首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The concentrations of Pb, Cu, Zn, Cd, and Fe were measured in sediment from 54 soft water lakes in the inland part of central and northern Sweden in order to study the regional impact of metals to lakes. An evident regional distribution due to environmental pollution was found concerning Pb, Cd, Zn, and Cu. In the southern part of the studied region, the enrichment factors in the top sediment layers were about 50, 7, 4, and 2, respectively. Further to the north, the contamination of the top sediments gradually decreased. In a large part of the northern region, the sediment analyses showed no general vertical gradients of Zn and Cu, indicating non-polluted conditions. Lead was the most widespread and pronounced pollutant with marked enhancements in most parts of the region. In the northernmost areas, the top sediment showed increased concentrations of Pb and Cd of about a factor of 2, suggesting that strictly non-polluted conditions concerning these two metals can not be found anywhere in the studied region. The regional distribution of Fe differed from the other metals and gave no evidence of a large-scale anthropogenic contribution. The natural enrichment of Pb, Cu, Zn, and Cd in the surface sediment is probably of minor importance in these kinds of lakes. The regional distribution of metals in sediments indicate that there is a large scale impact of Ph, Cd, Zn, and Cu on Swedish forest lakes, caused by anthropogenic factors.  相似文献   

2.
Street sediment collected in Sault Ste. Marie, Ontario was examined for trace element composition (As, Cd, Cr, Cu, Fe, Pb, Hg, Ni and Zn) and the metal partitioning to various sediment properties was determined by sequential extraction. Total Ni, Cu, Zn and Pb concentrations exceeded the lowest effect levels specified in the Ontario Provincial Sediment Quality Guidelines for Metals (Environment Ontario, 1992) and derived from bioassay studies. According to these Guidelines, the disposal of such sediment has to be guided by environmental considerations. A significant fraction of these metals was extractable in 0.5 N HCl over a 12-hour period and considered as potentially bioavailable. The major accumulative phases of toxic metals in this sediment are exchangeable, carbonate, Fe/Mn oxides and organic matter but the relative importance of each phase varied for individual metals. Approximately 20% of the total extractable Cd is found in each of these four fractions. Pb, Zn and Mn are predominantly bound to carbonates, Fe/Mn oxides and organic matter. Cu shows a high affinity for organic matter and to a lesser extent for carbonates. Elevated levels of Cd, Pb, Cu, Zn, Mn and Cr in the exchangeable and/or soluble phase suggest that sediment associated metals, mobilised from streets in Sault Ste. Marie during runoff and snowmelt, would adversely impact water quality in the receiving waters. However, large fractions of the total metal load are associated with coarser particles which are unlikely to be transported through the drainage system into receiving waters.  相似文献   

3.
Freshly deposited stream sediments from six urban centres of the Ganga Plain were collected and analysed for heavy metals to obtain a general scenery of sediment quality. The concentrations of heavy metals varied within a wide range for Cr (115–817), Mn (440–1 750), Fe (28 700–61 100), Co (11.7–29.0), Ni (35–538), Cu (33–1 204), Zn (90–1 974), Pb (14–856) and Cd (0.14–114.8) in mg kg-1. Metal enrichment factors for the stream sediments were <1.5 for Mn, Fe and Co; 1.5–4.1 for Cr, Ni, Cu, Zn and Pb; and 34 for Cd. The anthropogenic source in metals concentrations contributes to 59% Cr, 49% Cu, 52% Zn, 51% Pb and 77% Cd. High positive correlation between concentrations of Cr/Ni, Cr/Cu, Cr/Zn, Ni/Zn, Ni/Cu, Cu/Zn, Cu/Cd, Cu/Pb, Fe/Co, Mn/Co, Zn/Cd, Zn/Pb and Cd/Pb indicate either their common urban origin or their common sink in the stream sediments. The binding capacity of selected metals to sediment carbon and sulphur decreases in order of Zn > Cu > Cr > Ni and Cu > Zn > Cr > Ni, respectively. Stream sediments from Lucknow, Kanpur, Delhi and Agra urban centres have been classified by the proposed Sediment Pollution Index as highly polluted to dangerous sediments. Heavy metal analysis in the <20-μm-fraction of stream sediments appears to be an adequate method for the environmental assessment of urbanisation activities on alluvial rivers. The present study reveals that urban centres act as sources of Cr, Ni, Cu, Zn, Pb and Cd and cause metallic sediment pollution in rivers of the Ganga Plain.  相似文献   

