首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Field Crops Research》2001,71(3):159-171
The burgeoning poultry industry in the southeastern US is presenting a major environmental problem of safe disposal of poultry litter (PL). In a comprehensive study, we explored ways of PL use in conservation tillage-based cotton (Gossypium hirsutum L.) production systems on a Decatur silt loam soil in north Alabama, from 1996 to 1999. The study reported here-in presents the residual effects of PL applied to cotton in mulch-till (MT) and no-till (NT) conservation tillage systems in 1997 and 1998 cropping seasons on N uptake, growth, and yield of rye (Secale cereale, L.) cover crop and rotational corn (Zea mays L.) in 1999. Rye was grown without additional N, whereas corn was grown at three inorganic N levels (0, 100, and 200 kg N ha−1). Poultry litter was applied to cotton in 1997 and 1998 at 0, 100, and 200 kg N ha−1. Residual N from PL applied to cotton in 1997 and 1998 produced up to 2.0 and 17.3 Mg ha−1, respectively, of rye cover crop and corn biomass (includes 7.1 Mg ha−1 of corn grain yield) without additional fertilizer. Therefore, in addition to supplying crop residues which reduce soil erosion, increase soil organic matter, and conserve soil moisture, the rye cover crop was able to scavenge residual N left by the cotton crop, which would otherwise, be at risk of being leached and pollute groundwater resources. Poultry litter applied to cotton also increased corn grain quality as shown by up to 100% increase in grain N content compared to the 0N treatment. Using PL with a slower rate of N release compared to inorganic fertilizer to meet some of the N requirements of corn, will not only reduce N fertilizer costs for corn, but will also reduce the risk of nitrate N leaching into groundwater. The maximum amount of crop residues added to the cotton based cropping system by residual N from PL and inorganic N was 21.3 Mg ha−1. This will lead to an increase in soil organic carbon and soil structure in the long term and a reduction in soil erosion, thereby further improving soil productivity, while at the same time, protecting the environment from nitrate pollution and soil degradation. Our study demonstrates that cotton under conservation tillage system in combination with rye cover crop and rotational corn cropping could use large quantities of PL thereby avoiding serious potential environmental hazards.  相似文献   

2.
Cover cropping can have various beneficial effects to the cropping system such us the increase of soil nutrient content and weed suppression. In this respect, the species used for covering is of great importance. This paper reports results on the yield and weed control effects in potato crops preceded by different cover crops over a 2-year period (2003 and 2004) in Central Italy (Viterbo). Results were obtained in the frame of a more complex study set up in 2002 where in a 3-year chick-pea/potato/tomato rotation, each crop was preceded by 7 different soil managements: 5 cover crops (rapeseed, Italian ryegrass, hairy vetch, snail medick and subclover) + 1 unfertilised weedy fallow (cover crop absent) + 1 control (weedy fallow fertilised with mineral N at a rate of 170 kg ha−1 for potato). Two different weed control regimes in potato were also applied [weed-free crop (1 inter-row hoeing + 1 hilling up + manual weeding on the row); mechanical control (1 inter-row hoeing + 1 hilling up)]. Cover crops were sown in September and cut and ploughed just before potato planting in March. The potato crops following the cover crops were only fertilised with green manure. Averaged over years, all the cover crops produced more above-ground dry biomass than the weedy fallow (4.79 t ha−1 on average vs 2.36 t ha−1). Hairy vetch and subclover accumulated the highest N in the incorporated biomass (169 and 147 kg ha−1), followed by snail medick (108), rapeseed (99), ryegrass (88) and weedy fallow (47). Rapeseed and ryegrass were the most efficient weed suppressors and had the least proportion of weed biomass (<1%) of the total produced by the cover, while they also reduced weed emergence in the following potato crops (8.8 plants m−2vs 25.5 plants m−2 with all other cover crops). Following subclover and hairy vetch the potato crop yield was similar to that obtained by mineral N-P-K fertilisation (48.5 t ha−1 of fresh marketable tubers). Mechanical weed control compared to weed free crop always reduced potato yield and the reduction, averaged over years, was greater in N-P-K mineral fertilised control (−23.6%) and smaller in ryegrass (−7.9%).  相似文献   

