of F6 progeny rows, both quantitative and qualitative models were used to estimate the number of segregating genes based on a 2‐year trial. It appeared that resistance to spot blotch was controlled by the additive interaction of more than two genes, possibly only three.  相似文献   

4.
The peach root‐knot nematode, Meloidogyne floridensis (MF), infects majority of available nematode‐resistant peach rootstocks which are mostly derived from peach (Prunus persica) and Chinese wild peach (P. davidiana). Interspecific hybridization of peach with its wild relative, Kansu peach (P. kansuensis), offers potential for broadening the resistance spectrum in standard peach rootstocks. We investigated the inheritance of resistance to MF in segregating populations of peach (‘Okinawa’ or ‘Flordaguard’) × P. kansuensis. A total of 379 individuals from 13 F2 and BC1F1 families were challenged with a pathogenic MF isolate “MFGnv14” and were classified as resistant (R) or susceptible (S) based on root galling intensity. Segregation analyses in F2 progeny revealed the involvement of a major locus with a dominant or recessive allele determining resistance in progeny segregating 3R:1S and 1R:3S, respectively. Testcrosses with a homozygous‐susceptible peach genotype (‘Flordaguard’ or ‘UFSharp’) confirmed P. kansuensis as a source of new resistance and the heterozygous allelic status of P. kansuensis at the locus conferring resistance to MF. We propose a single‐locus dominant/recessive model for the inheritance of resistance.  相似文献   

5.
A new race F of broomrape overcomes all known resistance genes in cultivated sunflower, but recently, sources of resistance against race F have been developed. The objective of the present research was to study the inheritance of resistance to race F in crosses between 12 resistant sunflower breeding lines, derived from three different sources of resistance, and the susceptible male‐sterile line P‐21. Parental lines and F1, F2, F3 and BC1 generations were evaluated for broomrape resistance. Segregations in the F2 and BC1 to resistant parent approached resistant to susceptible ratios of 1: 15 and 1: 3, respectively, in most of the crosses, suggesting a double dominant epistasis. However, segregations of 3: 13 and 1: 1 for F2 and BC1, respectively, indicating a dominant‐recessive epistasis, were also found. The F3 data confirmed these results. Owing to the recessive nature of this resistance, it must be incorporated into both parental lines for developing resistant hybrid cultivars.  相似文献   

6.
Summary In studies of the inheritance of resistance, pea seedlings of seven lines in which stems and leaves were both resistant to Mycosphaerella pinodes were crossed with a line in which they were both susceptible. With seven of the crosses resistance was dominant to susceptibility. When F2 progenies of five crosses were inoculated on either stems or leaves independently, phenotypes segregated in a ratio of 3 resistant: 1 susceptible indicating that a single dominant gene controlled resistance. F2 progenies of one other cross gave ratios with a better fit to 9 resistant: 7 susceptible indicating that two co-dominant genes controlled resistance. The F2 progeny of another cross segregated in complex ratios indicating multigene resistance.When resistant lines JI 97 and JI 1089 were crossed with a susceptible line and leaves and stems of each F2 plant were inoculated, resistance phenotypes segregated independently demonstrating that leaf and stem resistance were controlled by different genes. In two experiments where the F2 progeny of the cross JI 97×JI 1089 were tested for stem and leaf resistance separately, both characters segregated in a ratio of 15 resistant:1 susceptible indicating that these two resistant lines contain two non-allelic genes for stem resistance (designated Rmp1 and Rmp2) and two for leaf resistance (designated Rmp3 and Rmp4). Evidence that the gene for leaf resistance in JI 1089 is located in linkage group 4 of Pisum sativum is presented.  相似文献   

7.
Summary Six chickpea lines resistant to Ascochyta rabiei (Pass.) Lab. were crossed to four susceptible cultivars. The hybrids were resistant in all the crosses except the crosses where resistant line BRG 8 was involved. Segregation pattern for diseases reaction in F2, BCP1, BCP2 and F3 generations in field and glasshouse conditions revealed that resistance to Ascochyta blight is under the control of a single dominant gene in EC 26446, PG 82-1, P 919, P 1252-1 and NEC 2451 while a recessive gene is responsible in BRG 8. Allelic tests indicated the presence of three independently segregating genes for resistance; one dominant gene in P 1215-1 and one in EC 26446 and PG 82-1, and a recessive one in BRG 8.Research paper No. 3600  相似文献   