4.
McLaren and Crawford's method for fractionating soil Cu was modified, and used to fractionate soil Cd, Zn, Pb, and Cu in 38 soil samples from 11 soil profiles from industrially polluted and nearby unpolluted areas. Pollutant metals, especially Cd and Zn, were more soluble than the native soil metals. On average, approximately 45% of Cd was present in the CaCl2 soluble (CA) fraction, whereas corresponding values for the other metals were below 10%. The percentages of each metal in the CA fraction followed the order Cd > Zn > Pb > Cu. The same order was observed for the acetic acid soluble (AAC) fraction. Approximately 30% of total Pb and Cu were present in the pyrophosphate soluble (PYR) fraction, and only 10% of total Cd and Zn. Approximately 20% of total Zn or Pb and 10% of Cd or Cu were present in the free oxide (OX) fraction. Only 20% of Cd and between 40–50% of the other 3 metals were present in the residual (RES) fraction. The results show that Cd is more labile than the other 3 metals.  相似文献   

5.
贵阳市城区土壤重金属分布特征及污染评价   总被引:12,自引:0,他引:12  
王济  张浩  曾希柏  白玲玉 《土壤》2010,42(6):928-934
调查了贵阳市不同功能区表层土壤中重金属含量及其分布特征,以基线为参比值,采用Hakanson潜在生态危害指数法对重金属的潜在生态风险进行了评价。结果表明,贵阳市城区土壤重金属(Hg、Cd、As、Pb、Cr、Cu、Ni、Zn)主要来源于工业、交通以及燃煤等活动,其平均含量分别为0.108、0.320、20.53、22.17、35.71、64.87、48.65、217.90mg/kg,除Cr外,均显著高于相应基线。工矿区土壤中Pb、Zn含量显著高于其他功能区(p0.05)。Hg和Cd是主要的生态危害因子,其污染已达强生态危害水平,其余均显示为轻微生态危害水平;不同功能区土壤重金属污染均已达强生态危害水平,且污染程度依次是:商务区工矿区文教区居民区城市绿地交通区。  相似文献   

6.
Estuarine systems adjacent to urban areas are at risk of contamination by contaminants from anthropogenic sources, such as heavy metals. We anticipated that the sediments of the Swan River estuary, which runs through metropolitan Perth in Western Australia, would show metal contamination related to industrialization and inputs of stormwater. Total Cu, Pb and Cd concentrations, and Cu, Pb, Cr and Zn inoperationally-defined fractions, were determined inseparate sampling exercises in near-shore sediments ofthe upper Swan River estuary.Total metal concentrations in sediments were not high (maximum values of 297 mg kg-1 for Cu, 184 mg kg-1 for Pb and 0.9 mg kg-1 for Cd) when compared with Australian environmental assessmentguidelines for soils. On the basis of linear regressions between sediment metal concentrations andphysicochemical properties of the sediments (pH, organic carbon, particle size distribution), no single parameter could explain the variation in metal concentrations for all metals. Sediment organic carbon content was positively correlated with Cu concentration; Cu concentrations also increased significantly with increasing clay content anddecreasing sand content. Pb concentrations showed a significant increase with increasing sediment pH, and were approximately three-fold higher in sediments adjacent to stormwater drain outfalls than in sediments remote from drains; no such effect was observed for Cu or Cd. No effect of distance downstream was observed. Sequential extraction of sediments showed that most of the metals were in relatively immobile forms, for example bound to Feoxides, or only extractable by aqua regia. The enhanced concentrations of Pb near stormwater outfalls suggest that vehicle-derived Pb may be an important contributor of Pb to the estuary.  相似文献   

