首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Disease resistance mediated by the resistance gene Xa21 is developmentally controlled in rice. We examined the relationship between Pathogenesis Related (PR) defense gene expression and Xa21-mediated developmental disease resistance induced by Xanthomonas oryzae pv. oryzae (Xoo). OsPR1a, OsPR1b, and OsPR1c genes were cloned and their induction was analyzed, in addition to the OsPR10a gene, at the juvenile and adult stages in response to a wildtype Xoo strain that induces a resistance response (incompatible interaction) and an isogenic mutant Xoo strain that does not (compatible interaction). We found that the adult stage leaves are more competent to express these OsPR1 genes and that the Xa21 locus is required for the highest levels of induction.  相似文献   

2.
Rice blast, caused by the fungus Magnaporthe oryzae, is one of the most devastating diseases of rice (Oryza sativa L.), and neck blast is the most destructive phase of this disease. Although neck blast causes tremendous yield loss, little is known about the molecular mechanisms underlying the neck blast resistance. To address this issue, we collected 358 rice varieties from different ecotypes in China and assessed them for the neck blast resistance under natural conditions favoring disease development in Jining, Shandong Province. Our results showed that 124 (34.6%) and 234 (65.4%) varieties were resistant and susceptible to M. oryzae under natural field conditions, respectively. Among the 358 rice varieties that were screened for the presence of 13 major blast resistance (R) genes against M. oryzae by using functional markers, 259 varieties contained one to seven R genes. In addition, the relationship between the presence of R genes and the disease reactions was also investigated by integrative analysis of phenotyping and genotyping based on functional markers. Our results showed that the rice blast resistance gene Pi2 was significantly correlated with neck blast resistance. Furthermore, any of the 13 major blast R genes was absent from 32 rice varieties exhibited obvious neck blast resistance, which would be the potential materials for identifying novel neck blast R genes. Taken together, our findings provide insight into the distribution of the 13 major blast R genes in the tested Chinese rice germplasm resources, which will serve as a basis for developing rice blast resistant. Furthermore, 32 rice varieties exhibited neck blast resistance, but they did not harbor any of the 13 major blast R genes. In the future, these varieties may be used to identify novel neck blast R genes.  相似文献   

3.
Schoenoplectiella juncoides is a noxious sedge weed in rice paddy fields that has evolved resistance to sulfonylurea (SU) herbicides. The molecular basis of resistance is amino acid substitutions at Pro197, Trp574 or Asp376 in the acetolactate synthase (ALS) enzyme, which is the target of SUs. Schoenoplectiella juncoides has two ALS genes and resistant plants have point mutations that cause amino acid substitutions in either encoded protein. Single‐nucleotide substitutions at the codon for Pro197 in the ALS genes can cause six types of amino acid substitutions and all of these substitutions have been found in both ALS genes among Japanese SU‐resistant biotypes. Whole‐plant herbicide responses differ among the amino acid substitution types. Furthermore, analyses of ALS activity in plant extracts show that the extracts’ responses to herbicides differ, depending on which ALS gene is mutated. The activity responses of the ALS extracts to the SU, imazosulfuron, showed double‐sigmoid curves with plateaus of ~30% inhibition for Pro197 substitutions in ALS1 and ~70% for Pro197 substitutions in ALS2. This indicates that ALS1 and ALS2 contribute to the responses with a proportion of 7:3. The double‐sigmoid curves can be reconstructed to show the responses of the resistant and susceptible enzymes separately by regression analysis. The resistance levels of the separate ALS1 or ALS2 mutated enzyme are highly correlated with the whole‐plant responses, with a relationship that the former is the square of the latter. This could provide a quantitative insight into the physiological basis of resistance.  相似文献   

4.
The rice blast resistance gene Pi54 (formerly Pi-k h ) isolated from indica rice line Tetep confers broad spectrum resistance to different strains of Magnaporthe oryzae in India. In this study, we performed PCR based allele mining for blast resistance gene Pi54 from six cultivated rice lines and eight wild rice species to understand its structural variation and its impact on the phenotypes. Sequence analysis indicates presence of more variation between cultivated and wild species (35–90 %) than variation found among cultivated species (1–20 %). Structural analysis of alleles showed presence of variable number of Open Reading Frames (0–2) principally having point mutations in the leucine rich repeats (LRR) regions. The Ka/Ks ratio of LRR region was >1, which shows the effect of selection pressure at this domain. The Pi54 alleles have 142 polymorphic sites with average nucleotide diversity of 0.04522. The Ka/Ks ratio of coding region ranged from 0 to >1 and Tajima’s D test showed negative as well as Darwinian selection within the alleles, which corresponded well with their phenotypic reaction to M. oryzae. The results obtained in this study shows divergent nature of Pi54 allele in wild species and land races of rice. The resistance alleles identified in this study can be used in effective management of rice blast disease through gene pyramiding.  相似文献   

