首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In forested catchments, retention and remobilization of S in soils and wetlands regulate soil and water acidification. The prediction of long‐term S budgets of forest ecosystems under changing environmental conditions requires a precise quantification of all relevant soil S pools, comprising S species with different remobilization potential. In this study, the S speciation in topsoil horizons of a soil toposequence with different groundwater influence and oxygen availability was assessed by synchrotron‐based X‐ray absorption near‐edge spectroscopy (XANES). Our investigation was conducted on organic (O, H) and mineral topsoil (A, AE) horizons of a Cambisol–Stagnosol–Histosol catena. We studied the influence of topography (i.e., degree of groundwater influence) and oxygen availability on the S speciation. Soil sampling and pretreatment were conducted under anoxic conditions. With increasing groundwater influence and decreasing oxygen availability in the sequence Cambisol–Stagnosol–Histosol, the C : S ratio in the humic topsoil decreased, indicating an enrichment of soil organic matter in S. Moreover, the contribution of reduced S species (inorganic and organic sulfides, thiols) increased systematically at the expense of intermediate S species (sulfoxide, sulfite, sulfone, sulfonate) and oxidized S species (ester sulfate, SO ). These results support the concept of different S‐retention processes for soils with different oxygen availability. Sulfur contents and speciation in two water‐logged Histosols subject to permanently anoxic and temporarily oxic conditions, respectively, were very different. In the anoxic Histosol, reduced S accounted for 57% to 67% of total S; in the temporarily oxic Histosol, reduced S was only 43% to 54% of total S. Again, the extent of S accumulation and the contribution of reduced S forms to total S closely reflected the degree of O2 availability. Our study shows that XANES is a powerful tool to elucidate key patterns of the biogeochemical S cycling in oxic and anoxic soil environments. In contrast to traditional wet‐chemical methods, it particularly allows to distinguish organic S compounds in much more detail. It can be used to elucidate microbial S‐metabolism pathways in soils with different oxygen availability by combining soil inventories and repeated analyses of a sample in different stages of field or laboratory incubation experiments under controlled boundary conditions and also to study (sub)microspatial patterns of S speciation in aggregated soils.  相似文献   

2.
贡嘎山海螺沟冰川退缩区土壤序列矿物组成变化   总被引:1,自引:1,他引:1  
阐明土壤中矿物随时间变化的机制是理解矿物风化和土壤发育的基础。利用X射线衍射法对贡嘎山海螺沟冰川退缩区土壤矿物组成随成土作用时间变化进行了定量分析。结果表明,冰川退缩区成土母质的矿物组成同质性较高,以硅酸盐矿物为主(约90%),包括:斜长石(28.5%)、石英(24.5%)、黑云母、钾长石、普通辉石、角闪石、绿泥石、蛭石;并有少量碳酸盐矿物,如方解石(8%)、白云石(2.3%);以及磷酸盐矿物磷灰石(2.1%)。退缩区土壤的矿物组成总体呈新发育土壤特征,随着成土年龄的增加,方解石逐渐被风化成为草酸钙石,角闪石、黑云母、磷灰石和绿泥石含量逐渐降低,长英质矿物的相对含量有所增加。成土作用中矿物组成的变化受植被原生演替和土壤p H的影响,快速发育的植被导致土壤p H迅速降低,风化程度增强。  相似文献   

3.
Changes in phosphorus (P) during soil development are central to the understanding of labile P for plant productivity and soil P management. We used NaOH‐EDTA extraction with 31P nuclear magnetic resonance spectroscopy (31P NMR), sequential P fractionation, and general soil chemical characterization to better our understanding of P dynamics within two chronosequences (Manawatu and Reefton) and one Basalt maturity sequence under original native vegetation. With time, orthophosphate and orthophosphate monoesters tended to increase with organic C to a maximum of about two‐thirds of NaOH‐EDTA‐extractable P in young soils (16 000 years in the Reefton chronosequence), but gradually declined thereafter to about one‐third of NaOH‐EDTA‐extractable P in the oldest soils (130 000 years old). This coincided with a depletion of P from primary minerals (e.g. apatite) and readily available P for plant production. This depletion of inorganic P resulted in a greater reliance on organic P cycling via mineralization, hence the depletion of the normally recalcitrant monoester‐P pool. Concomitantly, the build‐up of labile P species (diesters and pyrophosphate) and scyllo‐ over myo‐inositol hexakisphosphate occurred as soils developed, and might be attributed to microbial activity, including scavenging for P. This work highlights the importance of organic P cycling during pedogenesis.  相似文献   

