首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Estuarine habitats provide rearing opportunities for the juvenile life stage of anadromous fishes. Because survival is positively correlated with juvenile performance, these estuarine habitats play an important role in population abundance and productivity. To provide information for the recovery of several depressed stocks of Chinook salmon in the Columbia River Basin, we sought to identify the factors that explain variability in performance. Using otolith‐derived estimates of juvenile somatic growth rate as an index of recent performance, we observed a negative nonlinear relationship between growth rate and day of year, and a decreasing and increasing trend of growth rate over the 8 years of this study and distance from the river mouth respectively. Using a generalised linear modelling approach, we found that variability in juvenile somatic growth rate was best explained by where and when individuals were collected, their body size, contaminant loads, stock of origin, and whether a fish was hatchery produced or unmarked. Lastly, we argue that a considerable improvement to the growth rate of juveniles in estuarine habitats is physiologically possible. The results of this 8‐year study provide a baseline of the performance of juvenile Chinook salmon to evaluate habitat restoration programs and to compare against future anthropogenic conditions.  相似文献   

2.
The migration patterns of wild and released farmed Atlantic salmon, Salmo salar L., were studied by radio-telemetry during migration from entering a river to after spawning. The wild salmon were caught during return migration in bagnets and the farmed salmon were produced in a near by fish farm. Both groups were tagged and released at sea near the river mouth of the River Alta, North Norway. A pronounced individual variation in migration pattern was observed. No significant differences was found between wild and farmed salmon in the distance from entering the river mouth to the place of the first stop (recorded in the same pool for 5 days or longer) and the days from entering the river mouth to arrival at the first stop. For both wild and farmed salmon, mean migration speed was 2.6 km day1, varying from 0.4 to 11.0 km day-1. A larger proportion of farmed salmon distributed to the upper part of the river at spawning; mean distances from the river mouth were 30.1 and 19.1 km. respectively. Farmed salmon spent a significantly longer time from entering the river to reaching the area occupied during spawning.  相似文献   

3.
Population diversity is a mechanism for resilience and has been identified as a critical issue for fisheries management, but restoration ecologists lack evidence for specific habitat features or processes that promote phenotypic diversity. Since habitat complexity may affect population diversity, it is important to understand how population diversity is partitioned across landscapes and among populations. In this study, we examined life history diversity based on size distributions of juvenile Central Valley Chinook salmon (Oncorhynchus tshawytscha) within the Yolo Bypass, a remnant transitional habitat from floodplain to tidal sloughs in the upper San Francisco Estuary (SFE). We used a generalized least squares model with an autoregressive (AR1) correlation structure to describe the distribution of variation in fish size from 1998 to 2014, and tested the effect of two possible drivers of the observed variation: (i) environmental/seasonal drivers within the Yolo Bypass, and (ii) the juvenile Chinook source population within the Sacramento River and northern SFE. We found that the duration of floodplain inundation, water temperature variation, season, and sampling effort influenced the observed time‐specific size distribution of juvenile Chinook salmon in the Yolo Bypass. Given the lack of seasonally inundated habitat and low thermal heterogeneity in the adjacent Sacramento River, these drivers of juvenile size diversification are primarily available to salmon utilizing the Yolo Bypass. Therefore, enhancement of river floodplain‐tidal slough complexes and inundation regimes may support the resilience of imperiled Central Valley Chinook salmon.  相似文献   

4.
Chinook salmon, Oncorhynchus tshawytscha (Walbaum), is an important biological and cultural resource in Alaska, but knowledge about Chinook salmon ecology is limited in many regions. From 2009 to 2012, spawning distribution and abundance of a northern Chinook salmon population on the Togiak River in south‐west Alaska were assessed. Chinook salmon preferred deeper mainstem channel spawning habitat, with 12% (14 of 118 tags in 2009) to 21% (22 of 106 tags in 2012) of radio‐tagged fish spawning in smaller order tributaries. Tributary spawners tended to have earlier run timing than mainstem spawners. Chinook salmon exhibited extended holding and backout (entering freshwater but returning to saltwater before completing anadromous migration) behaviours near the mouth of Togiak River, potentially prolonging their exposure to fishery harvest. Mark–recapture total annual run estimates (2010–2012) ranged from 11 240 (2011) to 18 299 (2012) fish. Exploitation of Chinook salmon ranged from 36% (2012) to 55% (2011) during the study period, with incidental fishery catches near the mouth of the river comprising the largest source of harvest.  相似文献   

