首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了解包头市铜厂周边地区土壤剖面中重金属污染状况,采用火焰原子吸收分光光度法和Tessier连续提取法,对土壤中6种重金属(Cu,Zn,Mn,Ni,Pb和Cd)的垂直分布特征、形态及潜在生物可利用性进行了分析。结果表明:研究区土壤剖面各层土壤中6种重金属含量均超过内蒙古土壤背景值,Cu,Pb和Cd为主要污染物。随采样深度的增加,Cu,Zn,Pb和Mn的含量呈现下降趋势,且由相关性系数可知重金属Cu,Zn和Pb可能有相同人为或自然污染源;土壤剖面中6种重金属均主要以残渣态存在,含量均在50%以上,对生物危害较小;潜在生物可利用性分析结果为:Cu(32.61%) > Mn(31.85%) > Ni(24.90%) > Zn(16.60%) > Cd(15.23%) > Pb(14.87%),Cu和Mn的潜在生物可利用性较大,其次为Ni,Zn,Cd和Pb潜在生物可利用性较小。  相似文献   

2.
新乡市大棚菜田土壤重金属积累特征及污染评价   总被引:4,自引:0,他引:4  
采用微波消解-ICP-AES技术,测定不同种植年限大棚菜田土壤样品中As、Pb、Zn、Cd、Cr、Mn、Ni、Cu等重金属的含量,研究不同种植年限与大棚菜田土壤重金属累积的相关性以及大棚菜田土壤重金属累积特征,并利用地积累指数法进行污染评价。结果表明:大棚菜田土壤重金属Zn、Pb、Ni、Mn和Cu的含量与种植年限具有极显著相关性;大棚菜田土壤中重金属Cd和Cr的含量与种植年限不相关。重金属元素间相关性分析表明,Zn与Pb、Cd、Ni、Mn、Cr、Cu,Pb与Cd、Ni、Mn、Cr、Cu,Cd与Ni、Mn、Cr,Ni与Mn、Cr、Cu,Mn与Cr、Cu具有污染同源性,Cu与Cd、Cr不具有污染同源性。地积累指数法污染评价结果显示Cd的污染等级达到了6级,已构成了极严重污染;Zn和Cu的污染等级达到2级,已构成了中度污染;Pb、Mn的污染等级达到1级,已经构成了轻~中度污染;As、Ni、Cr均未构成污染。  相似文献   

3.
博斯腾湖湿地边缘带农田土壤重金属的污染风险评价   总被引:2,自引:0,他引:2  
对新疆博斯腾湖湿地边缘带农田土壤中8种重金属元素(As、Cd、Cr、Cu、Mn、Ni、Pb和Zn)地球化学特征进行分析。采用污染负荷指数(PLI)、潜在生态风险指数(RI)和生态风险预警指数(IER)对农田土壤重金属污染与环境风险进行评价。结果表明:(1)湿地边缘带农田土壤Pb和Zn呈现重度污染,As、Cd、Cr和Ni轻度污染,Cu轻微污染,Mn无污染。土壤As、Cd、Cr、Cu、Ni、Pb和Zn平均含量处于轻微风险水平。Cd是污染程度与生态风险等级最高的重金属元素;(2)湿地边缘带农田土壤PLI平均值为1.43,呈现轻度污染,RI平均值为20.62,呈现轻微生态风险状态,IER的平均值为–4.53,呈现无警态势。湿地边缘带PLI、RI与IER空间分布格局基本一致;(3)湿地边缘带农田土壤Pb与Zn来源主要受到人类活动的影响,Cr、Cu、Mn与Ni来源主要受到土壤地球化学作用的控制,As与Cd受自然因素和人为因素共同影响。  相似文献   