4.
Iron speciation in soils is still poorly understood. We have investigated inorganic and organic standard substances, diluted mixtures of common Fe minerals in soils (pyrite, ferrihydrite, goethite), soils in a forested watershed which constitute a toposequence with a hydrological gradient (Dystric Cambisol, Dystric Planosol, Rheic Histosol), and microsites of a dissected soil aggregate by X‐ray Absorption Near Edge Spectroscopy (XANES) at the iron K‐edge (7112 eV) to identify different Fe(II) and Fe(III) components. We calculated the pre‐edge peak centroid energy of all spectra and quantified the contribution of different organic and inorganic Fe‐bearing compounds by Linear Combination Fitting (LCF) conducted on the entire spectrum (E = 7085–7240 eV) and on the pre‐edge peak. Fe‐XANES conducted on organic and inorganic standards and on synthetic mixtures of pyrite, ferrihydrite and goethite showed that by calculating the pre‐edge peak centroid energy, the Fe(II)/Fe(III) ratio of different Fe‐bearing minerals (Fe sulphides, Fe oxyhydroxides) in mineral mixtures and soils can be quantified with reasonable accuracy. A more accurate quantification of the Fe(II)/Fe(III) ratio was possible with LCF conducted on the entire XANES spectrum. For the soil toposequence, an increased groundwater influence from the Cambisol to the Histosol was reflected in a larger contribution of Fe(II) compounds (Fe(II) silicate, Fe monosulphide, pyrite) and a smaller contribution of Fe(III) oxyhydroxides (ferrihydrite, goethite) to total iron both in the topsoil and the subsoil. In the organic topsoils, organically bonded Fe (33–45% of total Fe) was 100% Fe(III). For different microsites in the dissected aggregate, spatial resolution ofμ‐XANES revealed different proportions of Fe(II) and Fe(III) compounds. Fe K‐edge XANES andμ‐XANES allows an approximate quantification of Fe(II) and Fe(III) and different Fe compounds in soils and (sub)micron regions of soil sections, such as mottles, concretions, and rhizosphere regions, thus opening new perspectives in soil research.  相似文献   

5.
土壤时间序列的构建及其在土壤发生研究中的意义   总被引:5,自引:1,他引:4  
陈留美  张甘霖 《土壤学报》2011,48(2):419-428
土壤时间序列在研究土壤演化速率与方向、建立土壤发生演化模型上具有重要的价值,并且能为土壤发生学理论的验证提供宝贵的信息。为了获得可靠的结果,时间序列的构建必须包括剖面内与剖面间母质均一性或母质不连续性的判定以及土壤的绝对或相对年龄的判定这两个重要过程。本文综述了土壤时间序列的类型及其构建方式,详细论述了在时间序列建立过程中母质不连续性的判定方式与土壤定年方法,并阐明了土壤时间序列方法在土壤发生研究中的重要意义,旨在为正确建立土壤时间序列、深刻理解土壤发生中的时间因素提供较为详尽的参考。  相似文献   