7.
The historical trend of heavy metal pollution recorded in sediment cores from Lake Shinji, western Japan, was investigated to evaluate the contribution of increasing long-range transport of heavy metals from the Asian continent in recent years. The concentrations of Cd, Co, Cr, Cu, Ni, Pb, Sb, and Zn and lead isotope ratios were determined for sediment cores collected at two sites in the lake. Among the metals, Cd, Sb, and Zn showed markedly high concentrations since the 1970s. Moreover, a high Pb concentration and less radiogenic lead isotope ratios have been observed since the 1980s in the core from a site close to the mouth of a major river. Air masses from the Asian continent, including China, Russia, and South Korea, have less radiogenic lead isotope ratios than those from Japan. This suggests that the recent increase in Pb concentration in the sediment core is primarily due to the long-range transport of heavy metals from the Asian continent, followed by their deposition in the catchment area of the river. The concentration ratios of Pb/Cd, Pb/Sb, and Pb/Zn of the sediment around 2000 were calculated on the basis of the metal concentrations in excess of those before 1940. They were then compared with the volume-weighted annual average concentration ratios of Pb/Cd, Pb/Sb, and Pb/Zn of rain samples collected on the shore of the lake for 1999–2001. The result showed that the ratios of the former to the latter are 1.0 for Cd, 0.69 for Sb, and 0.31 for Zn. Thus, it is likely that the long-range transport of Cd and Sb from the Asian continent also contributes significantly to the recent increase in the concentrations of these metals in the sediment core from Lake Shinji. For Zn, however, the contribution from the Asian continent was evaluated to be small, suggesting the importance of local sources such as effluent discharges.  相似文献   

8.
抚仙湖重金属污染强度、历史及来源的沉积记录   总被引:2,自引:0,他引:2  
ZENG Hai-Ao  WU Jing-Lu 《土壤圈》2009,19(5):562-569
This study focused on the concentration change of heavy metals of sediment cores in heavily polluted north area and less polluted middle area of Fuxian Lake in Southwest China.On the basis of the analysis of Cu,Ni,Ti,V,Pb,Cd,and Zn concentration-depth profiles,the pollution history of heavy metals was studied using 137cesium (137Cs) dating.The sources of heavy metals were distinguished by normalization of their profiles to aluminum and analysis of heavy metal concentrations of potential source materials.Geoaccumulation index (Igeo) was used to quantify their contamination intensity.The results showed that all the heavy metals found in the Fuxian Lake sediments originated naturally before 1980s.Cu,Ni,Ti,and V were still mainly natural in the north lake after 1980s,Cu,Ni,Ti,V,and Pb were mainly natural in the middle lake at all time,but the concentrations of Pb and Zn in the north lake were influenced by industrial wastes from the phosphorus fertilizer factory and cement plants.In all the lake,the contaminations of Cd and Zn were the results of agricultural cultivation using a large amount of fertilizers and the atmospheric fallouts of dusts from cement plants.At present,the geoaccumulation indices showed that the Fuxian Lake sediments were moderately to strongly polluted by Cd in the middle lake,and unpolluted to moderately polluted by Pb and Zn and strongly polluted by Cd in the north lake.Moreover,the pollution intensities of Cd,Zn,and Pb have been increased since 1980s.  相似文献   

