首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Zoonotic agents challenging the world every year afresh are influenza A viruses. In the past, human pandemics caused by influenza A viruses had been occurring periodically. Wild aquatic birds are carriers of the full variety of influenza virus A subtypes, and thus, most probably constitute the natural reservoir of all influenza A viruses. Whereas avian influenza viruses in their natural avian reservoir are generally of low pathogenicity (LPAIV), some have gained virulence by mutation after transmission and adaptation to susceptible gallinaceous poultry. Those so-called highly pathogenic avian influenza viruses (HPAIV) then cause mass die-offs in susceptible birds and lead to tremendous economical losses when poultry is affected. Besides a number of avian influenza virus subtypes that have sporadically infected mammals, the HPAIV H5N1 Asia shows strong zoonotic characteristics and it was transmitted from birds to different mammalian species including humans. Theoretically, pandemic viruses might derive directly from avian influenza viruses or arise after genetic reassortment between viruses of avian and mammalian origin. So far, HPAIV H5N1 already meets two conditions for a pandemic virus: as a new subtype it has been hitherto unseen in the human population and it has infected at least 438 people, and caused severe illness and high lethality in 262 humans to date (August 2009). The acquisition of efficient human-to-human transmission would complete the emergence of a new pandemic virus. Therefore, fighting H5N1 at its source is the prerequisite to reduce pandemic risks posed by this virus. Other influenza viruses regarded as pandemic candidates derive from subtypes H2, H7, and H9 all of which have infected humans in the past. Here, we will give a comprehensive overview on avian influenza viruses in concern to their zoonotic potential.  相似文献   

2.
The introduction of swine or avian influenza (AI) viruses in the human population can set the stage for a pandemic, and many fear that the Asian H5N1 AI virus will become the next pandemic virus. This article first compares the pathogenesis of avian, swine and human influenza viruses in their natural hosts. The major aim was to evaluate the zoonotic potential of swine and avian viruses, and the possible role of pigs in the transmission of AI viruses to humans. Cross-species transfers of swine and avian influenza to humans have been documented on several occasions, but all these viruses lacked the critical capacity to spread from human-to-human. The extreme virulence of H5N1 in humans has been associated with excessive virus replication in the lungs and a prolonged overproduction of cytokines by the host, but there remain many questions about the exact viral cell and tissue tropism. Though pigs are susceptible to several AI subtypes, including H5N1, there is clearly a serious barrier to infection of pigs with such viruses. AI viruses frequently undergo reassortment in pigs, but there is no proof for a role of pigs in the generation of the 1957 or 1968 pandemic reassortants, or in the transmission of H5N1 or other wholly avian viruses to humans. The major conclusion is that cross-species transmission of influenza viruses per se is insufficient to start a human influenza pandemic and that animal influenza viruses must undergo dramatic but largely unknown genetic changes to become established in the human population.  相似文献   

3.
Public health risk from avian influenza viruses   总被引:9,自引:0,他引:9  
Since 1997, avian influenza (AI) virus infections in poultry have taken on new significance, with increasing numbers of cases involving bird-to-human transmission and the resulting production of clinically severe and fatal human infections. Such human infections have been sporadic and are caused by H7N7 and H5N1 high-pathogenicity (HP) and H9N2 low-pathogenicity (LP) AI viruses in Europe and Asia. These infections have raised the level of concern by human health agencies for the potential reassortment of influenza virus genes and generation of the next human pandemic influenza A virus. The presence of endemic infections by H5N1 HPAI viruses in poultry in several Asian countries indicates that these viruses will continue to contaminate the environment and be an exposure risk with human transmission and infection. Furthermore, the reports of mammalian infections with H5N1 AI viruses and, in particular, mammal-to-mammal transmission in humans and tigers are unprecedented. However, the subsequent risk for generating a pandemic human strain is unknown. More international funding from both human and animal health agencies for diagnosis or detection and control of AI in Asia is needed. Additional funding for research is needed to understand why and how these AI viruses infect humans and what pandemic risks they pose.  相似文献   