3.
Cover crops and mulches are a suitable choice for sustainable agriculture because they improve weed control and crop performance. The aim of this research was to investigate weed control and nitrogen supply by using different winter cover crop species which were converted into mulches in spring. We carried out a 2-year field experiment where a tomato crop was transplanted into four different types of mulches coming from winter cover crops [hairy vetch (Vicia villosa Roth.), subclover (Trifolium subterraneum L.), oat (Avena sativa L.), and a mixture of hairy vetch/oat)] and in conventional treatment (tilled soil without mulch). The mixture of hairy vetch/oat cover crop produced the highest aboveground biomass (7.9 t ha−1 of DM), while the hairy vetch accumulated the highest N in the aboveground biomass (258 kg N ha−1). The oat cover crop was the most effective cover crop for suppressing weeds (on average −93% of weed aboveground biomass compared to other cover crops). After mowing the cover crop aboveground biomass was placed in strips as dead mulch into which the tomato was transplanted in paired rows. Weed density and total weed aboveground biomass were assessed at 15 and 30 days after tomato transplanting to evaluate the effect of mulches on weed control. All mulches suppressed weeds in density and aboveground biomass compared to the conventional system (on average −80% and −35%, respectively). The oat was the best mulch for weed control but also had a negative effect on the marketable tomato yield (−15% compared to the conventional treatment). Amaranthus retroflexus L. and Chenopodium album L. were typical weeds associated with the conventional treatment while a more heterogeneous weed composition was found in mulched tomato. Legume mulches, in particular hairy vetch, gave the best marketable tomato yield 28% higher than the conventional system both with and without nitrogen fertilization. This research shows that winter cover crops converted into dead mulch in spring could be used successfully in integrated weed management programs to reduce weed infestation in tomato crops.  相似文献   

4.
The decline of farmland biodiversity is mainly attributed to the intensive use of chemical inputs in agriculture. Cover crop residues may contribute to improve weed management while maintaining a high level of weed diversity. A 2-year field experiment was carried out in central Italy to study the effect of cover crop species and their residue management on weed community composition and weed species diversity in a winter cover crop – pepper sequence. Hairy vetch (Vicia villosa Roth.), oat (Avena sativa L.) and canola (Brassica napus L.) were sown in September 2009 and 2010 and grew undisturbed during the winter season until spring when they were suppressed one week before pepper transplanting. Cover crop residues were: (i) green manured at 30 cm depth (conventional tillage, CT), (ii) green manured at 10 cm depth (minimum tillage, MT), and (iii) left on the soil surface as mulch strips covering 50% of the ground area in no-tilled soil (NT). A winter weedy fallow and a bare soil without cover crop in NT, MT and CT were also included as controls. Weed plant density data in pepper were used for calculating weed species richness. Compared to weedy fallow, oat, hairy vetch and canola consistently reduced the weed density and weed aboveground biomass by the time of their suppression (on average 3.6, 21.5, and 41.3 plants m−2 and 11.0, 49.2, and 161.8 g m−2 of DM, respectively). In pepper, oat residues generally determined a higher reduction of weed density and species richness compared to hairy vetch and canola regardless the residue management treatments. Converting cover crop aboveground biomass into mulch strips greatly reduced weed species density but did not always imply a reduction of weed species diversity in pepper compared to MT and CT. The weed species richness was reduced inside the mulch strips, while a richer and more diverse weed community was found outside the mulch strips in NT. Weed community in pepper was mainly composed of annual dicot weeds such as Amaranthus retroflexus, Chenopodium album, Solanum nigrum, Polygonum aviculare which were mostly associated with MT and CT tillage systems, while in NT an increase of perennial species such as Rumex crispus was observed. These results suggest that it is possible to manage cover crop residues in NT in order to obtain a lower weed density and consequently a higher yield in pepper compared to MT and CT while maintaining a high level of weed diversity.  相似文献   

5.
Crop rotation and tillage systems have important implications for weed infestation and crop productivity. In this study, five tillage systems viz. zero tillage (ZT), conventional tillage (CT), deep tillage (DT), bed sowing (60/30 cm with four rows; BS1) and bed sowing (90/45 cm with six rows; BS2) were evaluated in five different crop rotations viz. fallow-wheat (FW), rice-wheat (RW), cotton-wheat (CW), mungbean-wheat (MW) and sorghum-wheat (SW) for their effect on weed infestation and productivity of bread wheat. Interaction between different tillage practices and cropping systems had significant effect on density and dry biomass of total, broadleaved and grass weeds, agronomic and yield-related traits, and grain yield of bread wheat. The un-disturbed soils (ZT) under fallow-wheat or mungbean-wheat rotations favoured the weed prevalence (a total weed dry biomass of 72.4–109.6 and 105.6–112.1 g m−2 in first and second year, respectively). Contrary to this, the disturbed soils (CT, DT, BS1 and BS2) had less weed infestation with either of the rotations (a total weed biomass of 0.4–7.1 and 1.1–5.4 g m−2 in first and second year, respectively). Sorghum-wheat rotation had strong suppressive effect on weed infestation in all tillage systems. The impact of crop rotation was more visible during second year of experimentation. Bed sown wheat (BS1 and BS2) in mungbean-wheat rotation had the highest wheat grain yield (6.30–6.47 t ha−1) compared to other tillage systems in different crop rotation combinations.  相似文献   