6.
Phosphorus availability in terrestrial ecosystems is strongly dependent on soil P speciation. Here we present information on the P speciation of 10 forest soils in Germany developed from different parent materials as assessed by combined wet‐chemical P fractionation and synchrotron‐based X‐ray absorption near‐edge structure (XANES) spectroscopy. Soil P speciation showed clear differences among different parent materials and changed systematically with soil depth. In soils formed from silicate bedrock or loess, Fe‐bound P species (FePO4, organic and inorganic phosphate adsorbed to Fe oxyhydroxides) and Al‐bound P species (AlPO4, organic and inorganic phosphate adsorbed to Al oxyhydroxides, Al‐saturated clay minerals and Al‐saturated soil organic matter) were most dominant. In contrast, the P speciation of soils formed from calcareous bedrock was dominated (40–70% of total P) by Ca‐bound organic P, which most likely primarily is inositol hexakisphosphate (IHP) precipitated as Ca3‐IHP. The second largest portion of total P in all calcareous soils was organic P not bound to Ca, Al, or Fe. The relevance of this P form decreased with soil depth. Additionally, apatite (relevance increasing with depth) and Al‐bound P were present. The most relevant soil properties governing the P speciation of the investigated soils were soil stocks of Fe oxyhydroxides, organic matter, and carbonate. Different types of P speciation in soils on silicate and calcareous parent material suggest different ecosystem P nutrition strategies and biogeochemical P cycling patterns in the respective ecosystems. Our study demonstrates that combined wet‐chemical soil P fractionation and synchrotron‐based XANES spectroscopy provides substantial novel information on the P speciation of forest soils.  相似文献   

7.
Experiments were conducted between 2003 and 2008 to examine how N additions influence soil organic C (SOC) and its fractions in forests at different succession stages in the subtropical China. The succession stages included pine forest, pine and broadleaf mixed forest, and old‐growth monsoon evergreen broadleaf forest. Three levels of N (NH4NO3)‐addition treatments comprising control, low‐N (50 kg N ha–1 y–1), and medium‐N (100 kg N ha–1 y–1) were established. An additional treatment of high‐N (150 kg N ha–1 y–1) was established in the broadleaf mixed forest. Soil samples were obtained in July 2008 for analysis. Total organic C (TOC), particulate organic C (POC, > 53 μm), readily oxidizable organic C (ROC), nonreadily oxidizable organic C (NROC), microbial biomass C (MBC), and soil properties were analyzed. Nitrogen addition affected the TOC and its fractions significantly. Labile organic‐C fractions (POC and ROC) in the topsoil (0–10 cm) increased in all the three forests in response to the N‐addition treatments. NROC within the topsoil was higher in the medium‐N and high‐N treatments than in the controls. In the topsoil profiles of the broadleaf forest, N addition decreased MBC and increased TOC, while no significant effect on MBC and TOC occurred in the pine and mixed forests. Overall, elevated N deposition increased the availability of labile organic C (POC and ROC) and the accumulation of NROC within the topsoil irrespective of the forest succession stage, and might enhance the C‐storage capacity of the forest soils.  相似文献   

8.
Sulphur K-edge X-ray absorption near edge structure (XANES) spectroscopy was used to quantify S species in humic substance extracts from ten soils from the UK, China and New Zealand, which differ in land use and agricultural management. XANES spectroscopy showed the presence of most reduced (sulphides, disulphides, thiols and thiophenes), intermediate (sulphoxides and sulphonates) and highly oxidised S (ester sulphates) forms, with the three groups representing 14-32%, 33-50% and 22-53% of the organic S in the humic substance extracts, respectively. Land use had a profound influence on the relative proportions of S species. Well-drained arable soils generally had a higher proportion of organic S present in the most oxidised form than the grassland soils collected nearby, whereas paddy soils showed a more reduced profile due to episodic flooding. In the Broadbalk Classical Experiment at Rothamsted, reversion of an arable system to grassland or woodland in the 1880s resulted in an increase of the most reduced and intermediate S species at the expense of the most oxidised S species. Long-term applications of farmyard manure to an arable plot also shifted S species from the most oxidised to the intermediate and the most reduced species. Sulphur immobilisation and gross mineralisation were determined in seven soils using the 35S isotope dilution method. Gross mineralisation during a 53-day incubation correlated more closely with the amounts of the most reduced and intermediate S species than with the most oxidised S species, suggesting that the former (C-bonded S) were the main source of organic S for mineralisation in the short-term.  相似文献   