4.
A total of 50 farmland soil samples were collected from the Yanqi County, Xinjiang, China, and the concentrations of eight heavy metal elements (As, Cd, Cr, Cu, Mn, Ni, Pb and Zn) were determined by standard methods. The spatial distribution, pollution level and ecological risk status of heavy metals were analyzed based on GIS technology, the Geo-accumulation Index (Igeo), the Pollution Load Index (PLI) and the Potential Ecological Risk Index (RI). Results indicated that: (1) The average contents of Cd, Cr, Ni, Pb, and Zn of farmland soils exceeded the background values of irrigation soils in Xinjiang by 1.5, 1.40, 1.33, 2.63, and 4.92 times, respectively. Cd showed a no-pollution level, Zn showed a partially moderate pollution level, Pb showed a slight pollution level, and Cr, Cu, As, Mn, and Ni showed no-pollution level, compared to the classification standard. The PLI values of heavy metal elements of farmland soils varied from 0.83 to 1.89, with an average value of 1.29, at the moderate pollution level. (2) The Individual Potential Ecological Risk Index for heavy metals in the study area was ranked in the order of: As > Ni > Cu > Cd > Pb > Cr> Zn. The RI values of heavy metals of farmland soils varied from 3.45 to 11.34, with an average value of 6.13, at the low ecological risk level. (3) Cu and Mn of farmland soils were mainly originated from the soil parent material and topography of the study area. As, Cd, Ni and Pb were mainly originated from human activities, and Cr and Zn may originated from both natural and anthropogenic factors in the study area.  相似文献   

5.
大宝山矿区农田土壤重金属污染及其植物累积特征   总被引:7,自引:0,他引:7  
张晗  靳青文  黄仁龙  林宁  贾珍珍  舒月红 《土壤》2017,49(1):141-149
对金属矿山选冶活动影响的农田土壤,不同灌溉水源会影响重金属的分布累积特征。根据实际情况将大宝山矿区农田土壤分为污水灌溉区、清水灌溉区、自然修复区和对照区,并进行土壤和植物样品采集,调查研究了土壤的基本理化性质,Cd、Pb、Cu、Zn、Mn 5种重金属的含量和化学形态分布,以及不同区域植物中重金属的含量。结果表明:污灌区Cd、Pb、Cu、Zn的含量最高,是自然修复区和清水灌溉区的1.75倍~10.51倍,对照区最低;Mn在各采样点的含量无显著差别。土壤Cd、Cu、Zn、Pb含量两两之间显著正相关,Mn与Cu、Zn、Cd、Pb呈负相关关系;土壤pH与重金属环境有效态关系密切。残渣态是5种重金属的主要存在形态,有机态含量也较高;Cd的环境有效态含量占总量的比例是其他4种重金属的2倍左右。稻米中5种重金属在清水灌溉区的含量均比污水灌溉区低,其中Cu和Zn的含量在两区域均未超标(NY861-2004),而Pb和Cd的含量严重超标。重金属在自然修复区和清水灌溉区呈现较低的土壤污染和人体健康风险,该研究数据可为金属矿区土壤污染控制提供科学的依据。  相似文献   

6.
Abstract

Agricultural use of sewage sludges can be limited by heavy metal accumulations in soils and crops. Information on background levels of total heavy metals in soils and changes in soil metal content due to sludge application are; therefore, critical aspects of long‐term sludge monitoring programs. As soil testing laboratories routinely, and rapidly, determine, in a wide variety of agricultural soils, the levels of some heavy metals and soil properties related to plant availability of these metals (e.g. Cu, Fe, Mn, Zn, pH, organic matter, texture), these labs could participate actively in the development and monitoring of environmentally sound sludge application programs. Consequently, the objective of this study was to compare three soil tests (Mehlich 1, Mehlich 3, and DTP A) and an USEPA approved method for measuring heavy metals in soils (EPA Method 3050), as extractants for Cd, Cu, Ni, Pb and Zn in representative agricultural soils of Delaware and in soils from five sites involved in a state‐monitored sludge application program.