9.
Singh  S. P.  Tack  F. M.  Verloo  M. G. 《Water, air, and soil pollution》1998,102(3-4):313-328
The objective of this study was to characterise pollution with heavy metals in surface soils sampled at various dredged sediment disposal sites in the Flemish region (Belgium). The sites selected varied in the period since sediment disposal ceased and in current vegetation and land use. Total metal contents (Cd, Co, Cu, Fe, Mn, Ni, Pb, and Zn) in the surface soils varied widely. For some disposal sites Cd and Zn concentrations greatly exceeded reference values for clean soil. The distribution of the metals as determined by sequential extraction differed between elements, but was simular for all the soils. This suggested that metals in these sediment derived surface soils were accumulated and transformed in a similar way. Residual fractions were low compared to total contents (2 – 4% for Cd, 25% – 35% for Co, 7 – 18% for Mn, 4 – 22% for Zn, 12 – 41% for Ni, 11 – 42% for Pb, 20 – 45% for Cu, < 10% for Zn). High metal concentrations in the acid-extractable and reducible fractions may indicate pollution from anthropogenic sources. DTPA-extractable metals, which may be considered indicative of plant-available contents, were relatively high compared to the total contents. The relative extractability, expressed as the ratio of DTPA-extractable to total contents, decreased in the order Cd (38%) > Cu (28%) = Zn (26%) > Pb (13%) > Ni (10%) > Co (3%). Most of the sites studied would be of concern if they were used for agricultural activities. No trends in metal availability in the period following disposal were apparent from the data.  相似文献   

10.
杭州市城市土壤中重金属、磷和其它元素的特征   总被引:30,自引:0,他引:30  
Health implications of inhaling and/or ingesting dust particles with high concentrations of heavy metals from urban soils are a subject of intense concern. Understanding the geochemistry of these metals is key to their effective management. Total concentrations of heavy metals, phosphorus (P) and 8 other elements from topsoil samples collected at 82 locations in Hangzhou City were measured to: a) assess their distribution in urban environments; and b) understand their differentiation as related to land use. Metal mobility was also studied using a three-step sequential chemical fractionation procedure. About 8.5%, 1.2%, 3.6%, 11.0% and 30.3% of the soil samples had Cd, Cr, Cu, Pb, and Zn concentrations, respectively, above their allowable limits for public and private green areas and residential use. However, in commercial and industrial areas, most samples had metal concentrations below their allowable limits. Statistical analyses revealed that the 16 measured elements in urban soils could be divided into four groups based on natural or anthropic sources using a hierarchical cluster analysis. Additionally, Cu, Pb, and P showed similar spatial distributions with significant pollution in commercial zones, suggesting vehicle traffic or commercial activities as dominant pollutant sources. Also, Cd, Co, Cr, Ni, Zn, Mn and Fe had the highest concentrations in industrial locations, signifying that industrial activities were the main sources of these seven metals. Moreover, the data highlighted land-use as a major influence on heavy metal concentrations and forms found in topsoils with large proportions of soil Cd, Co, Cr, and Ni found in residual fractions and soil Cu, Pb and Zn mainly as extractable fractions.  相似文献   

11.
云南滇池沉积物中重金属的形态分布特征   总被引:7,自引:0,他引:7  
Fractionation of heavy metals in sediments can help in understanding potential hazards of heavy metals. The present study analyzed total concentrations and fractions of selected heavy metals (Cd, Cr, Cu, Pb, and Zn) in surface sediments from Dianchi Lake, Yunnan Province, China, as well as factors that may affect distributions of the various heavy metal fractions. Total concentrations of the heavy metals decreased in the order Zn 〉 Cu 〉 Pb 〉 Cr 〉 Cd. These heavy metals, except Cr, were much higher than their background levels, indicating that Dianchi Lake was polluted by Cd, Zn, Pb, and Cu. Cadmium occurred mainly as the non-residual fraction (sum of the HOAc-soluble, reducible, and oxidizable fractions) (97.6%), and Zn (55.7%) was also predominantly found in the non-residual fraction. In contrast, most of the Cr (88.5%), Pb (81.8%), and Cu (59.2%) occurred in the residual fraction. Correlation analysis showed that total heavy metal concentrations, organic matter and reducible Fe were the main factors affecting the distributions of the various heavy metal fractions. In the Walhai section of Dianchi Lake (comprising 97% of the lake area), the concentrations of Cd, Zn, Pb, and Cu in the non-residual fraction were significantly lower (P ≤ 0.01 or 0.05) than those of the Caohal section (3% of the lake area). This indicated that potential heavy metal hazards in the Caohai section were greater than the Waihai section.  相似文献   