9.
Changes in vegetation and soil properties because of agricultural abandonment may affect soil nitrogen (N) and associated processes. We investigated soil N (total N: TN, inorganic N: NH4–N and NO3–N) and denitrification potential in cropland, pine plantations and abandoned agricultural land along a secondary succession sequence (grassland→shrubland→secondary forest) in a headwater catchment in the Qinling Mountains, northwest China. The results show that the soil denitrification potential differed significantly among the five land‐use types with the highest potential in the secondary forest, followed by grassland, shrubland, cropland and plantations. The denitrification potential of the 20‐ to 40‐cm layer was significantly lower compared with the topsoil (0–20 cm) across all land‐use types. TN, soil organic matter (SOM) and NH4–N increased significantly with stand age, whereas there was an opposite trend in soil pH. However, the denitrification potential did not relate to stand age in a linear manner. We conclude that changes in soil TN, SOM and pH during vegetation succession following agricultural abandonment are critical controls on the denitrification potential.  相似文献   

10.
Soils chronosequences are valuable tools for investigating rates and directions of soil and landscape evolution. Post-incisive chronosequences are the most common type of chronosequence. They are found in many landscapes, including sand dunes, glacial moraines, landslide scars, old pasture, burnt landscape patches, old mining areas, lava flows, alluvial fans, floodplains, river terraces, and marine terraces. They register pedogenic change over time-scales ranging from years to millions of years. Soil chronosequences help in testing rival theories of pedogenesis. Traditional soil formation theory sees a soil developing progressively under the influence of the environmental state factors until it is in equilibrium with prevailing environmental conditions. This developmental view of pedogenesis is supported by the classic soil chronosequence studies. A new evolutionary view of pedogenesis, which was prompted by the omnipresent inconstancy of environmental conditions and the notions of multidirectional changes and multiple steady states (as predicted by non-linear dynamics), proposes that environmental inconstancy and non-linear behaviour in soil-landscapes lead to soil evolution, rather than to soil development. Soils ‘evolve' through continual creation and destruction at all scales, and may progress, stay the same, or retrogress, depending on the environmental circumstances. Some recent soil and vegetation chronosequence investigations support an evolutionary view of pedogenesis. It is concluded that soil chronosequences are still potent instruments for pedological investigations and that they have a starring role to play in the testing of pedological theories.  相似文献   

11.
路新格  刘涛  王子铭  臧晓  张菊  邓焕广 《土壤通报》2022,53(5):1148-1155
  目的  了解东平湖湿地土壤不同形态无机硫含量水平与分布特征。  方法  采集东平湖湿地表层土壤样品(0 ~ 5 cm)和不同植被区(芦苇区、菹草区、植被混生区和对照区)土壤柱样(0 ~ 10 cm),分析样品中总无机硫(TIS)及其各形态(水溶性硫、吸附性硫、盐酸溶解性硫及盐酸挥发性硫)的含量,探讨了不同形态无机硫含量的时空分布特征及其影响因子。  结果  东平湖湿地表层土壤总无机硫含量范围为31.26 ~ 117.36 mg kg?1,均值为75.85 mg kg?1;各形态的平均含量占比为水溶性硫(43.49%)> 盐酸溶解性硫(27.37%)> 吸附性硫(26.78%)> 盐酸挥发性硫(2.36%);其含量的空间分布总体表现为湖区码头附近显著升高,大汶河入湖口较低。柱状土壤总无机硫、水溶性硫、吸附性硫与盐酸溶解性硫含量总体表现为夏季和芦苇区最高,且随土层深度的增加逐渐降低;菹草区总无机硫、吸附性硫、盐酸溶解性硫由于受季节与植被区的交互作用影响而无显著季节变化。表层土壤和柱状土壤不同形态无机硫含量间存在一定的正相关关系,且与有机质多呈显著正相关;柱状土壤中各形态无机硫含量(除盐酸挥发性硫外)与pH显著正相关,而与Eh显著负相关。  结论  东平湖湿地土壤不同形态无机硫的时空分布主要受到人类活动、植被分布和水动力条件的影响,且土壤有机质、温度、pH和Eh为其关键影响因子。  相似文献   