Soil tests extracted less than 30% of total (EPA 3050) metals from most soils, with average percentages of total metal extracted (across all soils and metals) of 15%, 32%, and 11% for the Mehlich 1, Mehlich 3, and DTPA, respectively. Statistically significant correlations between total and soil test extractable metal content were obtained with all extractants for Cu, Pb, and Zn, but not Cd and Ni. The Mehlich 1 soil test was best correlated with total Cu and Zn (r=0.78***, 0.60***, respectively), while the chelate‐based extractants (DTPA and Mehlich 3) were better correlated with total Pb (r=0.85***, 0.63***). Multiple regression equations for the prediction of total Cu, Ni, Pb, and Zn, from soil test extractable metal in combination with easily measured soil properties (pH, organic matter by loss on ignition, soil volume weight) had R2 values ranging from 0.41*** to 0.85***, suggesting that it may be possible to monitor, with reasonable success, heavy metal accumulations in soils using the results of a routine soil test.  相似文献   

7.
The present paper is a study of the heavy metal contamination ofnatural soils due to atmospheric transport in the northern partof Eastern Carpathians. The study area is located north of BaiaMare, the main Romanian centre for processing complex sulphideores. Ten undisturbed soil profiles of andosols and andic soilswere investigated. The distribution of heavy metals (Pb, Cu, Zn,Mn, Ni, Co, Cr and Cd) was studied along the soil profile and atspecific distances from the pollution sources. In addition tothe total nitric acid soluble fraction of the metals, amounts oflead, copper, zinc and manganese extractable with 0.05 Mhydrochloric acid were determined to evaluate the fraction ofeach metal potentially available to plants. Surface soils in theIgnis Mountains (10 km from Baia Mare) were more polluted withlead (200–800 ppm), with the concentration decreasing withdistance from the processing plants. Lower lead concentrationswere observed in the deeper soil horizons. The fraction of leadextractable in 0.05 M hydrochloric acid was generally higher athigh total concentrations of lead. From its geographical andsoil profile distributions it is also evident that cadmium wasalso supplied in appreciable amounts to the topsoil from thesame polution sources, whereas the trend was weaker for zincand chromium and not evident for copper, manganese, nickel, orcobalt. The fraction extractable with 0.05 M hydrochloric acidgenerally followed the order Pb > Cu > Zn > Mn.  相似文献   

8.
The objective of this research was to study the effect of water deficit on soil heavy metal availability and metal uptake by ryegrass (Lolium multiflorum Lam.) plants grown in a soil amended with a high dose of rural sewage sludge. Three fertility treatments were applied: sewage sludge (SS), mineral fertilizer (M), and control (C); unamended). The levels of irrigation were: well-watered (W) and water deficit (D). Microbial respiration decreased the total organic C (TOC) in sludge-treated soils, but this did not enhance soil DTPA-extractable heavy metal concentrations. Indeed, Zn, Cu, Mn and Ni availability decreased during the experiment. C- and M-treated soils showed either no changes or increases of some trace element concentrations during the incubation. In the plant experiment, ryegrass dry matter (DM) yield, relative water content (RWC) and leaf water potential (w) decreased in drought conditions. Sludge addition increased metal concentrations in plants. However, in some instances, SS-treated plants showed either similar or lower transfer coefficient (Tc) values than did plants in the C and M treatments. Water deficit decreased the concentration and the Tc of some metals in roots of M and SS plants. Results indicate that sludge-borne heavy metals were maintained in chemical forms of low availability. The lower metal uptake by SS and M plants under dry conditions cannot be attributed to a lower availability of these elements in soil.  相似文献   

9.