6.
《Field Crops Research》2001,70(2):101-109
Field pea (Pisum sativum L.) and spring barley (Hordeum vulgare L.) were intercropped and sole cropped to compare the effects of crop diversity on productivity and use of N sources on a soil with a high weed pressure. 15N enrichment techniques were used to determine the pea–barley–weed-N dynamics. The pea–barley intercrop yielded 4.6 t grain ha−1, which was significantly greater than the yields of pea and barley in sole cropping. Calculation of land equivalent ratios showed that plant growth factors were used from 25 to 38% more efficiently by the intercrop than by the sole crops. Barley sole crops accumulated 65 kg soil N ha−1 in aboveground plant parts, which was similar to 73 kg soil N ha−1 in the pea–barley intercrop and significantly greater than 15 kg soil N ha−1 in the pea sole crop. The weeds accumulated 57 kg soil N ha−1 in aboveground plant parts during the growing season in the pea sole crops. Intercropped barley accumulated 71 kg N ha−1. Pea relied on N2 fixation with 90–95% of aboveground N accumulation derived from N2 fixation independent of cropping system. Pea grown in intercrop with barley instead of sole crop had greater competitive ability towards weeds and soil inorganic N was consequently used for barley grain production instead of weed biomass. There was no indication of a greater inorganic N content after pea compared to barley or pea–barley. However, 46 days after emergence there was about 30 kg N ha−1 inorganic N more under the pea sole crop than under the other two crops. Such greater inorganic N levels during early growth phases was assumed to induce aggressive weed populations and interspecific competition. Pea–barley intercropping seems to be a promising practice of protein production in cropping systems with high weed pressures and low levels of available N.  相似文献   

7.
Since 2005, the evolution and spread of herbicide-resistant Echinochloa crus-galli biotypes have posed a serious threat to crop production in the Philippines. A comprehensive knowledge of E. crus-galli ecology and fecundity is fundamental in managing different biotypes of this weed. It was hypothesized that (a) high weed plant density produces more biomass and fertile seeds per unit area, (b) rice interference reduces the biomass and fecundity of the weed, and (c) a delay in weed emergence reduces the soil seed bank. In 2013, experiments were conducted in the wet season (WS) and dry season (DS), to understand the effect of E. crus-galli densities (40 and 80 plants m−2) on its growth, survival, and fecundity, with varying emergence times of 2, 15, 30, and 45 d after rice emergence (DARE). Relative to the weed plants grown without rice interference, E. crus-galli growth and seed production was lower in the presence of rice. Percent survival and plant height of E. crus-galli declined in a linear manner in the DS, and declined in a quadratic manner in the WS. Tiller number, inflorescence number, inflorescence biomass, and shoot biomass per plant declined in an exponential manner, with a delay in emergence of each cohort relative to rice. Across rice seeding rate, weed density, and emergence time, there was a linear relationship (y = 110x − 272 in the DS and y = 100x − 220 in the WS) between E. crus-galli shoot biomass and the number of seeds plant−1. Relative to the late-emerging weed cohorts, E. crus-galli seed production (1320–1579 seeds plant−1), 1000-seed weight (2.2–2.9 g), and seed yield (2808–2334 kg ha−1) were higher when seedlings emerged with the crop (2 DARE). None of the seedlings that emerged 45 DARE produced viable seeds. Seed germination of the first two cohorts (2 and 15 DARE) ranged from 84 to 91%. The delay in emergence of E. crus-galli beyond 30 DARE reduced the percentage of germinable and viable seeds, and increased the percentage of non-viable seeds produced plant−1. The results suggest that cultural weed management approaches that delay the emergence of E. crus-galli can reduce weed biomass and seed production, and is thus valuable for preventing seed rain to the seed bank by noxious weed biotypes in the field.  相似文献   