12.
Successional dynamics in terrestrial ecosystems is important for interactions between aboveground and belowground subsystems. In this study, nematode communities in a Hailuogou Glacier Chronosequence from seven stages were investigated to determine whether changes in soil phosphorus (P) and nematode assemblages parallel those observed in aboveground communities, and whether the primary succession in this chronosequence has entered a retrogressive phase after 120 years of succession. The initial 40-year succession, including stages 2, 3 and 4, can be viewed as a build-up phase. Especially at stage 3, vegetation succession from grassland to forest accelerated the accumulation of plant litter and bioavailable P, paralleled with a sharp increase in nematode abundance. The mature phases covering stages 5, 6 and 7 displayed most balanced nematode communities, in which abundance, taxon richness, maturity index and structure index were at highest. However, the last stage 7 appeared to show some retrogressive characteristics, as suggested by the reduced bioavailability of P and a significant decrease in nematode densities, along with the disappearance of some rare genera of nematodes from higher trophic guilds, resulting in decreases in the nematode channel ratio, plant parasite index and enrichment index. Thus, the Hailuogou Glacier Chronosequence may enter its retrogressive phase during the next decade or century. A bacterial-based nematode energy channel dominated the chronosequence during the development; by contrast, a fungivore-based channel was activated at the early and late stages, because fungivores are better adapted to nutrient-poor environments. Our results demonstrated that different nematode guilds have contrasting responses to chronosequence stages, possibly due to their different responses to bottom-up and top-down controls. Furthermore, soil nematode communities could be used as sensitive bioindicators of soil health in glacial-retreat areas.  相似文献   

13.
The purpose of this study was to identify general patterns of pedoturbation by tree uprooting in three different, forested landscapes and to quantify post‐disturbance pedogenesis. Specifically, our study illustrates how the effects of ‘tree‐throw’ on soils gradually become diminished over time by post‐uprooting pedogenesis. We studied soil development within 46 pit‐mounds in two regions of the Czech Republic, one on Haplic Cambisols and one on Entic Podzols. A third study site was in Michigan, USA, on Albic Podzols. Uprooting events were dated by using tree censuses, dendrochronology and radiometry. These dates provided information on several chronosequences of pedogenesis in the post‐uprooting pits and mounds, dating back to 1816 AD (dendrochronological dating, Haplic Cambisols), 322 AD (median of calibration age, 14C age = 1720 ± 35 BP, Entic Podzols) and 4077 BC (14C age = 5260 ± 30 BP, Albic Podzols). Post‐uprooting pedogenesis was most rapid in pits and slowest on mounds. Linear chronofunction models were the most applicable for pedogenesis, regardless of whether the soils were in pit or mound microsites. These models allowed us to estimate the time required for horizons in such disturbed sites to obtain the equivalent thicknesses of those in undisturbed sites. These ranged from 5 (O horizon in pits on the Haplic Cambisols) to > 16 000 years (E horizon on mounds on the Albic Podzols). On the Albic Podzols, development of eluvial and spodic horizon thicknesses suggested that pathways involving divergent pedogenesis may occur at these small and localized spatial scales.  相似文献   

14.
The development of the soil profile and the humus substance system was described for two chronosequences of soil restoration on the Neogene clay dumps. The chronosequences differed in the restoration type of vegetation: self-overgrowing or overgrowing intensified by planting tree seedlings (rehabilitation). It was found that the regeneration rates of the soil and humus profile were much higher in the case of the land rehabilitation than during the self-overgrowing of the dumps. The acceleration of the ecogenetic succession and the symbiotic nitrogen fixation in the soils of the plots with seedlings planted resulted in the accumulation of humus and nitrogen and increased the degree of organic matter humification. The enrichment of the organic matter in nitrogen and its increased input were the main reasons for the more intense humification under the rehabilitation conditions.  相似文献   