5.
The River Dalälven Baltic salmon, Salmo salar L., population has been maintained by stocking reared fish since the early 1920s. Initially, all rearing was carried out at one hatchery, but since the late 1980s two have been used. Both hatcheries are situated 9–10 km from the river mouth but some 600 m apart. All broodfish were caught in a single fish trap situated some 700 m upstream of the upper hatchery. The salmon smolts were released just below the water outlets of each hatchery, respectively. About 2% of the released smolts from each hatchery were tagged annually with Carlin tags. Total recapture rates were higher for smolts from the lower hatchery. A higher proportion of recaptured fish was reported from the home river for salmon from the upper hatchery. The migration within the river to the fish trap was more precise for fish from the upper station. Strays were very late in the season and of a higher number from the lower hatchery. Observations of jumping salmon by the outlet from the lower station indicated that salmon returned to that point. The lower recaptures in the trap were considered a result of a shorter river migration of salmon from the lower hatchery.  相似文献   

6.
The planned removal of four dams on the Klamath River (anticipated 2024) will be the largest river restoration effort ever undertaken on the planet. Dam removal will restore access to >50 km of the Klamath River mainstem for coho salmon, but mainstem habitat may not be suitable for rearing juvenile coho salmon. Instead, small tributaries may provide most rearing habitat for reestablishing coho salmon. We used four approaches to evaluate six Klamath River tributaries above existing dams to assess their potential to support juvenile coho salmon: (1) We measured summer temperature regimes and evaluated thermal suitability. (2) We applied an Intrinsic Potential (IP) model to evaluate large-scale geomorphological constraints on coho salmon habitat. (3) We used the Habitat Limiting Factors Model (HLFM) to estimate rearing capacity for juveniles given current habitat conditions. (4) We developed an occupancy model using data from reference tributaries to predict coho salmon rearing distribution. All six streams had summer temperatures cooler than the mainstem Klamath River. However, five of the streams have barriers that will restrict coho salmon to within 5 km of the confluence with the Klamath River and two were disconnected mid-summer. Despite these constraints, the tributaries will likely produce coho salmon. Most streams had high IP in their lower reaches, the HLFM model estimated a total capacity of 105,000 juvenile coho salmon, and the occupancy model predicted juvenile coho salmon will rear throughout the accessible reaches. Protection and habitat enhancement for these tributaries will be important for coho salmon reestablishment post-dam removal.  相似文献   

7.
The migratory behaviour of adult wild and escaped farmed Atlantic salmon, Salmo salar L., before, during after spawning in the River Namsen, Norway, was analysed using radio telemetry. The fish were caught, radio tagged and released into the fjord between 7 and 25 km from the river mouth. A significantly higher proportion of wild (74%) than farmed (43%) salmon was subsequently recorded in the river. Wild salmon (33%) were more frequently captured in the sea and in rivers than farmed salmon (14%). The migration speed from release to passing a data logger 11 km upstream from the river mouth was not significantly different between wild (20.6 km day?1) and farmed (19.8 km day?1) salmon. Wild salmon tagged when water flow in the river was increasing had a significantly higher migration speed than wild salmon tagged when water flow was decreasing. This was not true for farmed salmon. Farmed salmon were distributed significantly higher up the river than wild salmon during spawning, although both types of fish were found together in spawning areas. Thus, there was no geographical isolation to prevent spawning between wild and escaped farmed salmon. Farmed salmon had significantly more and longer up- and downstream movements than wild salmon during the spawning period. Unlike farmed salmon, the number of riverine movements by wild salmon increased significantly when variation in water flow increased. A smaller proportion of wild (9%) than farmed (77%) salmon survived through the winter after spawning.  相似文献   