8.
Experiments at two sites during two years evaluated the selectivity of preemergence fomesafen in cucurbit crops of winter and summer squash, zucchini, cantaloupe, cucumber, and pumpkin. Cucumbers were the most sensitive of the cucurbit crops to fomesafen and produced little or no fruit in two out of three experiments when applied at 0.28 kg ai ha−1. Fomesafen also reduced cantaloupe yield. Visual damage was noted on the other crops tested, but crop yield was not impacted by fomesafen at 0.28–0.35 kg ai ha−1. With the exception of cucumbers, injury caused by fomesafen to cucurbit crops was transitory even when fomesafen-treated soil splashed onto the leaves of emerging cucurbits during a powerful thunderstorm at one of the test sites. Control of redroot pigweed (Amaranthus retroflexus), Powell amaranth (Amaranthus powellii) and other Amaranthus spp., lambsquarters (Chenopodium album), hairy nightshade (Solanum physafolium), common purslane (Portulaca oleraceae), and velvetleaf (Abutilon theophrastii) ranged from 92 to 100% with fomesafen applied at 0.28 kg ai ha−1. The excellent efficacy on these difficult to control weed species suggests that lower rates of fomesafen may be appropriate and improve crop tolerance, particularly if fomesafen is tankmix-applied with other preemergence herbicides such as s-metolachlor or dimethenamid-p. Weed control with these combinations was excellent for all weed species in these experiments.  相似文献   

9.
Direct-seeded rice systems are increasing in Asia as farmers respond to the high labor cost and shortage of water. Echinochloa crus-galli is one of the most problematic and competitive weeds in direct-seeded rice systems. Because of concerns about excessive herbicide use, there is an interest in developing cultural weed management strategies. However, the design of such strategies requires a better understanding of the weed response to crop density, nutrition, and water regime. A study was therefore conducted in pots to determine the effect of water (flooded and aerobic), nitrogen (N) fertilization (0, 100, and 200 kg N ha−1), and rice density [0, 4 rice plants (≈20 kg seed ha−1), and 16 rice plants (≈80 kg seed ha−1)] on the growth and reproduction of E. crus-galli. When grown alone, the growth and seed production of E. crus-galli were higher in flooded conditions than in aerobic conditions. However, no such differences were observed when E. crus-galli was grown with rice interference. E. crus-galli growth and seed production increased with increases in N rate. Irrespective of water regime and N rate, the growth and seed production of E. crus-galli declined with increases in rice density. At 100 kg N ha−1, for example, E. crus-galli shoot biomass and seed production decreased by 84–86% and 82–87%, respectively, when grown with 16 rice plants compared with its growth without rice interference. The results suggest that growth and seed production of E. crus-galli can be greatly reduced by increasing rice seeding rate. However, there is a need to involve other weed management strategies to achieve complete control of E. crus-galli and other weed species.  相似文献   

10.
Provision of permanent soil cover using crop residues in conservation agriculture (CA) is constrained by livestock grazing and termite consumption in smallholder farming systems of sub Saharan Africa. This study evaluated the effects of surface applied maize (Zea mays L.) crop residues on termite prevalence, crop damage due to termite attack and maize yield over two seasons, 2008/9 and 2009/10. Treatments with residue application rates of 0, 2, 4 and 6 t ha−1 under CA and a conventional mouldboard ploughing (CMP) control were laid out in a randomized complete block design with four replicates on three farm sites in Kadoma, Zimbabwe. Maize residues increased (P < 0.05) termite numbers compared to CMP treatment. Crop lodging at harvest increased (P < 0.05) from 30 to 34% in CMP to 42–48% in CA systems. However, no significant difference was found in crop lodging with increasing residue rates within CA treatments. Significantly higher crop yields were observed under CA (P < 0.05) ranging from 2900 - 3348 kg ha−1 in 2008/9 season compared to CMP with 2117 kg ha−1. Nevertheless, increasing residue cover in CA did not necessarily increase maize crop yield. Thus, increasing crop residue application rates under CA increased termite prevalence while crop lodging was influenced more by soil tillage system than by crop residue application rates.  相似文献   