12.
南宁市郊部分菜区土壤和蔬菜重金属污染评价   总被引:31,自引:0,他引:31  
对南宁市郊 1 2个主要菜区土壤和蔬菜中重金属 ( Cu、Zn、Cd、Pb)含量调查和分析测定 ,采用重金属污染单因子评价方法对土壤重金属污染状况进行评价 ,以国家规定的蔬菜卫生标准评价蔬菜重金属污染状况 ,结果表明 :南宁市郊部分蔬菜区土壤不同程度地受到了 Cu、 Zn、 Cd、 Pb的污染 ,依次是 :Cd>Pb>Zn>Cu;蔬菜中 Cd、 Pb积累较 Cu、 Zn高 ,供试点中大部分蔬菜 Cd、 Pb含量超出了国家规定的蔬菜卫生标准  相似文献   

13.
Recently, Sancti Petri channel on the southwestern (SW) part of Iberian Peninsula has been experiencing urban, industrial, and vehicular expansion. Until recently, there have been only few published reports documenting the pattern of metal accumulation in this estuarine sediment. In the present study, trace metals such as Cu, Zn, Ni, Mn, Pb, Co, Cd, As, and Hg concentrations were analyzed from 69 sediment samples collected from 23 sampling sites of the Santi Petri channel. The magnitude of trace metal accumulation found as the following trend: Mn > Zn > Cu > Pb > Ni > Co > As > Cd > Hg. Spatial distribution pattern demonstrated overall decreasing trend of trace metal from Cadiz Bay mouth to the open ocean mouth, clearly correlative to the presence of anthropogenic inputs. Results of the principle component analysis (PCA) revealed that sediment metal chemistry of Sancti Petri channel is mainly regulated by the concentrations of Pb, Cu, Zn, and Ni; possible sources of those were from vehicular-related emissions. Pollution load index (PLI) and geo-accumulation index (I geo ) indicated overall low values. The study will stimulate improvement of our understanding regarding the pattern of accumulation of metals in the coastal sediments, and the recorded values of metals in the present study can be used as suitable reference for future studies.  相似文献   

14.
滇池沉积物金属污染及潜在生态风险研究   总被引:2,自引:0,他引:2  
陈云增  杨浩  金峰  吕俊杰  张振克  秦明周 《土壤》2007,39(5):737-741
对滇池126个采样点沉积物0~5 cm、5~10 cm和10-20 cm中Cu、Zn、Pb、Cr、Cd、Hg和As等7种金属的含量进行了分析测定,各金属含量测定结果均高于相应的参比值,表明滇池沉积物受到了不同程度的金属污染.各金属含量的水平分布很不均衡,Zn、Pb、Cd、Hg和As含量随沉积物深度的减小而增大,Cu和Cr含量则随沉积物深度减小而减小,表明滇池沉积物中Cu和Cr污染整体上出现了减缓的趋势,而Zn、Pb、Cd、Hg和As污染在不断加剧.用H(a)k(a)nson潜在生态风险指数对滇池沉积物金属污染的生态风险进行了分析,结果表明:滇池沉积物存在轻微的Cu、Zn、Pb、Cr和As污染生态风险,以及中等的Hg和Cd污染生态风险;全湖沉积物金属污染的平均生态风险指数RI值为205.03,属中等生态风险,但有快速加大的趋势.  相似文献   