15.
Local expansion and selection of soil bacteria in a glacier forefield   总被引:1,自引:0,他引:1  
In the environment of Alpine glacier forefields, bacteria represent the functional link between initial soil development and secondary colonization. An important question is whether soil bacteria are adapted to the poor nutrient availability in this environment and whether selection processes significantly limit their local expansion along the gradients of chemical and biological factors. To address these questions, we used a two‐dimensional sampling strategy at our study site, the Damma glacier forefield, Switzerland, to characterize the soil environment by selected biogeochemical parameters. Our results revealed two contrasting sites that differed in time since deglaciation (‘young’ and ‘old’ soil, ≤ 13 years and > 53 years of ice‐free conditions) and vegetation cover (threefold increase), but also showed significant differences in soil properties thought to be relevant for the successional development of glacier forefield soils, such as pH (0.5‐fold decrease), ammonium (0.5‐fold decrease) concentration, and the content of total organic carbon (10‐fold increase). Isolated strains, affiliated to the genus Pseudomonas, according to their 16S rDNA profile, were tested experimentally for local adaptation by a reciprocal transfer experiment. The bacteria from both young and old soils showed a significant interaction with their local environment; the direction of the interaction, however, did not follow the expected pattern of local adaptation. The significant genoype‐with‐environment interaction indicates a limited local expansion of soil bacteria in the Damma glacier forefield over the range of only 110 m. The lack of local adaptation could be explained by environmental constraints such as exclusion of competition, different migration behaviour of bacteria from young and old soil, or the ability of early colonizing bacteria to survive under the glacier ice.  相似文献   

16.
We tested the hypothesis that concentrations of chemical constituents in stream water can be explained by the depth of water flow through soil. Therefore, we measured the concentrations of total organic carbon (TOC), NO3‐N, NH4‐N, dissolved organic nitrogen (DON), P, S, K, Ca, Mg, Na, Al and Mn in rainfall, throughfall, stemflow, litter leachate, mineral soil solution and stream water of three 8–13 ha catchments on steep slopes (1900–2200 m above sea level) of the south Ecuadorian Andes, from April 1998 to April 2003. Peak C (14–22 mg litre?1), N (0.6–0.9 mg litre?1), K (0.5–0.7 mg litre?1), Ca (0.6–1.0 mg litre?1), Mg (0.3–0.5 mg litre?1), Al (110–390 μg litre?1) and Mn (3.9–8.4 μg litre?1) concentrations in stream water were associated with lateral flow (fast near‐surface flow in saturated topsoil) while the greatest P (0.1–0.3 mg litre?1), S (0.3–0.7 mg litre?1) and Na (3.0–6.0 mg litre?1) concentrations occurred during low baseflow conditions. All elements had greater concentrations in the organic layer than in the mineral soil, but only C, N, K, Ca, Mg, Al and Mn were flushed out during lateral‐flow conditions. Phosphorus, S and Na, in contrast, were mainly released by weathering and (re‐)oxidation of sulphides in the subsoil. Baseflow accounted for 32% to 61% of P export, while > 50% of S was exported during intermediate flow conditions (i.e. lateral flow at the depth of several tens of cm in the mineral soil). Near‐surface water flow through C‐ and nutrient‐rich topsoil during rainstorms was the major export pathway for C, N, Al and Mn (contributing > 50% to the total export of these elements). Near‐surface flow also accounted for one‐third of total base metal export. Our results demonstrate that near‐surface flow related to storm events markedly affects the cycling of many nutrients in steep tropical montane forests.  相似文献   

17.
Coupling of atomic force microscopy (AFM) with nanothermal analysis (nTA) has the potential to assess material characteristics in soils on the lower µm‐scale, but has been shown to require additional characteristics for clear distinction of materials. The objective of this study was to evaluate to which extent the combination of AFM‐nTA with AFM adhesion force analysis and structural features allows distinction of organic materials in soils. Using soil samples from a chronosequence from the Damma Glacier forefield, Switzerland, as example, we tested a grid analysis approach for assessing distribution of adhesion forces and nanothermal characteristics. This approach was compared with an approach involving pre‐selection of structural features of interest via morphological criteria. Only three types of nanothermograms were distinguished in the soil samples based on different thermal expansion‐compression characteristics and phase transition temperatures. Combined evaluation of nanothermal characteristics, adhesion forces and morphological characteristics allowed distinction of a larger set of materials than using nanothermal analysis, adhesion force distribution or morphological characteristics separately. Part of the analyzed features showed a combination of characteristics similar to that of fresh bacterial cells which we analyzed as a potential reference material. Their stronger occurrence in the regions of interest of older samples than in those of younger samples may underline their relevance in soil development. Achieving the long‐term objective of identification of materials still requires more information on reference materials, understanding the impact of mixed layering of materials on thermal profiles and the assessment of variability of the characteristics within and between different material groups.  相似文献   