11.
Field experiments were conducted to study the efficacy of 12 herbicide treatments for volunteer rice control with, or without, winter-flooding in Stuttgart and Rohwer, Arkansas, USA over two years (2012–13 and 2013–14). Herbicides were applied either in the fall or at 35 d prior to planting rice in the spring. Commercially harvested Clearfield™ long-grain inbred rice 'CL152' was used as volunteer rice seed, broadcasted and lightly incorporated in October, 2012 and 2013. 'Jupiter' (medium-grain inbred, conventional rice) was planted in May as the rice crop. Winter-flood was initiated soon after the fall herbicide treatments were applied and terminated in February. Winter-flood reduced volunteer rice germination by 34% in 2013 and by 40% in 2014. Some fall herbicide treatments, without winter flood, generally caused more injury to the rice crop planted in the spring than the winter-flooded treatments. Fall application of pyroxasulfone (0.12 kg ha−1), flumioxazin (0.14 kg ha−1), and sulfentrazone (0.34 kg ha−1) as well as pre-plant application of pyroxasulfone (0.12 kg ha−1) and 2,4-D (2.24 kg ha−1), resulted in lower volunteer rice infestation, averaged over flood treatments. Pre-plant application of 2,4-D (2.24 kg ha−1), sulfentrazone in the fall (0.34 kg ha−1) and pyroxasulfone pre-plant (0.12 kg ha−1) injured the rice crop by 20%, 23%, and 47%, respectively. Fall application of pyroxasulfone (0.12 kg ha−1) followed by a lower rate of 2,4-D (1.12 kg ha−1) 35 d pre-plant caused minimal (6%) crop injury and did not reduce yield. This treatment provided better volunteer rice control (73%) than pyroxasulfone alone at 0.12 kg ha−1 applied in the fall (64%). To evaluate the overwintering potential of hybrid and non-hybrid volunteer seeds, these seed types were planted at three depths (0, 7.5, 15 cm) in flooded and non-flooded conditions in a buried-pot experiment at Stuttgart and Rohwer over 2 years. Winter-flood reduced rice germination by 50% in 2013–14 and 40% in 2014–15 (averaged over seed type and burial depth), after 160 d and 130 d of burial, respectively. After the winter, the viability of hybrid seed (germinable + dormant) was higher (13 and 53%) than that of non-hybrid seed (8 and 27%) in both years.  相似文献   

12.
Row spacing and weed control timing affect yield of aerobic rice   总被引:2,自引:0,他引:2  
Field experiments were conducted during the wet season of 2009 and dry season of 2010 to determine the effects of row spacing and timing of weed control on weed growth and yield of aerobic rice. Ten weed management treatments were used to identify critical periods of weed competition with aerobic rice grown in three different row spacings (15-cm, 30-cm, and as paired rows 10-20-10-cm). Dominant weed species during both growing seasons were Rottboellia cochinchinensis, Digitaria ciliaris, Echinochloa colona, and Eleusine indica. Rice grown in 30-cm rows had greater weed biomass and less grain yield than in 15-cm and 10-20-10-cm rows; weed growth and grain yields were similar between 15-cm and 10-20-10-cm rows. Rice yields in the wet season ranged from 170 kg ha−1 where weeds were not controlled throughout the crop duration to 2940 kg ha−1 in weed-free treatment, indicating a 94% yield loss with uncontrolled weed growth. Similarly in the dry season, plots with no weed control (140 kg ha−1) compared to weed-free plots (3640 kg ha−1) indicate a 96% yield loss with no weed control. Gompertz and logistic equations were fitted to yield data resulting from increasing durations of weed control and weed interference, respectively. Critical periods for weed control in the wet season, to obtain 95% of a weed-free yield, were estimated as between 18 and 52 days after sowing (DAS) for crops in rows at 15-cm, 20-51 DAS at 10-20-10-cm, and 15-58 DAS at 30-cm. These intervals in the dry season were 17-56 DAS for crops in rows at 15-cm and 17-60 DAS at 10-20-10-cm and 15-64 DAS at 30-cm. Durations of the critical periods in the wet season were 31 days at 10-20-10-cm, 34 days at 15-cm and 43 days at 30-cm, while in the dry season, these were 43 days at 10-20-10-cm, 39 days at 15-cm and 49 days at 30-cm. In both seasons, crops in the wider spacing (30-cm) were vulnerable to weed competition for the longest period. The information gained from this study suggests that the aerobic rice yields better in 15-cm rows and 10-20-10-cm arrangements than in 30-cm rows and there is very little benefit of weed control beyond 8 weeks after sowing.  相似文献   