4.
Outbreaks of H7N9 avian influenza in humans in 5 provinces and 2 municipalities of China have reawakened concern that avian influenza viruses may again cross species barriers to infect the human population and thereby initiate a new influenza pandemic. Evolutionary analysis shows that human H7N9 influenza viruses originated from the H9N2, H7N3 and H11N9 avian viruses, and that it is as a novel reassortment influenza virus. This article reviews current knowledge on 11 subtypes of influenza A virus from human which can cause human infections.  相似文献   

5.
Continuously emergence of human infection with avian influenza A virus poses persistent threat to human health, as illustrated in H5N1, H7N9 and recent surge of H9N2 infections. Long‐term prevalence of H9N2 avian influenza A virus in China and adjacent regions favours the interspecies transmissions from avian to human. Establishment of multiple genotypes of H9N2 variants in this region contributes to the emergence of novel H7N9 and H10N8 viruses which caused human fatalities. Recent increasing human infection with H9N2 virus in China highlights the necessity to closely monitor the interspecies transmission events. Available human H9N2 sequences revealed that Y280/G9 lineage was responsible for the most of human cases. Presence of adaptive mutations beyond the human‐like receptor binding was indicative of the capacity of readily infecting new hosts without prior adaptation. Moreover, enlarged host range of H9N2 virus in this region substantially increased the transmission among mammals. Meanwhile, serological surveys implied human was more susceptible to H9N2 infection, compared with panzootic H5 and H7 subtype avian influenza virus. Thus, control at the source will be the ultimate and effective option for H9N2 pandemic preparedness. This review comprehensively summarized recent updates on H9N2 human infections, aiming to shed light on the prevention strategies against this strain with pandemic potential.  相似文献   

6.
This account takes stock of events and involvements, particularly on the avian side of the influenza H5N1 'bird flu' incident in Hong Kong SAR in 1997. It highlights the role of the chicken in the many live poultry markets as the source of the virus for humans. The slaughter of chicken and other poultry across the SAR seemingly averted an influenza pandemic. This perspective from Hong Kong SAR marks the coming-of-age of acceptance of the role of avian hosts as a source of pandemic human influenza viruses and offers the prospect of providing a good baseline for influenza pandemic preparedness in the future. Improved surveillance is the key. This is illustrated through the H9N2 virus which appears to have provided the 'replicating' genes for the H5N1 virus and which has since been isolated in the SAR from poultry, pigs and humans highlighting its propensity for interspecies transmission.  相似文献   

7.
H9N2亚型禽流感病毒已在世界范围内的禽类中分离确认,并被证实可以传播到人类和低等哺乳类动物。对于它存在的潜在危害已经越来越多地受到关注,相关的研究也相继开展。许多遗传进化的分析为禽或猪流感可以直接感染人提供了证据,通过在人体的适应或与人流感病毒基因重组,可以形成新的病毒株,引起人类流感疫情暴发。文章提示应当密切监控H9N2亚型禽流感病毒,防止人类流感大流行。  相似文献   

8.
In this article the most important properties of influenza A viruses are described to understand influenza pandemics. There are at least three possibilities: (1) By reassortment between an avian and the prevailing human influenza A virus viruses with a new surface are created, against which no neutralizing antibodies are present in the human population. Such a virus can spread immediately worldwide. (2) Viruses, which have been present in the human population some time ago, reappear and infect the new generation, which has not been in contact with this virus before. (3) An avian influenza virus crosses the species barrier to humans and forms there a new stable lineage. In relation to pandemic planning, the first possibility can be more or less excluded, since the now-a-days human influenza A viruses have evolved so far away from their original source, the avian influenza viruses, that the formation of a well-growing and well-spreading reassortant is practically not possible anymore. Point two is a dangerous possibility, in that, e.g., a human H2N2 virus could reappear, which had disappeared in 1968 from the human population. The third possibility is at the moment the most dangerous situation, if, e.g., a highly neurotropic H5N1 virus from Southeast Asia crosses the species barrier to humans. An infection with such a pandemic virus presumably cannot be treated efficiently by antivirals. In such a situation only a rapid vaccination would be successful. In this respect in the last year important results have been obtained by using the reverse genetics. Meanwhile in about 50 countries there have been drawn up pandemic-preparedness plans.  相似文献   