5.
Genetic exchange is considered to be an important process in the selective adaptation of microorganisms to shifting and challenging environmental conditions. As a consequence of the copious use of copper bactericides, many species of plant pathogenic bacteria, including Xanthomonas citri subsp. citri (Xcc), have developed resistance to copper. This study assesses whether copper resistant (CuR) strains of other Xanthomonas species and citrus epiphytic bacteria pose a risk for the development of copper resistance in Xcc. CuR epiphytic bacteria were isolated on MGY agar from citrus leaves collected in two citrus groves treated with copper bactericides in Florida. Horizontal gene transfer of copper resistance genes was investigated within different Xanthomonas species and from citrus epiphytic bacteria to Xanthomonas. CuR epiphytic bacteria from citrus were screened for the presence of copper resistance genes homologous to copL, copA and copB genes from Xcc and characterized regarding tolerance to copper. Copper resistance determinants from a citrus epiphytic strain of Stenotrophomonas maltophilia (Stm) were cloned and expressed in Xcc and other Xanthomonas strains. Copper resistance genes in Xcc were determined to be present on a large (~300?kb) conjugative plasmid. Cu resistance was transferred via conjugation from two copper resistant citrus strains, Xcc and X. alfalfae subsp. citrumelonis (Xac), and two tomato pathogens, X. euvesicatoria (Xe) and X. perforans (Xp), to Xcc. PCR analysis revealed that two CuR strains from citrus, an epiphytic Xanthomonas ssp. and a strain of Stm, harboured homologs of the copper resistance genes found in CuR Xcc. The introduction of copLAB gene cluster from Stm into different xanthomonads conferred copper resistance to sensitive strains of Xcc, Xac, Xe and Xp. Based on these results there is a low, but significant, likelihood of horizontal gene transfer of copper resistance genes from other xanthomonads or epiphytic bacteria to Xcc in nature.  相似文献   

6.
Natural Variation at the Pi-ta Rice Blast Resistance Locus   总被引:1,自引:0,他引:1  
Jia Y  Bryan GT  Farrall L  Valent B 《Phytopathology》2003,93(11):1452-1459
ABSTRACT The resistance gene Pi-ta protects rice crops against the fungal pathogen Magnaporthe grisea expressing the avirulence gene AVR-Pita in a gene-for-gene manner. Pi-ta, originally introgressed into japonica rice from indica origin, was previously isolated by positional cloning. In this study, we report the nucleotide sequence of a 5,113-base pair region containing a japonica susceptibility pi-ta allele, which has overall 99.6% nucleotide identity to the indica Pi-ta allele conferring resistance. The intron region shows the levels of sequence diversity that typically differentiate genes from indica and japonica rices, but the other gene regions show less diversity. Sequences of the Pi-ta allele from resistant cultivars Katy and Drew from the southern United States are identical to the resistance Pi-ta sequence. Sequences from susceptible cultivars El Paso 144 and Cica 9 from Latin America define a third susceptibility haplotype. This brings the total number of Pi-ta haplotypes identified to four, including the resistance allele and three susceptibility alleles. The Pi-ta locus shows low levels of DNA polymorphism compared with other analyzed R genes. Understanding the natural diversity at the Pi-ta locus is important for designing specific markers for incorporation of this R gene into rice-breeding programs.  相似文献   

7.
Sodium channel mutations were investigated through nucleotide sequencing of three cDNA fragments amplified from permethrin resistant and susceptible Aedes aegypti from northern Thailand. There was a novel nucleotide substitution (T → G) at the second position of codon 1552 resulting in the replacement of Phenylalanine by Cysteine in segment 6 domain III. This amino acid was indicated by another study to involve an aromatic-aromatic contact between the sodium channel protein and the first aromatic ring of the pyrethroid alcohol moiety. Reciprocal crosses between the homozygous parental susceptible and resistant strains indicated that resistance was autosomal and incompletely recessive, and highly associated with the homozygous mutation. The bioassay of the F2 progeny, formed by backcrossing the F1 with the resistant parental strain, did not show a clear plateau curve across the range of doses, suggesting that resistance to permethrin was controlled by more than one gene locus. Other possible resistance mechanisms involved are discussed.  相似文献   