Purpose  

The present work concerns the distribution of ten heavy metals (Sb, As, Cd, Cr, Cu, Hg, Mn, Ni, Pb, and Zn) in the surrounding agricultural soils of the world largest antimony (Sb) mine in China. The objective is to explore the degree and spatial distribution of heavy metal pollution of the Sb mine-affected agricultural soils. The presented data were compared with metal concentrations in soils from mining and smelting sites in China and other countries.  相似文献   

10.
芜湖市工业区土壤重金属污染状况研究   总被引:5,自引:1,他引:4       下载免费PDF全文
王友保  张凤美  王兴明  潘超  刘登义 《土壤》2006,38(2):196-199
通过对芜湖工业区(四褐山区、马塘区)土壤中重金属污染状况的调查,结果表明:土壤中重金属(Cu、Pb、Zn、Cd)含量绝大部分高于土壤元素背景值。在四褐山工业区,Cu污染最严重,Cd次之;在马塘工业区,Cd污染最严重,Zn次之。土壤中重金属含量基本上与土壤pH呈负相关关系,而重金属总量与可浸提态含量呈正相关关系。土壤中重金属污染来源主要是污水,大气粉尘沉降也是一个重要因素。  相似文献   

11.
Abstract

Fifty soil samples (0–20 cm) with corresponding numbers of grain, potatoes, cabbage, and cauliflower crops were collected from soils developed on alum shale materials in Southeastern Norway to investigate the availability of [cadmium (Cd), copper (Cu), zinc (Zn), lead (Pb), nickel (Ni), and manganese (Mn)] in the soil and the uptake of the metals by these crops. Both total (aqua regia soluble) and extractable [ammonium nitrate (NH4NO3) and DTPA] concentrations of metals in the soils were studied. The total concentration of all the heavy metals in the soils were higher compared to other soils found in this region. Forty‐four percent of the soil samples had higher Cd concentration than the limit for application of sewage sludge, whereas the corresponding values for Ni, Cu, and Zn were 60%, 38%, and 16%, respectively. About 70% the soil samples had a too high concentration of one or more of the heavy metals in relation to the limit for application of sewage sludge. Cadmium was the most soluble of the heavy metals, implying that it is more bioavailable than the other non‐essential metals, Pb and Ni. The total (aqua regia soluble) concentrations of Cd, Cu, Zn, and Ni and the concentrations of DTPA‐extractable Cd and Ni were significantly higher in the loam soils than in the sandy loam soils. The amount of NH4NCyextractable metals did not differ between the texture classes. The concentrations of DTPA‐extractable metals were positively and significantly correlated with the total concentrations of the same metals. Ammonium nitrate‐extractable metals, on the other hand, were not related to their total concentrations, but they were negatively and significantly correlated to soil pH. The average concentration of Cd (0.1 mg kg‐1 d.w.) in the plants was relatively high compared to the concentration previously found in plants grown on the other soils. The concentrations of the other heavy metals Cu, Zn, Mn, Ni, and Pb in the plants were considered to be within the normal range, except for some samples with relatively high concentrations of Ni and Mn (0–11.1 and 3.5 to 167 mg kg‘1 d.w., respectively). The concentrations of Cd, Cu, Zn, Ni, and Mn in grain were positively correlated to the concentrations of these respective metals in the soil extracted by NH4NO3. The plant concentrations were negatively correlated to pH. The DTPA‐extractable levels were not correlated with plant concentration and hence DTPA would not be a good extractant for determining plant availability in these soils.  相似文献   