15.
The sources, distribution and mobility of heavy metals in Zhuzhou City, Hunan Province, China were systematically studied based on environmental monitoring data and random sampling from fields and markets. The significant positive correlations between some pairs of heavy metals (total Cd–Hg, total Cu–Pb) within the Zhuzhou section of the Xiang River may indicate that they are coming from the same pollution sources with similar pollution channels and removal patterns in the water bodies. Heavy metals from wastewater partly settled in the sediment after entering the Xiang River, which caused an inconsistent change in heavy metal concentrations over time in the middle and lower parts of the Xiang River. There was no significant difference in total Pb and Zn in topsoil between years in the period 1990–1997, which showed the balance between input and output. Heavy metals accumulated mainly in the topsoil with little downward movement. Heavy metals in the vegetables and rice were higher than the edible standard and background value to some degree with minor exceptions. The maximum heavy metal level observed divided by the acceptable level was in the order of Cd > Pb > Cu > Zn. Significant positive correlations were only found between cabbage uptake and total soil content for Hg, Pb and Cd, with no significant correlationfor the other elements. The plant uptake of a heavy metal was somewhat influenced by the co-existence of other elements.  相似文献   

16.
The Nyabugogo natural wetland (Kigali City, Rwanda) receives all kinds of untreated wastewaters, including those from industrial areas. This study monitored heavy metal concentrations (Cd, Cr, Cu, Pb, and Zn) in all environmental compartments of the swamp: water and sediment, the dominant plant species Cyperus papyrus, and fish (Clarias sp. and Oreochromis sp.) and Oligochaetes. Cr, Cu, and Zn concentrations in the water were generally below the WHO (2008) drinking water standards, whereas Cd and Pb were consistently above these limits. Except Cd, all metal concentrations were below the threshold levels for irrigation. The highest metal accumulation occurred in the sediment with up to 4.2 mg/kg for Cd, 68 mg/kg for Cu, 58.3 mg/kg for Pb, and 188.0 mg/kg for Zn, followed by accumulation in the roots of C. papyrus with up to 4.2 mg/kg for Cd, 45.8 mg/kg for Cr, 29.7 mg/kg for Cu, and 56.1 mg/kg for Pb. Except Cu and Zn, other heavy metal (Cd, Cr, and Pb) concentrations were high in Clarias sp., Oreochromis sp., and Oligochaetes. Therefore, there is a human health concern for people using water and products from the swamp.  相似文献   

17.
Health implications of inhaling and/or ingesting dust particles with high concentrations of heavy metals from urbansoils are a subject of intense concern. Understanding the geochemistry of these metals is key to their effective management. Total concentrations of heavy metals, phosphorus (P) and 8 other elements from topsoil samples collected at 82locations in Hangzhou City were measured to:a) assess their distribution in urban environments;and b) understand theirdifferentiation as related to land use. Metal mobility was also studied using a three-step sequential chemical fractionationprocedure. About 8.5%, 1.2%, 3.6%, 11.0% and 30.3% of the soil samples had Cd, Cr, Cu, Pb, and Zn concentrations,respectively, above their allowable limits for public and private green areas and residential use. However, in commercialand industrial areas, most samples had metal concentrations below their allowable limits. Statistical analyses revealedthat the 16 measured elements in urban soils could be divided into four groups based on natural or anthropic sourcesusing a hierarchical cluster analysis. Additionally, Cu, Pb, and P showed similar spatial distributions with significantpollution in commercial zones, suggesting vehicle traffic or commercial activities as dominant pollutant sources. Also, Cd,Co, Cr, Ni, Zn, Mn and Fe had the highest concentrations in industrial locations, signifying that industrial activities werethe main sources of these seven metals. Moreover, the data highlighted land-use as a major influence on heavy metalconcentrations and forms found in topsoils with large proportions of soil Cd, Co, Cr, and Ni found in residual fractionsand soil Cu, Pb and Zn mainly as extractable fractions.  相似文献   

18.
沉积物重金属污染是水环境污染评价的重要内容,重金属含量水平常被作为水环境质量的重要指标之一。为了掌握华北平原的府河和白洋淀中沉积物重金属的污染水平,研究了19个沉积物样品和3个土壤样品中7种重金属的污染特征,利用地积累指数法、潜在生态危害指数法及生物效应浓度法评估了重金属的环境风险,并初步分析了污染来源。结果表明,府河和白洋淀沉积物受多种重金属复合污染,其中Zn、Pb、Cu和Cd污染较为严重,府河沉积物的潜在生态环境危害强于白洋淀。相关分析显示府河和白洋淀重金属污染具有相似污染源,保定市工业废水、生活污水及府河沿岸金属冶炼企业很可能是白洋淀地区重金属的主要来源。从城市环境管理、生态环境修复、宣传教育等方面提出白洋淀区域重金属污染控制对策与建议,为白洋淀区域生态环境保护提供科技支撑。  相似文献   

19.