8.
Tang H  Li J  Dong L  Dong A  Lü B  Zhu X 《Pest management science》2012,68(9):1241-1247
BACKGROUND: Haloxyfop‐R‐methyl is a widely used herbicide to control Poaceae weeds. Alopecurus japonicus, a widespread annual grass, can no longer be controlled by haloxyfop‐R‐methyl after continuous use of this herbicide for several years. RESULTS: Dose‐response experiments have established that the Js‐R biotype of A. japonicas has evolved resistance to aryloxyphenoxypropionates (APPs). Target‐site enzyme sensitivity experiments have established that the haloxyfop (free acid) rate causing 50% inhibition of acetyl‐CoA carboxylase (ACCase) activity (I50) for the resistant (Js‐R) biotype is 11 times higher than that for the susceptible (Js‐S) biotype. In many cases, resistance to ACCase‐inhibiting herbicides is due to a resistant ACCase enzyme. Full‐length DNA and mRNA sequences of the plastidic ACCase gene were amplified. Eight single‐nucleotide differences were detected in this region. Four of the nucleotide changes were silent mutations. However, the other four nucleotide mutations caused four amino acid substitutions, replacing Arg‐1734 with Gly, Met‐1738 with Leu, Thr‐1739 with Ser and Ile‐2041 with Asn in the R biotype respectively; the substitution at position 2041 had been reported, while the other three had not. CONCLUSION: The ACCase in the Js‐R biotype was less susceptible to haloxyfop‐R‐methyl than that in the Js‐S biotype. Moreover, the amino acid substitution of Ile‐2041 with Asn might confer resistance to haloxyfop‐R‐methyl in A. japonicas. Copyright © 2012 Society of Chemical Industry  相似文献   

9.
Whole genome sequencing of a copper resistant (CuR) black rot strain of Xanthomonas campestris pv. campestris (Xcc) isolated from a broccoli plant in Trinidad revealed a unique operon for copper resistance. The cop genes of strain Xcc-BrA1 were determined to be present on a 160 to 180 kb plasmid shown to be non-conjugative with other xanthomonads. While nucleotide comparison of a putative 8.0 Kbp copLABMGF gene cluster identified in Xcc-BrA1 genome did not reveal any homologous region with other known CuR Xanthomonas strains from diverse origins, the comparison of the translated amino acid sequence indicated similarity with X. citri, X. c. pv. citrumelonis and X. vesicatoria Cop proteins. Cloning of the copLAB gene cluster from Xcc-BrA1 conferred copper resistance to other copper-sensitive xanthomonads. Although Xcc-BrA1 harbors copLAB genes with similar sizes and organization and is able to grow on Cu-amended medium as other CuR xanthomonads, the phylogenetic analysis of nucleotide sequences indicates that the cop cluster in Xcc-BrA1 is unique and distantly related to other copLAB genes from Xanthomonas and Stenotrophomonas. The origin of copper resistance genes in Xcc-BrA1 is likely a result of horizontal gene acquisition from a still unknown phylloplane cohabitant. The findings of this study have implications for the management of crop diseases caused by CuR xanthomonads. Future studies could focus on and determining the distribution, overall importance and appropriate control measures for strains harbouring these unique genes.  相似文献   

10.
Wheat production is threatened by a constantly changing population of pathogen species and races. Given the rapid ability of many pathogens to overcome genetic resistance, the identification and practical implementation of new sources of resistance is essential. Landraces and wild relatives of wheat have played an important role as genetic resources for the improvement of disease resistance. The use of molecular approaches, particularly molecular markers, has allowed better characterization of the genetic diversity in wheat germplasm. In addition, the molecular cloning of major resistance (R) genes has recently been achieved in the large, polyploid wheat genome. For the first time this allows the study and analysis of the genetic variability of wheat R loci at the molecular level and therefore, to screen for allelic variation at such loci in the gene pool. Thus, strategies such as allele mining and ecotilling are now possible for characterization of wheat disease resistance. Here, we discuss the approaches, resources and potential tools to characterize and utilize the naturally occurring resistance diversity in wheat. We also report a first step in allele mining, where we characterize the occurrence of known resistance alleles at the wheat Pm3 powdery mildew resistance locus in a set of 1,320 landraces assembled on the basis of eco-geographical criteria. From known Pm3 R alleles, only Pm3b was frequently identified (3% of the tested accessions). In the same set of landraces, we found a high frequency of a Pm3 haplotype carrying a susceptible allele of Pm3. This analysis allowed the identification of a set of resistant lines where new potentially functional alleles would be present. Newly identified resistance alleles will enrich the genetic basis of resistance in breeding programmes and contribute to wheat improvement.  相似文献   