12.
Chemical speciation and bioaccumulation factor of iron (Fe), manganese (Mn), and zinc (Zn) were investigated in the fractionated rhizosphere soils and tissues of sunflower plants grown in a humic Andosol. The experiment was conducted for a period of 35 days in the greenhouse, and at harvest the soil system was differentiated into bulk, rhizosphere, and rhizoplane soils based on the collection of root-attaching soil aggregates. The chemical speciations of heavy metals in the soil samples were determined after extraction sequentially into fractions classified as exchangeable, carbonate bound, metal–organic complex bound, easily reducible metal oxide bound, hydrogen peroxide (H2O2)–extractable organically bound, amorphous mineral colloid bound, and crystalline Fe oxide bound. Iron and Zn were predominantly crystalline Fe oxide bound in the initial bulk soils whereas Mn was mainly organically bound. Heavy metals in the exchangeable form accumulated in the rhizosphere and rhizoplane soils, comprising <4% of the total content, suggesting their relatively low availability in humic Andosol. Concentrations of organically bound Fe and Mn in soils decreased with the proximity to roots, suggesting that organic fraction is the main source for plant uptake. Concentrations of Mn and Zn in the metal–organic complex also decreased, indicating a greater ability of sunflower to access Mn from more soil pools. Sunflower showed bioaccumulation factors for Zn, Fe, and Mn as large as 0.39, 0.05, and 0.04 respectively, defining the plant as a metal excluder species. This result suggests that access to multiple metal pools in soil is not necessarily a major factor that governs metal accumulation in the plant.  相似文献   

13.
Abstract

The accumulation of heavy metals in tea leaves is of concern because of its impact on tea quality. This study characterized long‐term changes of soil properties and heavy‐metal fractions in tea gardens and their effect on the uptake of metals from soils by the plants. Soil and tea leaf samples were collected from five plantations with a history of 2–70 years in Jinghua, Zhejiang Province, southeast China. The six chemical fractions (water‐soluble, exchangeable, carbonate‐bound, organic‐matterbound, oxide‐bound, and residual forms) of cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), nickel (Ni), manganese (Mn), lead (Pb), and zinc (Zn) in the soils were characterized. Dissolved organic‐matter accumulation in the soils and effects of low‐molecular‐weight organic acids on solubility of soil heavy metals were also tested. Long‐term tea plantation use resulted in accumulation of dissolved organic matter, decrease of soil pH, and elevation of water‐soluble and exchangeable metal fractions, thereby increasing metal contents in leaves. The influence was more significant when soil pH was less than 4.4. The results indicated that both acidification and accumulation of dissolved organic matter induced by tea plantations were also important causes of increased accumulation of the metals in the tea leaves. This was particularly true for the soils polluted with low concentration of heavy metals, because availability of the metals in these soils was mainly controlled by pH and dissolved organic matter.  相似文献   

14.
Singh  S. P.  Tack  F. M.  Verloo  M. G. 《Water, air, and soil pollution》1998,102(3-4):313-328
The objective of this study was to characterise pollution with heavy metals in surface soils sampled at various dredged sediment disposal sites in the Flemish region (Belgium). The sites selected varied in the period since sediment disposal ceased and in current vegetation and land use. Total metal contents (Cd, Co, Cu, Fe, Mn, Ni, Pb, and Zn) in the surface soils varied widely. For some disposal sites Cd and Zn concentrations greatly exceeded reference values for clean soil. The distribution of the metals as determined by sequential extraction differed between elements, but was simular for all the soils. This suggested that metals in these sediment derived surface soils were accumulated and transformed in a similar way. Residual fractions were low compared to total contents (2 – 4% for Cd, 25% – 35% for Co, 7 – 18% for Mn, 4 – 22% for Zn, 12 – 41% for Ni, 11 – 42% for Pb, 20 – 45% for Cu, < 10% for Zn). High metal concentrations in the acid-extractable and reducible fractions may indicate pollution from anthropogenic sources. DTPA-extractable metals, which may be considered indicative of plant-available contents, were relatively high compared to the total contents. The relative extractability, expressed as the ratio of DTPA-extractable to total contents, decreased in the order Cd (38%) > Cu (28%) = Zn (26%) > Pb (13%) > Ni (10%) > Co (3%). Most of the sites studied would be of concern if they were used for agricultural activities. No trends in metal availability in the period following disposal were apparent from the data.  相似文献   