Purpose

Human exposure to particulate matter emitted from on-road motor vehicles includes complex mixtures of heavy metals from tyres, brakes, part wear, and resuspended road sediment. The purpose of this study was to determine the concentrations of 14 platinum-group and other traffic-related heavy metals in road sediment within the metropolitan area of Guangzhou, China, with a view to identifying their sources and assessing the extent of anthropogenic influence on heavy metal contamination of road sediment.

Materials and methods

Thirty-five samples of road sediment were collected. The concentrations of Cr, Mn, Ni, Cu, Zn, La, Ce, Mo, Cd, Pb, Ba, and Rh were measured by inductively coupled plasma?Cmass spectrometry. Pt and Pd were analyzed by isotopic dilution?Cinductively coupled plasma?Cmass spectrometry. Multivariate statistical analysis and enrichment factor methods were employed to identify the sources of these heavy metals and to assess anthropogenic influences on their occurrence.

Results and discussion

The mean concentrations of Pt, Pd, Rh, Cr, Mn, Ni, Cu, Zn, La, Ce, Mo, Cd, Pb, and Ba in the road sediment samples were 68.24, 93.15, 23.85, 147.5, 712.3, 47.24, 177.5, 1254, 47.50, 96.62, 4.91, 3.00, 198.1, and 641.3?ng?g?1, respectively. Very weak to significant linear positive correlations were found among the various heavy metals. The elemental composition of road sediment was dominated by five principal components. Three clusters were identified through cluster analysis, and enrichment factors were calculated relative to soils in China. The sources and degree of contamination of the heavy metals are discussed based on the results.

Conclusions

The mean concentrations of heavy metals are higher than background values, especially for Pt, Pd, Rh, Cd, and Zn. Four main sources are identified: (1) Pt, Pd, and Rh were derived from traffic sources; (2) La, Ce, Mn, and Ba were derived mainly from natural sources; (3) Cr, Ni, Cu, Mo, Cd, and Pb showed mixed traffic-industry sources; and (4) Zn originated mainly from industrial sources. Enrichment factor analysis supported this source identification and further indicated that contamination of road sediment in Guangzhou is extremely high for Pt, Pd, and Rh; moderate to very high for Cd, Zn, Pb, Cu, and Mo; and minimal for Cr, Ni, La, Ce, and Ba.  相似文献   

20.
典型城市城郊土壤重金属含量对比研究   总被引:4,自引:0,他引:4  
选取成都经济区内成都、德阳、蒲江彭山3类典型城市作为研究对象,对其城郊土壤中Cd,Hg,As,Zn,Cr,Cu,Pb 7种重金属元素含量作了对比研究.与国家土壤二级质量标准比较,成都、德阳、彭山蒲江Cd含量均超标,超标率分别为11.67%,70.67%,39.00%,彭山蒲江Cr含量超标,超标率为20.25%,其它元素含量均未超标.比较3类不同城市城郊土壤重金属含量.成都城郊Hg,As,Zn,Pb含量最高,Cd,Cr含量相对最低;德阳Cd,Cu最高;蒲江和彭山Cr相对最高,Hg,As,Zn,Cu,Pb含量则相对最低.与国内其他城市比较,成都、德阳城郊土壤Hg含量,彭山蒲江、德阳Cr含量在全国处于较高水平;成都的As,Cd含量,德阳的Cd,Zn含量,蒲江彭山的Hg,As,Zn,Pb含量处于全国较低水平.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号