11.
Blackleg disease, caused by the hemibiotrophic fungal pathogen Leptosphaeria maculans, is one of the most devastating disease of Brassica species worldwide. To date, a total of 20 race-specific blackleg resistance (R) genes have been reported and all of those loci are located in either the A or B genomes of various Brassica species. The B. oleracea genome (CC) shares a high ancestral synteny with the A genome of B. rapa, suggesting the presence of qualitative (race specific) resistance to blackleg disease is also possible in B. oleracea germplasm. In the present study the C genome of Korean B. oleracea germplasm was screened for the presence of blackleg R genes. Thirty-two inbred cabbage lines with unknown resistance profiles, along with five control B. napus lines with well-characterised race-specific R genes, were assessed for cotyledon resistance against two L. maculans isolates with known and highly-contrasting avirulence gene (Avr) profiles. Two cabbage accessions were identified which produced a strong resistance when challenged with either isolate, demonstrating the presence of effective blackleg R genes in the cabbage C genome. Additionally, 16 microsatellite markers linked to seven different R genes of the B. napus A genome were converted into markers for their homologous regions on the B. oleracea C genome. These markers were used to screen all B. oleracea lines to assess if the novel C genome R genes were syntenous to known R gene-homologous regions of the A genome. The resistant cabbage lines offer C genome R genes for the protection of B. oleracea varieties against incursion of blackleg disease, as well as novel additional resistance sources for introgression into B. napus and B. carinata breeding material.  相似文献   

12.
A Papaver rhoeas population resistant to several acetolactate synthase (ALS) inhibiting herbicides, called 25/98, was found in Catalonia (Northeastern of Spain). This population has an altered form of the enzyme that showed cross-resistance to several herbicides of this group. The highest resistance was found with tribenuron-methyl and sulfometuron-methyl. Studies were conducted to define the molecular basis of this resistance. Two regions of the ALS gene were amplified using degenerated universal primers and sequenced. Population 25/98 contained a single nucleotide substitution in domain A changing Pro197 by Ser (using the nomenclature of Arabidopsis thaliana) that confers sulfonylurea resistance. Another change was detected in a region located outside of any conserved domains described to date, but its implication in the resistance remains unclear. We analyze the putative role of the found mutations in relation to the observed resistance using a putative three-dimensional model of the Papaver ALS enzyme.  相似文献   

13.
Disease resistance mediated by the resistance gene Xa21 is developmentally controlled in rice. We examined the relationship between Pathogenesis Related (PR) defense gene expression and Xa21-mediated developmental disease resistance induced by Xanthomonas oryzae pv. oryzae (Xoo). OsPR1a, OsPR1b, and OsPR1c genes were cloned and their induction was analyzed, in addition to the OsPR10a gene, at the juvenile and adult stages in response to a wildtype Xoo strain that induces a resistance response (incompatible interaction) and an isogenic mutant Xoo strain that does not (compatible interaction). We found that the adult stage leaves are more competent to express these OsPR1 genes and that the Xa21 locus is required for the highest levels of induction.  相似文献   

14.
The single recessive gene, nsv, which confers resistance against Melon necrotic spot virus (MNSV), has recently been used to develop virus-resistant melon cultivars in Japan. However, the Chiba isolate of MNSV, a common isolate in Japan, infected resistant cultivars when inoculated melon plants were grown at 15°C. Viral RNAs accumulated in protoplasts from resistant cultivars at both 15 and 20°C. Mechanical inoculation of the cotyledons caused MNSV to spread throughout the leaves at 15°C, but not at 20°C. These results support our novel hypothesis that a temperature-sensitive inactivation of disease resistance genes occurs at the nsv locus in melon cultivars with the resistance gene grown at temperatures below 20°C. The first and second authors contributed equally to this research.  相似文献   