13.
《Field Crops Research》1999,61(1):23-35
Field experiments were conducted to investigate the performance of temperate legume species in rice-based cropping systems in a warm-temperate environment in Nepal. Over the period 1994–1996, various legume species were grown during the winter season (October–May) in the Kathmandu valley (27° N, 1350 m asl) with the aim of evaluating their biomass production and N fixation. A wide range of legume species including food, feed and green manure crops proved to be very well adapted to the winter growing conditions in this environment. The cultivation of temperate legume crops therefore, constitutes an alternative to traditional cropping practices such as growing wheat or leaving the land fallow. The temperate species appeared to capitalise on generally favourable growing conditions such as long growing season, low pest and disease pressure, high radiant energy receipt and cool night temperatures. However, performance varied greatly between species and years. Total dry matter yields ranged from 2 to 20 t ha−1 obtained with lentil (Lens culinaris Medic) and bitter lupin (Lupinus mutabilis), respectively. Highest seed yields were produced by fababean (Vicia faba) (5 t ha−1) and field pea (Pisum sativum var. arvense) (3 t ha−1) in the first season. Nitrogen yields and quantities of N fixed ranged from 18 to 481 kg ha−1 and from 0 to 463 kg ha−1, respectively. Large amounts of N were fixed by species such as fababean, Persian clover (Trifolium resupinatum) and bitter lupin. Early sowing in autumn was shown to be beneficial for some crops such as fababean, vetch (Vicia benghalensis) and Persian clover. In these cases, it is, therefore, important to reduce the turn-around interval after rice. Further research is required to fully determine the potential of temperate legume species in these environments with particular emphasis given to the identification of the most adapted cultivars and to reduce the need for irrigation of these winter crops.  相似文献   

14.
The study was carried out to evaluate the impact of tillage system in combination with different herbicides on weed density, diversity, crop growth and yields on 18 farms in Kadoma, Zimbabwe. Experiments were set up as a split plot design with three replications on each farm. Tillage was the main plot (Conservation Tillage (CT), Conventional Tillage (CONV)) and weeding option (hand weeding, cyanazine, atrazine, glyphosate only and mixture of cyanazine + alachlor and atrazine + alachlor) as the sub-plots. Due to the heterogeneous nature of farmers' resource base, the farms were grouped into three farm types: high (Type 1), medium (Type 2) and poorly resourced farmers (Type 3). The hand hoe weeded treatments had 49 percent higher total weed densities in CT relative to CONV, and was statistically similar to the glyphosate treatment. The mixed pre-emergence herbicides reduced the diversity indices by 69 and 70 percent when compared to the hand hoe weeded treatment under CT in cotton and maize, respectively. The effectiveness of all pre-emergence herbicides were not influenced by tillage but were affected by farmers resource endowments with pronounced effect in Farm Type 1. Maximum plant heights of 85 and 238 cm were recorded for mixed pre-emergence herbicides under CT for cotton and maize, respectively. Minimum plant heights of 75 and 217 cm were recorded for the respective hand hoe weeded treatments. The hand hoe weeded treatments resulted in average cotton lint yield of 1497 and 2018 kg ha−1 for maize. The mixed pre-emergence herbicides treatments gave yields of 2138 and 2356 kg ha−1 of cotton and maize, respectively. The higher weed densities in CT under hand weeded treatments underscored the need for other weeding options. Similarly, a mixture of cyanazine + alachlor in cotton and atrazine + alachlor in maize is recommended for suppressing broad and grass weed populations and enhancing yields in CT systems.  相似文献   

15.
《Field Crops Research》2001,70(1):27-41
Many Australian cotton growers now include legumes in their cropping system. Three experiments were conducted between 1994 and 1997 to evaluate the rotational effects of winter or summer legume crops grown either for grain or green manuring on following cotton (Gossypium hirsutum L.). Non-legume rotation crops, wheat (Triticum aestivum) and cotton, were included for comparison. Net nitrogen (N) balances, which included estimates of N associated with the nodulated roots, were calculated for the legume phase of each cropping sequence. Faba bean (Vicia faba — winter) fixed 135–244 kg N ha−1 and soybean (Glycine max — summer) fixed 453–488 kg N ha−1 and contributed up to 155 and 280 kg fixed N ha−1, respectively, to the soil after seed harvest. Green-manured field pea (Pisum sativum — winter) and lablab (Lablab purpureus — summer) fixed 123–209 and 181–240 kg N ha−1, respectively, before the crops were slashed and incorporated into the topsoil.In a separate experiment, the loss of N from 15N-labelled legume residues during the fallow between legume cropping and cotton sowing (5–6 months following summer crops and 9 months after winter crops) was between 9 and 40% of 15N added; in comparison, the loss of 15N fertilizer (urea) applied to the non-legume plots averaged 85% of 15N added. Little legume-derived 15N was lost from the system during the growth of the subsequent cotton crop.The improved N fertility of the legume-based systems was demonstrated by enhanced N uptake and lint yield of cotton. The economic optimum N fertilizer application rate was determined from the fitted N response curve observed following the application of N fertilizer at rates between 0 and 200 kg N ha−1 (as anhydrous ammonia). Averaged over the three experiments, cotton following non-legume rotation crops required the application of 179 kg N ha−1, whilst following the grain- and green-manured legume systems required only 90 and 52 kg N ha−1, respectively.In addition to improvements in N availability, soil strength was generally lower following most legume crops than non-legume rotation crops. Penetrometer resistance during the growth of the subsequent cotton crop increased in the order faba bean, lablab, field pea, wheat, cotton, and soybean. It is speculated that reduced soil strength contributed to improvement in lint yields of the following cotton crops by facilitating the development of better root systems.  相似文献   