8.
Phytophthora drechsleri causes stem blight, which is one of the most serious diseases of pigeonpea. Eight races of this fungus have been identified, but the inheritance of resistance to all these races is not clear except for race P2. This study examined the inheritance of resistance to race ‘Kanpur’ (KPR) of P. drechsleri in eight crosses involving four resistant parents, viz.‘KPBR 80‐2‐1′, ‘KPBR 80‐2‐2′, ‘Hy 3C and ‘BDN 1′, and two susceptible parents, viz.‘Bahar’ and ‘PDA 10′. The reactions of the parental lines, and their F1, F2 and backcross generations were studied in an infected plot. In the F1 generation of all crosses, a susceptible reaction was observed that indicated dominance of susceptibility over resistance. The segregation pattern in F2 indicated that two homozygous recessive genes (pdr1pdr1pdr2pdr2) were responsible for imparting resistance in the parents, ‘KPBR 80‐2‐1’ and ‘KPBR 80‐2‐2′, and that a single homozygous recessive gene (pdrpdr) was responsible for resistance in the parents ‘Hy 3C and ‘BDN 1′. Therefore, ‘KPBR 80‐2‐1’ and ‘KPBR 80‐2‐2’ with two genes for resistance are better donors because the resistance transferred from them will be more durable compared with ‘Hy3C and ‘BDN1’ with only one gene for resistance.  相似文献   

9.
S. Kumar 《Plant Breeding》1998,117(2):139-142
The inheritance of resistance to Fusarium wilt (race 2) of chickpea was studied in a set of three crosses, i.e. ‘WR315’בC104’ (resistant × susceptible), ‘WR315’בK850’ (resistant × tolerant) and ‘K850’בGW5/7’ (tolerant × tolerant) in order to investigate the number of genes involved, their complementation and to find out whether resistant segregants are possible in a cross between two tolerant cultivars. Tests of F1, F2 and F3 generations of these crosses under controlled conditions at ICRISAT, Patancheru, India, indicated involvement of three loci (two recessive and one dominant alleles). The homozygous recessive form at the first two loci conferred resistance whereas susceptibility occurred when the first two loci were in the dominant form. A dominant allele at the third locus can complement the dominant alleles at the other two loci to confer tolerance. Occurrence of resistant segregants in a cross between two tolerant cultivars was observed.  相似文献   

10.
A set of 520 chickpea germplasm lines was screened under laboratory conditions using blotter paper technique for reaction to dry root rot caused by Rhizoctonia bataticola (Taub.) Butler. The lines PG06102, BG2094 and IC552137 were identified as resistant for dry root rot. Phenotyping the mapping population consisting of 129 F2:3 progeny derived from the cross L550 × PG06102 during 2013 winter indicated monogenic inheritance of dry root rot resistance. Fifty‐two of 381 simple sequence repeat (SSR) primers polymorphic between the two parents were used to genotype F2 resistant and susceptible bulks prepared on the basis of reaction of F2:3 progeny. Four markers differentiated the resistant and susceptible bulks. All the four polymorphic markers were then assayed on the entire F2 population. Linkage analysis using 129 F2 plants revealed that two markers ICCM0299 and ICCM0120b were co‐segregating with resistance to dry root rot. These two markers appeared to have additive effects on resistance and could be potentially utilized in dry root resistance breeding programme.  相似文献   

11.
Inheritance of resistance to anthracnose caused by Colletotrichum capsici (Syd.) Butler & Bisby was studied in interspecific Capsicum populations derived from a cross between a Thai elite cultivar Capsicum annuum L.‘Bangchang’ and a resistant line C. chinense Jacq.‘PBC932′. The resistance was assessed by measuring lesion area per fruit area (LFA) on detached chili fruits, using a laboratory‐based injection inoculation. Nil symptoms resembling the resistant parent ‘PBC932’ were also identified in the progeny F2 and BC1 populations. Segregation of resistance (nil LFA) and susceptibility in the F2 fitted a 1: 3 Mendelian ratio, indicating that resistance was responsible by a single recessive gene. The segregation of the trait in the testcrosses in both BC1s also confirmed the 1: 3 gene segregating model as found in the F2.  相似文献   

12.
The inheritance of resistance to dry root rot of chickpea caused by Rhizoctonia bataticola was studied. Parental F1 and F2 populations of two resistant and two susceptible parents, along with 49 F1 progenies of one of the resistant × susceptible crosses were rested for their reaction to dry root rot using the blotting-paper technique. All F, plants of the resistant × susceptible crosses were resistant; the F2 generation fitted a 3 resistant: 1 susceptible ratio indicating monogenic inheritance, with resistance dominant over susceptibility. F3 family segregation data confirmed the results. No segregation occurred among the progeny of resistant × resistant and susceptible × susceptible crosses.  相似文献   