15.
Blast, caused by Pyricularia grisea , is a major constraint on rice production. To broaden genetic diversity for resistance to this disease, two rice cultivars, GA20 and GA25 from Yunnan Province, China, were analysed for the genetic basis of their high resistance to blast. GA20 was crossed with 10 Japanese differential cultivars, and GA25 was crossed with nine of them and with the susceptible Chinese cultivar Lijiangxintuanheigu (LTH). The resistance of GA20 was governed by two dominant genes allelic to genes at the Pi-k and Pi-ta loci. The allele at the Pi-k locus was new, based on a reaction pattern different from known alleles at this locus. It could not be shown whether or not the allele at the Pi-ta locus is new, because races with virulence for Pi-ta were not tested. GA25 has one resistance gene, which is not allelic to genes at the loci Pi-a , Pi-k , Pi-z , Pi-ta , Pi-b , and Pi-t , but is linked to the Pi-i gene on chromosome 9 with a recombination frequency of 15.1 ± 2.8%.
The new allele at the Pi-k locus in GA20 is designated as Pi-kg (t), and the new resistance gene in GA25 as Pi15(t) .  相似文献   

16.
 粳稻品种东农415自育成以来一直以其早熟、抗病、高产特性而著称,在黑龙江省稻瘟病高发区种植20多年均表现高抗稻瘟病。本研究利用158个采集于黑龙江省不同稻区的稻瘟病菌株对东农415进行接种鉴定,结果表明东农415对黑龙江省稻瘟病菌株有很强的抗性,抗谱高达89.2%。以东农415与丽江新团黑谷(LTH)杂交衍生的F1和F2群体为遗传分析试验材料,通过接种鉴定,发现东农415对稻瘟病菌株F-10-11的抗性由一个显性基因控制。进一步采用分子标记结合隐性群体分离分析法,以对菌株F-10-11极端感病的99个F2单株为作图群体,将东农415的抗病基因定位在第2染色体,距离基因两侧标记RM5300和RM213的遗传距离分别为7.6和3.0 cM,暂命名为Pi-dn(t)。将Pi-dn(t)位点映射到水稻参考基因组图谱上,在抗病位点基因组区段内发现3个编码基因Os02g56010、Os02g55540和Os02g56400具有抗病基因结构域,可作为Pi-dn(t)的候选基因。  相似文献   

17.
Rice blast disease, caused by the fungus Magnaporthe oryzae, is a major threat to worldwide rice production. Plant basal resistance is activated by virulent pathogens in susceptible host plants. OsNPR1/NH1, a rice homolog of NPR1 that is the key regulator of systemic acquired resistance in Arabidopsis thaliana, was shown to be involved in the resistance of rice to bacterial blight disease caused by Xanthomonas oryzae pv. oryzae and benzothiadiazole (BTH)-induced blast resistance. However, the role of OsNPR1/NH1 in rice basal resistance to blast fungus M. oryzae remains uncertain. In this study, the OsNPR1 gene was isolated and identified from rice cultivar Gui99. Transgenic Gui99 rice plants harbouring OsNPR1-RNAi were generated, and the OsNPR1-RNAi plants were significantly more susceptible to M. oryzae infection. Northern hybridization analysis showed that the expression of pathogenesis-related (PR) genes, such as PR-1a, PBZ1, CHI, GLU, and PAL, was significantly suppressed in the OsNPR1-RNAi plants. Consistently, overexpression of OsNPR1 in rice cultivars Gui99 and TP309 conferred significantly enhanced resistance to M. oryzae and increased expression of the above-mentioned PR genes. These results revealed that OsNPR1 is involved in rice basal resistance to the blast pathogen M. oryzae, thus providing new insights into the role of OsNPR1 in rice disease resistance.  相似文献   