16.
Four two-year field trials, arranged in randomised split-plots, were carried out in southern Sweden with the aim of determining whether reduced N fertiliser dose in winter wheat production with spring under-sown clover cover crops, with or without perennial ryegrass in the seed mixture, would increase the clover biomass and hence the benefits of the cover crops in terms of the effect on the wheat crop, on a subsequent barley crop and on the risk of N leaching. Four doses of nitrogen (0, 60, 120 or 180 kg N ha−1) constituted the main plots and six cover crop treatments the sub-plots. The cover crop treatments were red clover (Trifolium pratense L.), white clover (Trifolium repens L.) and perennial ryegrass (Lolium perenne L.) in pure stands and in mixtures. The winter wheat (Triticum aestivum L.) was harvested in August and the cover crops were ploughed under in November. The risk of N leaching was assessed in November by measuring the content of mineral N in the soil profile (0–30, 30–90 cm). In the following year, the residual effects of the cover crops were investigated in spring barley (Hordeum distichon L.) without additional N. Under-sowing of cover crops did not influence wheat yield, while reduced N fertiliser dose decreased yield and increased the clover content of the cover crops. When N was applied, the mixed cover crops were as effective in depleting soil mineral nitrogen as a pure ryegrass cover crop, while pure clover was less efficient. The clover content at wheat harvest as well as the amount of N incorporated with the cover crops had a positive correlation with barley yield. Spring barley in the unfertilised treatments yielded, on average, 1.9–2.4 Mg DM ha−1 more in treatments with clover cover crops than in the treatment without cover crops. However, this positive effect decreased as the N dose to the preceding wheat crop increased, particularly when the clover was mixed with grass.  相似文献   

17.
Dry-seeded rice has been introduced as an alternative to puddled hand-transplanted rice in the north Indian states of Punjab and Haryana. In dry-seeded rice, weed flora tends to be more diverse and weeds emerge in several flushes during the crop growth cycle and substantial yield reductions due to weed competition are quite common. The efficacy and compatibility of tank mixtures of different herbicides for the control of diverse weed flora in dry-seeded rice was evaluated in field experiments during the summer seasons of 2012 and 2013. The tank mixture of fenoxaprop with ethoxysulfuron improved the control of Echinochloa crus-galli and Echinochloa colona by 43–69% as compared to fenoxaprop alone while the tank-mix of azimsulfuron with fenoxaprop was antagonistic and reduced the control of Leptochloa chinensis by 86% as compared to fenoxaprop alone. Addition of azimsulfuron or ethoxysulfuron to bispyribac did not improve the control of grass weeds as compared to bispyribac alone. Weed control with the mixture of bispyribac and fenoxaprop varied over the two years. In 2012, bispyribac and fenoxaprop mixture was antagonistic for the control of Dactyloctenum aegyptium, Acrachne racemose, and L. chinensis but in 2013, there was no apparent antagonism and the addition of bispyribac to fenoxaprop reduced grass weed biomass as compared to fenoxaprop alone. In 2013, there was a strong negative correlation (r = −0.95, P < 0.001) between weed dry matter at 45 days after sowing and rice grain yield. According to the linear regression, rice crop is likely to produce no grain yield when weed dry matter exceeds 400 g m−2. Over the two seasons, fenoxaprop-ethoxysulfuron tank-mix produced similar grain yields (5.6–6.2 t ha−1) to the weed-free check (5.6–7.1 t ha−1). At the farmer fields, rice grain yield in the plots treated with pendimethalin followed by post-emergence bispyribac or a tank-mix of fenoxaprop + ethoxysulfuron ranged from 6.2 to 7.7 t ha−1 as compared to 5.3–5.6 t ha−1 in the plots treated with pendimethalin alone. The tank mixture of fenoxaprop with bispyribac needs further evaluation as this mixture has the potential to effectively control aerobic and aquatic grasses in dry-seeded rice. Single hand weeding prevented crop yield loss from weeds that escaped herbicide treatments only when it was performed within six weeks of sowing.  相似文献   