9.
Yu H  Zhou YJ  Li GX  Ma JH  Yan LP  Wang B  Yang FR  Huang M  Tong GZ 《Veterinary microbiology》2011,149(1-2):254-261
Pandemic strains of influenza A virus might arise by genetic reassortment between viruses from different hosts. Pigs are susceptible to both human and avian influenza viruses and have been proposed to be intermediate hosts or mixing vessels, for the generation of pandemic influenza viruses through reassortment or adaptation to the mammalian host. In this study, we summarize and report for the first time the coexistence of 10 (A-J) genotypes in pigs in China by analyzing the eight genes of 28 swine H9N2 viruses isolated in China from 1998 to 2007. Swine H9N2 viruses in genotype A and B were completely derived from Y280-like and Shanghai/F/98-like viruses, respectively, which indicated avian-to-pig interspecies transmission of H9N2 viruses did exist in China. The other eight genotype (C-J) viruses might be double-reassortant viruses, in which six genotype (E-J) viruses possessed 1-4 H5-like gene segments indicating they were reassortants of H9 and H5 viruses. In conclusion, genetic diversity of H9N2 influenza viruses from pigs in China provides further evidence that avian to pig interspecies transmission of H9N2 viruses did occur and might result in the generation of new reassortant viruses by genetic reassortment with swine H1N1, H1N2 and H3N2 influenza viruses, therefore, these swine H9N2 influenza viruses might be a potential threat to human health and continuing to carry out swine influenza virus surveillance in China is of great significance.  相似文献   

10.
Protecting pigs from simultaneous infection with avian, swine, and human influenza viruses would be an effective strategy to prevent the emergence of reassortants with pandemic potential. M2 protein is a candidate antigen for so-called 'universal vaccines,' which confer cross-protection to different influenza viruses in a strain- and subtype-independent manner. We tested whether a recombinant F gene-deleted Sendai virus vector that contained an M2 gene derived from an H5N1 avian influenza virus (SeV/ΔF/H5N1M2) could induce a cross-reactive antibody response to the extracellular domain of M2 protein (M2e) in pigs. SeV/ΔF/H5N1M2 induced an antibody response to M2e when the vector was inoculated intramuscularly. The antibodies induced by SeV/ΔF/H5N1M2 cross-reacted with M2e derived from different avian, swine, and human influenza viruses. In mice, however, SeV/ΔF/H5N1M2 did not confer cross-protection to challenge with a heterologous H3N2 influenza virus. Our results confirm those of other groups indicating that antibodies to M2e do not mediate protection to influenza viruses in pigs.  相似文献   

11.
Neurotropism of the 1997 Hong Kong H5N1 influenza virus in mice   总被引:12,自引:0,他引:12  
The direct transmission of H5N1 influenza A viruses from chickens to humans in Hong Kong in 1997 emphasized the need to have information on the pathogenesis of avian influenza virus infection in mammals. H5N1 influenza viruses isolated from patients during the incident killed experimentally infected mice. The principal lesions of the mice were broncho-interstitial pneumonia and nonsuppurative encephalitis. Infectious viruses and/or viral antigens were detected in the brain as well as in the trigeminal and vagal ganglia but not in the blood of the mice. These findings suggest that the virus reached the brain through the vagus and/or trigeminal nerves following replication in the respiratory mucosa. The results imply that neurotropism of the H5N1 virus in mice is a novel characteristic in the pathogenesis of infection by human influenza virus isolates.  相似文献   

12.
Because pigs have respiratory epitheliums which express both α2-3 and α2-6 linked sialic acid as receptors to influenza A viruses, they are regarded as mixing vessel for the generation of pandemic influenza viruses through genetic reassortment. A H7N2 influenza virus (A/swine/KU/16/2001) was isolated from pig lungs collected from the slaughterhouse. All eight genes of the influenza virus were sequenced and phylogenetic analysis indicated that A/swine/KU/16/2001 originated in Hong Kong and genetic reassortment had occurred between the avian H7N2 and H5N3 influenza viruses. The first isolation of H7 influenza virus in pigs provides the opportunity for genetic reassortment of influenza viruses with pandemic potential and emphasizes the importance of surveillance for atypical swine influenza viruses.  相似文献   