15.
太原市污灌区土壤重金属污染现状评价   总被引:1,自引:0,他引:1  
对太原市污灌区土壤重金属分布特征进行了分析评价,结果表明重金属Pb、Zn、Cu、Ni、Mn、Cr、As、Hg、Cd含量均值均未超过土壤环境质量标准(GB15618—1995),但其平均值均显著高于太原市土壤背景值。各重金属间的相关分析表明,Pb、Zn、Cu、Ni、Mn、Cr、As、Cd之间呈极显著相关,说明这8种元素污染源可能相同。Hg是本区表层土壤重金属污染的主要因子,重金属元素的污染程度依次为Hg〉Cd〉Pb〉As〉Cu〉Zn〉Cr〉Mn〉Ni。土壤重金属单项污染指数均值均大于1,综合污染指数为2.81,总体上,污染水平为中度及其以上。各种重金属单因子污染指数和综合指数在研究区有相似的空间分布格局,总体分布趋势为东南部小店地区和中南部晋源区相对较高,南部清徐县相对较小;通过因子分析并结合污灌区污染源调查,表明Hg除受污水灌溉的影响外,燃煤释放的Hg可能是重要来源之一,Cd、Zn、Pb和Cu可能来自污水灌溉和大气沉降,以污水灌溉的贡献为主,Ni、Mn、As、Cr来自污水灌溉。Hg、Cd是太原市污灌区土壤中需要优先控制的重金属。  相似文献   

16.
[目的]稻田土壤重金属污染是当前农产品安全生产关注的重要问题.本文比较分析工业和农业污染源稻田土壤重金属的赋存形态及水稻吸收运移,以期为稻田土壤重金属污染控制提供参考.[方法]在长江中下游地区调查选取工业源和农业源重金属污染稻田各27块,在水稻成熟期使用抖根法采集根际土壤及水稻根系和籽粒样品,采用Tessier七步提取...  相似文献   

17.
杭州市城市土壤中重金属、磷和其它元素的特征   总被引:30,自引:0,他引:30  
Health implications of inhaling and/or ingesting dust particles with high concentrations of heavy metals from urban soils are a subject of intense concern. Understanding the geochemistry of these metals is key to their effective management. Total concentrations of heavy metals, phosphorus (P) and 8 other elements from topsoil samples collected at 82 locations in Hangzhou City were measured to: a) assess their distribution in urban environments; and b) understand their differentiation as related to land use. Metal mobility was also studied using a three-step sequential chemical fractionation procedure. About 8.5%, 1.2%, 3.6%, 11.0% and 30.3% of the soil samples had Cd, Cr, Cu, Pb, and Zn concentrations, respectively, above their allowable limits for public and private green areas and residential use. However, in commercial and industrial areas, most samples had metal concentrations below their allowable limits. Statistical analyses revealed that the 16 measured elements in urban soils could be divided into four groups based on natural or anthropic sources using a hierarchical cluster analysis. Additionally, Cu, Pb, and P showed similar spatial distributions with significant pollution in commercial zones, suggesting vehicle traffic or commercial activities as dominant pollutant sources. Also, Cd, Co, Cr, Ni, Zn, Mn and Fe had the highest concentrations in industrial locations, signifying that industrial activities were the main sources of these seven metals. Moreover, the data highlighted land-use as a major influence on heavy metal concentrations and forms found in topsoils with large proportions of soil Cd, Co, Cr, and Ni found in residual fractions and soil Cu, Pb and Zn mainly as extractable fractions.  相似文献   