8.
Abstract Many habitat enhancement techniques aimed at restoring salmonid populations have not been comprehensively assessed. The growth and diet of juvenile Chinook salmon, Oncorhynchus tshawytscha (Walbaum), rearing in a reach designed to enhance spawning were evaluated to determine how a non‐target life stage fared in the engineered habitat. Prior work demonstrated differences in food web structure between restored and unenhanced reaches of the Merced River, thus juvenile salmon feeding dynamics were also hypothesised to vary. Dependent variables were compared among fish collected from within and near the upper boundary of the restored reach and in an unenhanced habitat upstream. Diets, otolith‐derived growth and stable isotope‐inferred trophic positions were compared. Baetidae mayflies were particularly important prey in the restored reach, while elsewhere individuals exhibited heterogeneous diets. Salmon residing at the bottom of the restored reach exhibited slightly faster growth rates relative to fish collected elsewhere, although stable isotope and diet analyses suggested that they fed at a relatively low trophic position. Specialised Baetis predation and/or abundant interstitial refugia potentially improved rearing conditions in the restored reach. Data suggest that gravel enhancement and channel realignment designed to augment adult spawning habitat may simultaneously support juvenile Chinook salmon despite low invertebrate food resources.  相似文献   

9.
Extreme variability in abundance of California salmon populations is often ascribed to ocean conditions, yet relatively little is known about their marine life history. To investigate which ocean conditions influence their distribution and abundance, we surveyed juvenile Chinook salmon (Oncorhynchus tshawytscha) within the California Current (central California [37°30′N) to Newport, Oregon (44°00′N]) for a 2‐week period over three summers (2010–2012). At each station, we measured chlorophyll‐a as an indicator of primary productivity, acoustic‐based metrics of zooplankton density as an indicator of potential prey availability and physical characteristics such as bottom depth, temperature and salinity. We also measured fork lengths and collected genetic samples from each salmon that was caught. Genetic stock identification revealed that the majority of juvenile salmon were from the Central Valley and the Klamath Basin (91–98%). We constructed generalized logistic‐linear negative binomial hurdle models and chose the best model(s) using Akaike's Information Criterion (AIC) to determine which covariates influenced the salmon presence and, at locations where salmon were present, determined the variables that influenced their abundance. The probability of salmon presence was highest in shallower waters with a high chlorophyll‐a concentration and close to an individual's natal river. Catch abundance was primarily influenced by year, mean fork length and proximity to natal rivers. At the scale of sampling stations, presence and abundance were not related to acoustic indices of zooplankton density. In the weeks to months after ocean entry, California's juvenile Chinook salmon population appears to be primarily constrained to coastal waters near natal river outlets.  相似文献   

10.
Keefer ML, Taylor GA, Garletts DF, Gauthier GA, Pierce TM, Caudill CC. Prespawn mortality in adult spring Chinook salmon outplanted above barrier dams.
Ecology of Freshwater Fish 2010: 19: 361–372. © 2010 John Wiley & Sons A/S Abstract – Dams without fish passage facilities block access to much of the historic spawning habitat of spring Chinook salmon (Oncorhynchus tshawytscha) in Oregon’s Willamette River basin. Adult salmon are routinely outplanted above the dams to supplement natural production, but many die before spawning despite extensive suitable habitat. In 2004–2007, we examined prespawn mortality patterns using live detection and carcass recovery data for 242 radio‐tagged outplants. Total prespawn mortality was 48%, but variability was high, ranging from 0% to 93% for individual release groups. Prespawn mortality was strongly condition dependent, consistently higher for females than males and higher for early release groups. Across years, warm water temperature in the migration corridor and at the collection site was associated with sharply higher mortality. Results highlight a need for better evaluations of the effects of adult mortality on population reintroduction and recovery and relationships among prespawn mortality, dam‐related temperature change and salmon life history and behaviour.  相似文献   