13.
Human influenza viruses manage to cause epidemics almost every year. The circulating viruses change their surface glycoproteins by accumulating mutations (antigenic drift) which results in variant viruses of the same subtype that are able to evade the immune pressure in the population. Every now and then, a completely new subtype of influenza A virus is introduced in the human population, which can result in an influenza pandemic. Pandemic human influenza viruses have been emerging for many centuries. Based on the genetic information of influenza viruses that have been isolated in this century, introduction of genes of the avian influenza virus reservoir obviously is required. Interspecies transmission, via another mammalian host and reassortment of avian and human influenza viruses are potential mechanisms for such an introduction. A summary of the cases in which influenza viruses containing avian-like gene segments were introduced into the human population is presented. In three cases, such infections resulted in conjunctivitis. Influenza-like illness and even pneumonia was reported in some other infections. Finally, a mortality rate of 33% was observed in the avian influenza A (H5N1) viruses that infected 18 people in Hong Kong in 1997. Although some of these viruses fulfilled some criteria of pandemic influenza viruses, they lacked the ability to rapidly spread through the human population.  相似文献   

14.
Influenza viruses have been isolated from dogs in China; however, the extent of influenza infection among dogs is not yet clear. Here, we examined the seroprevalence of avian-origin canine H3N2, pandemic H1N1/09 and human seasonal H3N2 influenza viruses in pet dogs in China during January 2012 to June 2013. The seropositivity rate of canine H3N2, H1N1/09 and human H3N2 were 3.5%, 1.5%, and 1.2%, respectively. Dogs aged 2–5 years were most commonly seropositive to canine H3N2 virus. It is worth noting that two serum samples were positive against both canine H3N2 and H1N1/09 viruses, suggesting the possibility of coinfection with both viruses. Our findings emphasize the necessity for continued surveillance of influenza viruses in dogs in China.  相似文献   

15.
Kim JA  Cho SH  Kim HS  Seo SH 《Veterinary microbiology》2006,118(3-4):169-176
H9N2 influenza viruses are endemic in many Asian countries. We demonstrated that H9N2 influenza viruses isolated from poultry in Korean live bird markets are genetically changing and could cause the clinical signs in layers. Genetic analysis showed that Korean avian H9N2 influenza viruses are distinct from H9N2 influenza viruses circulating in poultry in China and Hong Kong. When we infected layers with H9N2 isolates, layers showed about 30% mortality and the reduction of egg productions. Considering that H9N2 influenza virus is one of potential pandemic candidates, the continuous surveillance is needed to monitor avian H9N2 influenza viruses for the poultry industry and humans.  相似文献   

16.
Although it is well accepted that the present Asian H5N1 panzootic is predominantly an animal health problem, the human health implications and the risk of human pandemic have highlighted the need for more information and collaboration in the field of veterinary and human health. H5 and H7 avian influenza (AI) viruses have the unique property of becoming highly pathogenic (HPAI) during circulation in poultry. Therefore, the final objective of poultry vaccination against AI must be eradication of the virus and the disease. Actually, important differences exist in the control of avian and human influenza viruses. Firstly, unlike human vaccines that must be adapted to the circulating strain to provide adequate protection, avian influenza vaccination provides broader protection against HPAI viruses. Secondly, although clinical protection is the primary goal of human vaccines, poultry vaccination must also stop transmission to achieve efficient control of the disease. This paper addresses these differences by reviewing the current and future influenza vaccines and vaccination strategies in birds.  相似文献   

17.
Influenza A is a respiratory disease common in the swine industry. Three subtypes, H1N1, H1N2 and H3N2 influenza A viruses, are currently co-circulating in swine populations in Korea. An outbreak of the highly pathogenic avian influenza H5N1 virus occurred in domestic bird farms in Korea during the winter season of 2003. Pigs can serve as hosts for avian influenza viruses, enabling passage of the virus to other mammals and recombination of mammalian and avian influenza viruses, which are more readily transmissible to humans. This study reports the current seroprevalence of swine H1 and H3 influenza in swine populations in Korea by hemagglutination inhibition (HI) assay. We also investigated whether avian H5 and H9 influenza transmission occurred in pigs from Korea using both the HI and neutralization (NT) tests. 51.2% (380/742) of serum samples tested were positive against the swine H1 virus and 43.7% (324/742) were positive against the swine H3 virus by HI assay. The incidence of seropositivity against both the swine H1 virus and the swine H3 virus was 25.3% (188/742). On the other hand, none of the samples tested showed seropositivity against either the avian H5 virus or the avian H9 virus by the HI and NT tests. Therefore, we report the high current seroprevalence and co-infectivity of swine H1 and H3 influenza viruses in swine populations and the lack of seroepidemiological evidence of avian H5 and H9 influenza transmission to Korean pigs.  相似文献   