18.
山东省沂源县土壤重金属来源分布及风险评价   总被引:5,自引:2,他引:3  
为建设高标准农田及保证食品安全,对土壤重金属污染状况进行精确评估极为关键。选取山东省山地丘陵区典型区域—沂源县为研究区,系统采集427个表层土壤样品(0~20 cm),测定了As、Cd、Co、Cr、Cu、Mn、Ni、Pb、Hg和Zn共10种重金属含量;采用多元统计分析和地统计分析方法,揭示了土壤重金属的主要来源;进一步分析得出研究区重金属的空间分布以及与成土母质、工业排放和农业生产污染之间的关系。研究表明:1)沂源县表层土壤中10种重金属元素的平均含量值均高于土壤背景值但未超过国家二级土壤元素限定值,存在一定程度的重金属富集。2)经主成分分析和单因素方差分析后将研究区重金属的来源主要分为3类:As、Co、Cu和Mn主要来源于成土母质,属自然源因子;Hg、Cd、Zn和Pb受到母质和工农业污染双重控制,属于混合来源;Cr和Ni主要是成土母质影响下的自然来源。3)自然来源重金属含量的高值区主要与石灰岩成土母质类型分布相一致,Hg、Cd、Zn和Pb元素含量的高值区与工业区分布基本一致。4)通过潜在生态风险评价,沂源县表层土壤目前处于中度潜在生态风险等级,其中Hg和Cd潜在生态风险最强,达到中度生态危害,其他元素具有轻微的潜在生态危害。研究中通过多元统计-地统计模拟分析法有效的揭示了土壤重金属污染源汇特征,可作为评估该区土壤污染现状和对土壤重金属污染进行风险评价的重要依据。  相似文献   

19.
[目的] 对三峡库区坡面土壤与消落带沉积泥沙中重金属含量特征开展研究,为该区重金属污染评价提供理论与数据支持。[方法] 在三峡库区选取53个采样点,分析区域内坡面土壤与消落带沉积泥沙中Cr,Cu,Pb,Zn,Mn 5种重金属元素的含量,利用单因子污染指数法、内梅罗综合指数法、地累积指数法和潜在生态风险指数法开展污染状况评价。[结果] 研究区域内重金属含量平均值大小依次为:Mn>Zn>Cr>Cu>Pb,仅Cu,Zn和Mn存在污染。Zn和Mn在消落带沉积泥沙与坡面土壤中皆富集,而Cu仅在坡面土壤中富集。研究区域内重金属在空间分布上呈上、下游高,中游低分布。单因子污染指数法表明,研究区内仅存在Zn (Pia=1.07)的轻度污染与Mn (Pia=2.65)的中度污染。研究区域内梅罗综合指数为2.93,为中度污染。根据地累积指数法,研究区域内仅存在Mn轻度污染,其余重金属皆为无污染。Cr,Cu,Pb,Zn,Mn的潜在生态危害皆为轻微生态危害;研究区域的综合生态危害指数为14.09,为轻微生态危害。[结论] 研究区域内Cr含量主要受到研究区地质背景影响,而Cu,Pb,Zn和Mn含量同时受到地质背景与人类活动的影响。研究区内存在Mn和Zn污染,且有轻微生态危害。  相似文献   

20.
水体沉积物是重金属元素的重要载体,其含量高低能反映水环境质量现状。采集滇池内湖滨带沉积物样品,分析了滇池内湖滨带表层沉积物中Pb、Cd、Cu、Zn、Cr、Ni、Fe、Mn 8种重金属元素含量特征,并用Hakanson潜在生态危害指数法评价其生态危害,旨在为合理预防和治理滇池内湖滨带的重金属污染以及内湖滨带生态系统的修复提供基础资料。结果表明,与“全国土壤环境质量标准”对比,表层沉积物中主要是Cd、Cu、Zn超标,重金属污染强度总体上是草海>外海。不同重金属间的相关性分析结果表明,Cu-Cd之间呈极显著相关,说明这两种元素污染源可能相同,几种污染重金属与胶体矿物元素Fe、Mn间的相关性不大,说明在所调查沉积物中,Fe/Mn氧化物或氢氧化物共沉淀或吸附Pb、Cd、Cu、Zn、Cr、Ni元素量较少。由潜在生态风险评价结果可知,滇池内湖滨带表层沉积物已具极强生态危害,各重金属对滇池内湖滨带生态风险影响程度由高到低依次为:Cd〉Cu〉Pb〉Ni〉Zn≈Cr。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号