18.
Pollen beetle, Meligethes aeneus F. (Coleoptera: Nitidulidae) is a major univoltine pest of oilseed rape in many European countries. Winter oilseed rape is cultivated on several million hectares in Europe and the continuous use of pyrethroid insecticides to control pollen beetle populations has resulted in high selection pressure and subsequent development of resistance. Resistance to pyrethroid insecticides in this pest is now widespread and the levels of resistance are often sufficient to result in field control failures at recommended application rates. Recently, metabolic resistance mediated by cytochrome P450 monooxygenases was implicated in the resistance of several pollen beetle populations from different European regions. Here, we have also investigated the possible occurrence of a target-site mechanism caused by modification of the pollen beetle para-type voltage-gated sodium channel gene. We detected a single nucleotide change that results in an amino acid substitution (L1014F) within the domain IIS6 region of the channel protein. The L1014F mutation, often termed kdr, has been found in several other insect pests and is known to confer moderate levels of resistance to pyrethroids. We developed a pyrosequencing-based diagnostic assay that can detect the L1014F mutation in individual beetles and tested more than 350 populations collected between 2006 and 2010 in 13 European countries. In the majority of populations tested the mutation was absent, and only samples from two countries, Denmark and Sweden, contained pollen beetles heterozygous or homozygous for the L1014F mutation. The mutation was first detected in a sample from Denmark collected in 2007 after reports of field failure using tau-fluvalinate, and has since been detected in 7 out of 11 samples from Denmark and 25 of 33 samples from Sweden. No super-kdr mutations (e.g. M918T) known to cause resistance to pyrethroids were detected. The implications of these results for resistance management strategies of pollen beetle populations in oilseed rape crops are discussed.  相似文献   

19.
Three Australian Sisymbrium orientale and one Brassica tournefortii biotypes are resistant to acetolactate synthase (ALS)-inhibiting herbicides due to their possession of an ALS enzyme with decreased sensitivity to these herbicides. Enzyme kinetic studies revealed no interbiotypic differences within species in Km (pyruvate) (the substrate concentration at which the reaction rate is half maximal) but a greater Vmax (the rate when the enzyme is fully saturated with substrate) for two of the resistant S orientale biotypes over susceptible levels. F1 hybrids from reciprocal crosses between resistant and susceptible biotypes of S orientale showed an intermediate response to chlorsulfuron compared to the parental plants. ALS herbicide resistance in S orientale segregated in a 3:1 (resistant:susceptible) ratio in F2 plants with a single rate of chlorsulfuron, indicating that resistance is inherited as a single, incompletely dominant nuclear gene. Two regions of the ALS structural gene known to vary in ALS-resistant biotypes were amplified and sequenced. Resistant S orientale biotypes NS01 and SS03 contained a single nucleotide substitution in Domain B, predicting a Trp (in susceptible) to Leu (in resistant) amino acid change. Two adjacent nucleotide substitutions (CC T to AT T) predicting a Pro (in susceptible) to Ile (in resistant) change in the primary amino acid sequence were identified in Domain A of resistant S orientale biotype SS01. Likewise, a single nucleotide substitution at the same site in the resistant B tournefortii biotype predicts a Pro (in susceptible) to Ala (in resistant) substitution. No other interbiotypic nucleotide differences predicted amino acid changes in the sequenced regions, suggesting that the amino acid substitutions reported above are responsible for resistance to ALS-inhibiting herbicides in the respective biotypes. © 1999 Society of Chemical Industry  相似文献   

20.
哈尔滨地区抗瘟基因抗性分析及水稻品种抗性评价与利用   总被引:1,自引:1,他引:0  
为明确哈尔滨地区24个抗瘟基因的抗性和20个水稻品种含有抗瘟基因型的情况,选取200个稻瘟病菌单孢菌株和22个已知无毒基因的鉴别菌株作为鉴定系统,通过喷雾法和离体划伤法接种,应用PCR技术对部分试验结果进行了重复性检测,并在此基础上进行了抗性布局分析。结果表明:24个抗瘟基因抗性差异较大,抗谱在11.00%~93.00%之间,平均抗谱38.29%;抗谱超过80.00%的基因有3个,由高到低为Pi-9、Pi-ta2和Pi-z5;抗谱低于20.00%的基因有9个,分别为Pi-a、Pi-ks、Pi-i、Pi-t、Pi-kp、Pi-ta、Pi-3、Pi-km和Pi-sh,Pi-a抗性最差。20个水稻品种中检测到抗瘟基因13个,共出现40次,其中Pi-a和Pi-19各出现6次,频率最高;龙稻5含抗瘟基因最多,4个,分别为Pi-ks、Pi-1、Pi-19和Pi-sh。在哈尔滨晚熟稻区建议布局绥粳8、中龙香粳1或者绥粳8+中龙香粳1搭配;在早熟稻区建议布局龙粳18、哈香07-321或者龙粳18+哈香07-321搭配。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号