18.
Avian influenza A H5N6 virus is a highly contagious infectious agent that affects domestic poultry and humans in South Asian countries. Vietnam may be an evolutionary hotspot for influenza viruses and therefore could serve as a source of pandemic strains. In 2015, two novel reassortant H5N6 influenza viruses designated as A/quail/Vietnam/CVVI01/2015 and A/quail/Vietnam/CVVI03/2015 were isolated from dead quails during avian influenza outbreaks in central Vietnam, and the whole genome sequences were analyzed. The genetic analysis indicated that hemagglutinin, neuraminidase, and polymerase basic protein 2 genes of the two H5N6 viruses are most closely related to an H5N2 virus (A/chicken/Zhejiang/727079/2014) and H10N6 virus (A/chicken/Jiangxi/12782/2014) from China and an H6N6 virus (A/duck/Yamagata/061004/2014) from Japan. The HA gene of the isolates belongs to clade 2.3.4.4, which caused human fatalities in China during 2014–2016. The five other internal genes showed high identity to an H5N2 virus (A/chicken/Heilongjiang/S7/2014) from China. A whole-genome phylogenetic analysis revealed that these two outbreak strains are novel H6N6-like PB2 gene reassortants that are most closely related to influenza virus strain A/environment/Guangdong/ZS558/2015, which was detected in a live poultry market in China. This report describes the first detection of novel H5N6 reassortants in poultry during an outbreak as well as genetic characterization of these strains to better understand the antigenic evolution of influenza viruses.  相似文献   

19.
为了解H6N6亚型禽流感病毒(AIV)的生物学特性,本研究对2015年在广东活禽交易市场分离的一株鸭源AIV DK/GD/S1182/2015(H6N6)进行了全基因组测序、遗传演化分析和对BALB/c小鼠的感染性试验。序列分析显示,该病毒的HA蛋白裂解位点处仅有一个碱性氨基酸,符合低致病性AIV的分子特征;HA蛋白的222V和228S,可以增强病毒对α-2,6唾液酸受体的结合能力。NA蛋白颈部有11个氨基酸的缺失,这将会影响NA的神经氨酸酶活性;该病毒可能是2010年广东H6N6猪流感病毒与2014年广西AIV重组产生。小鼠感染性试验表明,该分离株不需要预先适应就能够在小鼠的肺脏内高效复制,提示该分离株具有感染哺乳动物的潜在风险。本研究对H6亚型AIV监测和相关生物学特性研究具有一定的指导作用。  相似文献   

20.
《Veterinary microbiology》2015,175(2-4):356-361
Highly pathogenic avian influenza A(HPAI) H5N1 viruses pose a serious pandemic threat due to their virulence and high mortality in humans, and their increasingly expanding host range and significant ongoing evolution could enhance their human-to-human transmissibility. Recently, various reassortant viruses were detected in different domestic poultry, with the HA gene derived from the A/goose/Guangdong/1/96-like (Gs/GD-like) lineage and the NA gene from influenza viruses of other subtypes. It is reported that some natural reassortant H5N5 highly pathogenic avian influenza viruses were isolated from poultry in China. And their HA genes were belonged to a new clade 2.3.4.4. We evaluated the receptor binding property and transmissibility in guinea pigs of these reassortant H5N5 HPAIVs. The results showed that these viruses bound to both avian-type (α-2,3) and human-type (α-2,6) receptors. In addition, we found that one of these viruses, 031, not only replicated but also transmitted efficiently in guinea pigs. Therefore, such reassortant influenza viruses may pose a pandemic threat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号