11.
Fourteen years (1996–2009) of juvenile Chinook salmon, Oncorhynchus tschawytscha (Walbaum), migration data on the regulated Stanislaus River, California, USA were used to evaluate how survival, migration strategy and fish size respond to flow regime, temperature and spawner density. An information theoretic approach was used to select the best approximating models for each of four demographic metrics. Greater cumulative discharge and variance in discharge during the migration period resulted in higher survival indices and a larger proportion of juveniles migrating as pre‐smolts. The size of pre‐smolt migrants was positively associated with spawner density, whereas smolt migrant size was negatively associated with temperature and positively associated with discharge. Monte Carlo techniques indicated high certainty in relationships between flow and survival, but relationships with juvenile size were less certain and additional research is needed to elucidate causal relationships. Flow is an integral part of the habitat template many aquatic species are adapted to, and mismatches between flow and life history traits can reduce the success of migration and the diversity of migratory life history strategies. The analyses presented here can be used to assist in the development of flow schedules to support the persistence of salmon in the Stanislaus River and provide implications for populations in other regulated rivers with limited and variable water supply.  相似文献   

12.
The proportion of angled Atlantic salmon Salmo salar L. being caught and released has increased. If individuals are repeatedly captured, this may have fish welfare consequences. Of 995 Atlantic salmon tagged during catch and release in eight Norwegian rivers, 10% were captured twice, while 3% were captured three times within the same fishing season. The probability that released salmon were captured again decreased with decreasing time left of the fishing season, decreased for larger‐sized fish and varied among rivers/years. Increased exploitation rates within the river, indicating an increased fishing pressure, strongly increased the probability that fish would be recaptured. However, the proportion of salmon caught a second time was much lower than the total exploitation rates in the same rivers (which was on average 46%). For fish tagged in the sea, the likelihood of being angled decreased with time since entering the river, which may explain why the recapture rates of caught and released fish were lower than the total exploitation rates.  相似文献   

13.
14.
Despite the popularity of barrier removal as a habitat restoration technique, there are few studies that evaluate the biological effects of restored stream crossings. An extensive post‐treatment study design was used to quantify fish populations (e.g. species, life stage, abundance) and habitat attributes (e.g. gradient, geomorphic channel units) at 32 culvert removal or replacement projects to determine their effectiveness in restoring habitat access for juvenile salmon, Oncorhynchus spp., and steelhead, O. mykiss (Walbaum), in the Columbia River Basin, USA. Anadromous fish (steelhead, Chinook salmon O. tshawytscha [Walbaum]) abundance, juvenile steelhead abundance and habitat conditions were not significantly different between paired reaches (i.e. upstream and downstream of former barrier sites), suggesting these sites are no longer full barriers to movement. This suggests that barrier removal projects on small Columbia Basin streams provide adequate fish passage, increased habitat availability and increased juvenile anadromous fish abundance immediately upstream of former barriers.  相似文献   

15.
We investigated the summer ecology of juvenile steelhead trout Onchorhynchus mykiss and Chinook salmon O. tshawytscha in the context of habitat use and movement behaviour. The study area was a 14.8 km section of the Chehalis River, Washington, and is of particular interest due to recent proposals for both a flood retention dam and restoration actions in this watershed. Ten study reaches were paired in distance upstream and downstream from a central point where a passive integrated transponder antenna array was operated between late June and September 2014. Juvenile densities for each species were associated with reach‐scale habitat and temperature characteristics. Juvenile steelhead underwent upstream and downstream movements up to 7 km, although more fish from further away moved downstream than upstream. Juvenile steelhead repeated horizontal movements throughout the study period, but daily detections were not associated with temperature or flow. The majority (81%) of steelhead movements occurred between the hours of 04:00–07:00 and 18:00–21:00. Juvenile Chinook underwent a downstream migration that was nearly complete by the end of August. Most juvenile Chinook were detected just once and movements occurred on days with warmer stream temperature and higher flows. The majority of Chinook movements occurred at night. Although juvenile salmonids are often thought to have small home ranges during summer months, our results suggest that horizontal movements may be more prevalent than previously thought. Summer habitat should be defined by a network of suitable rearing reaches with connectivity available in both upstream and downstream directions.  相似文献   