18.
Transformation and loss of phosphorus in soil chronosequences derived from non-consolidated sediments of the river Lech Phosphorus fractionations were carried out on soils derived from carbonat rich gravel and silt which represent two chronosequences. Results obtained by these procedures indicated an enrichment of Al, Fe-phosphates in nearly all soils. Losses of Ca-phosphates were obtained in all soils. In contrast to other soil chronosequences (viz. Franz-Josef, Manawatu) the PCa-contents did not decline to zero in the oldest soils. The Porg-contents of soils showed a decrease with increasing age of soils of the silt chronosequence. The C/P-ratios of the mineralic soil horizons remained nearly constant during pedogenesis. Losses of total phosphorus amounts to 400g P/m2 in the 20 000 a old soils and to 160g P/m2 in the 10 000a old soils. It must be assumed that the major part of the lost phosphorus has been washed out of the soils.  相似文献   

19.
We compared functional diversity in 6‐ to 150‐year‐old sites on two primary successional glacier forelands (Ödenwinkelkees and Rotmoosferner, Austria) and related these changes to properties of their habitat in the soil (pH, soil organic matter, mineral nitrogen, phosphorus). Comparisons were made with land undisturbed for 9500 years immediately outside the glacier foreland. The functional diversity of the soil microflora was assessed based on microbial processes (N mineralization, ammonium oxidation, arginine deaminase) as well as on the activities of soil enzymes (protease, urease, xylanase, phosphatase, arylsulphatase). On both chronosequences, functional diversity (Shannon diversity index and evenness) and enzyme activity increased up to an age of 50 years, while older soils appeared to have reached a temporary steady state. The values of microbial biomass and enzyme activity were generally smaller in the Ödenwinkel soils than in the Rotmoos sequence, indicating that primary input of carbon from plant growth was less. Functional diversity increased with increasing plant development and organic matter accumulation, explaining similarities in enzyme activity patterns in the sequences. The local climates might also have contributed to the magnitude of the changes. Our data suggest that microbial functional diversity reached stability within 50 years' succession.  相似文献   

20.
《Applied soil ecology》2007,35(2):340-355
The environmental and vegetation shifts associated with logging disturbance and secondary succession in Tropical Montane Cloud Forests have been studied in detail, however little is known about the consequences that these changes have for the soil system. The present study was undertaken to determine the impact of selective logging and subsequent secondary succession on soil microenvironmental conditions, leaf litter quality and quantity, soil nutrient concentration and soil and litter macroinvertebrate community composition. The study was carried out in three successional chronosequences, two recently logged sites and two pristine tropical mountain cloud forest sites in Oaxaca, Mexico. Results showed that selective harvesting of Quercus spp. trees caused an increase in soil temperature of ca. 4 °C that is not completely reversed after 100 years of succession. During 100 years of secondary succession litter diversity increased and soil organic matter accumulated (16.4% increase in total C). The availability of cations (Ca, Mg, Na, and K) in the topsoil decreased by more than 50% as a result of logging, and only Mg increased again between 75 and 100 years after disturbance.Pristine cloud forests sustain a diverse litter and soil macroinvertebrate community, but its composition and diversity was negatively affected by logging. The effect of Quercus harvesting activities on the litter community was apparent within 2 months of disturbance (total abundance declined by ca. 65%, higher taxa richness by ca. 10% and diversity by ca. 35%). For the soil community there was a time-lag in the effect of logging. Two months after disturbance there was no significant effect on the soil community but 15 years after abandonment, total macroinvertebrate abundance in the soil was ca. 80% lower and higher taxa richness ca. 30% lower compared to undisturbed sites. Full recovery of the macroinvertebrate community composition appeared to take more than 100 years both in the litter and soil. Reduced abundances of Coleoptera and Enchytraeidae were apparent even after 100 years of succession. The endemic earthworm Ramiellona wilsoni was found almost exclusively in the pristine forests and therefore its abundance could be used as a sensitive indicator of disturbance in these forests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号