13.
W. Tadesse    S. L. K. Hsam    F. J. Zeller 《Plant Breeding》2006,125(4):318-322
A total of 50 wheat (Triticum aestivum L.) cultivars were evaluated for resistance to tan spot, using Pyrenophora tritici‐repentis race 1 and race 5 isolates. The cultivars ‘Salamouni’, ‘Red Chief’, ‘Dashen’, ‘Empire’ and ‘Armada’ were resistant to isolate ASC1a (race 1), whereas 76% of the cultivars were susceptible. Chi‐squared analysis of the F2 segregation data of hybrids between 20 monosomic lines of the wheat cultivar ‘Chinese Spring’ and the resistant cultivar ‘Salamouni’ revealed that tan spot resistance in ‘Salamouni’ was controlled by a single recessive gene located on chromosome 3A. This gene is designated tsn4. The resistant cultivars identified in this study are recommended for use in breeding programmes to improve tan spot resistance in common wheat.  相似文献   

14.
Soybean mosaic virus (SMV) can cause serious yield losses in soybean. Soybean cultivar ‘RN‐9’ is resistant to 15 of 21 SMV strains. To well‐characterize this invaluable broad‐spectrum SMV‐resistance, populations (F1, F2 and F2:3) derived from resistant (R) × susceptible (S) and R × R crosses were tested for SMV‐SC18 resistance. Genetic analysis revealed that SC18 resistance in ‘RN‐9’ plus two elite SMV‐resistant genotypes (‘Qihuang No.1’ and ‘Kefeng No.1’) are controlled by independently single dominant genes. Linkage analysis showed that the resistance of ‘RN‐9’ to SMV strains SC10, SC14, SC15 and SC18 is controlled by more than one gene(s). Moreover, Rsc10‐r and Rsc18‐r were both positioned between the two simple sequence repeats markers Satt286 and Satt277, while Rsc14‐r was fine‐mapped in 136.8‐kb genomic region containing sixteen genes, flanked by BARCSOYSSR_06_0786 and BARCSOYSSR_06_0790 at genetic distances of 3.79 and 4.14 cM, respectively. Allelic sequence comparison showed that Cytochrome P450‐encoding genes (Glyma.06g176000 and Glyma.06g176100) likely confer the resistance to SC14 in ‘RN‐9’. Our results would facilitate the breeding of broad‐spectrum and durable SMV resistance in soybeans.  相似文献   

15.
The mode of inheritance and allelic relationships among genes conferring resistance to Karnal bunt were studied in seven bread-wheat (six resistant and one susceptible) genotypes. The resistant genotypes originated in China (‘Shanghai#8’), Brazil (PF71131), the USA (‘Chris’), and Mexico (‘Amsel’, CMH77.308 and ‘Pigeon’). The susceptible line WL711 was from India. Evaluation of these wheat lines and all possible crosses among their F1 and F3 generations (about 100 progenies in each cross) revealed that two partially recessive genes conferred the resistance to Karnal bunt in ‘Pigeon’, whereas four partially dominant genes were present in the other genotypes. ‘Chris’, ‘Amsel’ and PF71131 carry one gene, whereas ‘Shanghai#8’ and CMH77.308 have two genes. ‘Chris’, ‘Amsel’, and PF71131 have different genes, whereas one gene was common to PF71131, CMH77.308 and ‘Shanghai#8’, and another to ‘Chris’ and CMH77.308. Gene symbols were formally designated to the resistant stocks. Resistance was incomplete and stable.  相似文献   

16.
Bacterial leaf pustule (BLP) caused by Xanthomonas axonopodis pv. glycines (Xag) is a serious soybean disease. A BLP resistant genotype ‘TS-3’ was crossed with a BLP susceptible genotype ‘PK472’, and a segregating F2 mapping population was developed for genetic analysis and mapping. The F2 population segregation pattern in 15:1 susceptible/resistance ratio against Xag inoculum indicated that the resistance to BLP in ‘TS-3’ was governed by two recessive genes. A total of 12 SSR markers, five SSR markers located on chromosome 2 and seven SSR markers located on chromosome 6 were identified as linked to BLP resistance. One of the resistance loci (r1) was mapped with flanking SSR markers Sat_183 and BARCSOYSSR_02_1613 at a distance of 0.9 and 2.1 cM, respectively. Similarly, SSR markers BARCSOYSSR_06_0024 and BARCSOYSSR_06_0013 flanked the second locus (r2) at distances of 1.5 and 2.1 cM, respectively. The identified two recessive genes imparting resistance to BLP disease and the SSR markers tightly linked to these loci would serve as important genetic and molecular resources to develop BLP resistant genotypes in soybean.  相似文献   