16.
The summer distribution of three juvenile anadromous salmonid species was compared in the mainstem sections and nine tributaries of the Upper South Umpqua River Basin, Oregon, USA. Chinook salmon, Oncorhynchus tshawytscha (Walbaum), was found at highest densities in the mainstem and mid-elevation tributaries. Coho salmon, O . kisutch (Walbaum), was essentially absent from the mainstem, but was found at high densities in the low-elevation tributaries. Steelhead trout, O . mykiss (Walbaum), was found in the mainstem and all nine tributaries; the highest densities of this species were in the upper mainstem reaches and high-elevation tributaries. No significant correlations were found between ranks of mainstem and tributary densities among the three species (Spearman's rs; P > 0.05). Observed spatial segregation of basin habitat by these species during summer indicated that protection provided at the level of the river basin will be necessary to assure the continued existence of all stocks.  相似文献   

17.
18.
Abstract Habitat mapping along 85 km of river was related to juvenile (15 years of electric fishing) and smolt (3 years of screw‐trapping) abundance data to estimate salmon, Salmo salar L., and sea trout, Salmo trutta L., smolt production in the River Sävarån, northern Sweden. Spawning site selection by radio‐tagged salmon (n = 12) and sea trout (n = 4) was also assessed. Fifty‐one hectares of potential spawning and nursery habitat was found in the main stem river, representing 25% of the total river area. These areas were estimated to yield 1300–7580 salmon and 630–3540 sea trout smolts based on juvenile densities, equating with 3 years of screw‐trap data (2990–5080 salmon and 680–2520 trout smolts, respectively). A hypothetical maximum production of about 19 900 salmon smolts was predicted for the river at a density of 40, 0+ salmon 100 m?2. Tracking adults during the spawning period identified optimal and potential reproductive areas.  相似文献   

19.
We studied salmon feeding selectivity and diel feeding chronology in the Columbia River plume. Juvenile chinook and coho salmon were caught by trawling at 2–3 h intervals throughout a diel period on three consecutive days (21–23 June 2000) at stations located 14.8 and 37 km offshore from the mouth of the Columbia River. A total of 170 chinook salmon were caught at the inshore and 79 chinook and 98 coho salmon were caught at the offshore station. After each trawl, potential prey were sampled at different depths with 2–3 different types of nets (1‐m diameter ring net, bongo net, neuston net). Despite the variability in zooplankton abundance, feeding selectivity was surprisingly constant. Both salmon species fed selectively on larger and pigmented prey such as hyperiid amphipods, larval and juvenile fish, various crab megalopae, and euphausiids. Hyperiid amphipods were abundant in the salmon diets and we hypothesize that aggregations of gelatinous zooplankton may facilitate the capture of commensal hyperiid amphipods. Small copepods and calyptopis and furcilia stages of euphausiids dominated the prey field by numbers, but were virtually absent from salmon diet. Juvenile chinook salmon, with increasing body size, consumed a larger proportion of fish. Stomach fullness peaked during morning hours and reached a minimum at night, suggesting a predominantly diurnal feeding pattern. In general, both chinook and coho salmon appear to be selective, diurnal predators, preying mostly on large and heavily pigmented prey items, in a manner consistent with visually oriented, size‐selective predation.  相似文献   

20.
In this study, 221 two‐year‐old hatchery‐reared salmon, Salmo salar, smolts were tagged with radio transmitters over a period of three consecutive years and released in the river in groups of 20–21 fish in various dates between late April and early June. Tagged smolts were tracked during their downstream migration in the lower 36‐km stretch of the regulated River Oulujoki, with the focus on the effects of release date, water temperature and river flow on migration behaviour and survival. The results indicate that release timing and river temperature have profound effects on the initiation of migration, swimming speed and survival of released S. salar smolts. Smolts released early in the spring in cold waters ceased migration after brief downstream movement and were vulnerable to predation, whereas the migration speed and survival rates increased markedly for smolts released later in the spring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号