18.
Summary

Allelopathic cover crops are one of the most promising application of allelopathy for weed control and reduce the synthetic herbicides input. Fifty three cover crop plant species (26 leguminous, 19 graminaceous and 8 others) were assessed for the allelopathic activity using Plant Box Method. It was found that leguminous cover crops such as hairy vetch (Vicia villosa) and velvetbean (Mucuna pruriens), graminaceous cover crops, such as oat (Avena sativa) and rye (Secale cereale), certain cultivars of wheat (Triticum aestivum) and barley (Hordeum vulgare) were promising. By bioassay screening, 23 species were selected for field tests. Fall-sown cover crops such as hairy vetch, rye, wheat, oat, grass pea, and mustard are more effective when compared to spring-sown cover crops. Hairy vetch was most promising for the weed control in abandoned fields because of its ability to die off during summer season to make a thick straw-like mulch.  相似文献   

19.
In recent years, poor control of Amarathus palmeri S. Wats. plants with glyphosate in many agricultural and non-crop has been observed in the San Joaquin Valley (SJV), California, USA. Studies were conducted to assess if these were glyphosate-resistant (GR) populations. Populations from 23 different locations of the SJV were exposed to glyphosate application of 840 g ae ha−1 at the 5 to 8 leaf stage of the plant and compared against a known GR and glyphosate-susceptible (GS) population from New Mexico, USA. None of the plants from the SJV survived the glyphosate application suggesting that they were GS. Plant mortality following application of glyphosate (840 g ae ha−1), glufosinate (490 g ai ha−1), paraquat dichloride (660 g ai ha−1), saflufenacil (50 g ai ha−1), rimsulfuron (70 g ai ha−1), and a tank-mix of glyphosate (840 g ae ha−1) + saflufenacil (50 g ai ha−1) applied at the 4 to 6, 8 to 10, and 12 to 16 leaf stages of A. palmeri was determined on potted plants grown outdoors. Complete control was obtained with all the treatments applied at the 4 to 6 leaf stage but control was reduced to less than 70% and 20% with glyphosate and glufosinate, respectively at the later stages. The other treatments provided 100% control at all growth stages. Combinations of saflufenacil + glyphosate, saflufenacil + glufosinate, saflufenacil + dicamba, rimsulfuron + glyphosate, tembotrione + glyphosate, flumioxazin + pyroxasulfone + glyphosate, flumioxazin + pyroxasulfone + glyphosate, dicamba + paraquat dichloride, and glyphosate + glufosinate were also tested on 8 to 10 leaf stage A. palmeri plants and all the combinations provided 100% control.  相似文献   

20.
Grazing cover crops may increase land-use efficiency while promoting sustainability. We investigated how grazing intensity affects cover crop litter quantity, quality, decomposition, and cotton (Gossypium hirsutum L.) N uptake. Cover crops were a mixture of rye (Secale cereale L.) and oat (Avena sativa L.) managed as follows: no grazing +34 kg N ha−1 (NG34), no grazing +90 kg N ha−1 (NG90), heavy grazing (HG), moderate grazing (MG), and light grazing (LG). Grazed treatments received 90 kg N ha−1. After cover crop termination, above- and belowground litter was collected and incubated in situ for 0, 4, 8, 16, 32, 64, and 128 days, with cotton plants sampled on the same days to estimate N recovery and synchrony between N release from litter and uptake by cotton. By Day 128, only 13% of initial NG34 aboveground biomass had disappeared, whereas 42% of HG disappeared. Nitrogen retained in aboveground litter of HG was less than NG90 (27 vs. 60 kg N ha−1), and aboveground final N stock (at Day 128) of HG was less than NG90 and LG (16, 47, and 41 kg N ha−1, respectively). Belowground litter contributed 98 kg N ha−1 versus 46 for aboveground. Belowground N disappearance from litter bags was greater from NG90 than NG34 (39 vs. 21 kg N ha−1). Cotton N uptake by Day 128 was similar across treatments (191 kg N ha−1). Grazing cover crops impact aboveground litter quantity, quality, and decomposition rates, and belowground litter plays an important role on the N cycling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号