17.
P.K. Singh    G.R. Hughes 《Plant Breeding》2006,125(3):206-210
Tan spot of wheat is caused by the fungus Pyrenophora tritici‐repentis. On susceptible hosts, P. tritici‐repentis induces two phenotypically distinct symptoms, tan necrosis and chlorosis. This fungus produces several toxins that induce tan necrosis and chlorosis symptoms in susceptible cultivars. The objectives of this study were to determine the inheritance of insensitivity to necrosis‐inducing culture filtrate of P. tritici‐repentis, race 2, and to establish the relationship between the host reaction to culture filtrate and spore inoculation with respect to the necrosis component. The F1, F2, and BC1F1 plants and F2:8 lines of five crosses involving resistant wheat genotypes ‘Erik’, ‘Red Chief’, and line 86ISMN 2137 with susceptible cultivars ‘Glenlea’ and ‘Kenyon’ were studied. Plants were spore‐inoculated at the two‐leaf stage. Four days later, the newly emerged uninoculated third leaf was infiltrated with a culture filtrate of isolate Ptr 92–164 (race 2). Reactions to the spore inoculation and the culture filtrate were recorded 8 days after spore inoculation. The segregation observed in the F2 and BC1F1 generations and the F2:8 lines of all crosses indicated that a single recessive gene controlled insensitivity to necrosis caused by culture filtrate. This gene also controlled resistance to necrosis induced by spore inoculation.  相似文献   

18.
The genetics of resistance to green leafhopper, Nephotettix virescens (Distant), in rice varieties ‘IR36’ and ‘Maddai Karuppan’ and breeding line ‘IR20965‐11‐3‐3’ was studied. The reactions of F1 hybrids, F2 populations and F3 lines from the crosses of test varieties with the susceptible variety ‘TN1’ revealed that resistance in ‘IR36’ and ‘Maddai Karuppan’, is governed by single recessive genes while resistance in ‘IR20965‐11‐3‐3’ is controlled by a single dominant gene. Allele tests with the known genes for resistance to green leafhopper revealed that the recessive gene of ‘IR36’ is different from and inherited independently of Glh1, Glh2, Glh3, Glh4, Glh5, Glh8 and Glh9t. This gene is designated as glh10t. The recessive gene of ‘Maddai Karuppan’ and the dominant gene of ‘IR20965‐11‐3‐3’ are also non‐allelic to Glh1, Glh2, Glh3, Glh4, Glh5 and Glh8t. Thus, the dominant gene of IR20965‐11‐3‐3 is designated as Glh11t. The allelic relationships of the recessive gene of ‘Maddai Karuppan’ with glh8 and glh10t should be investigated.  相似文献   

19.
Genetics of resistance to ascochyta blight was studied using different generations of fifteen crosses of chickpea (Cicer arietinum L.). Six parents comprising two susceptible varieties GL 769, C 214 and four resistant lines GG 1267, GL 90168, GL 96010 and GL 98010 were used to develop one S × S, eight S × R and six R × R crosses and some of the back crosses and F3 generations were developed. Field screening technique was used to evaluate the different generations for disease reaction using mixture of ten prevalent isolates (ab1–ab10) of ascochyta blight (Ascochyta rabiei). Inheritance study showed digenic recessive control of resistance in the cross GL 769 × C 214, whereas monogenic recessive control of resistance was found in the crosses GL 769 × GL 98010 and C 214 × GL 98010. Digenic dominant and recessive control of resistance was found in the crosses GL 769 × GG 1267 and C 214 × GG 1267 while the crosses GL 769 × GL 90168 and C 214 × GL 96010 showed the monogenic dominant control of resistance. Trigenic dominant and recessive control of resistance was observed in the crosses GL 769 × GL 96010 and C 214 × GL 90168. Allelic relationship studies showed that three resistant parents viz., GG 1267, GL 96010 and GL 90168 possessed allelic single dominant gene for resistance. Besides, GG 1267 possessed two minor recessive genes for resistance, one of them was allelic to the minor recessive gene possessed by GL 90168 and other with GL 96010. The resistant parents GL 90168 and GL 96010 possessed non-allelic minor gene for resistance. The resistant parent GL 98010 possessed two minor recessive genes for resistance which were allelic to respective single recessive gene for resistance possessed by the susceptible parents GL 769 and C 214. The susceptible parents GL 769 and C 214 also possessed single independent inhibitory dominant susceptibility gene. The inhibitory gene was epistatic to the corresponding recessive gene for resistance.  相似文献   

20.
R. Stegmark 《Plant Breeding》1992,108(2):111-117
The aim of the investigation was to see if the partial resistance of three sister-lines is determined by identical genes. The sister-lines were selected from a cross between a susceptible line and a partially resistant line. These lines and the susceptible parent line were crossed in all directions. The downy-mildew resistance of the different combinations was investigated in the F1, F3 and F4 generations. The resistance of the sister-lines is not determined by the same genes. The moderate resistance of line X309 is recessive and might be determined by a single gene. The more resistant line X282 carry at least one resistance gene that shows dominance in crosses with X309. Line X311 carries, in addition to the resistance in X309, some resistance gene or genes with an intermediate effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号