首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Trace mineral concentrations of annual cool season pasture forages grazed by growing beef cattle during late fall-winter-spring grazing season were evaluated during two experimental cool season grazing studies, each lasting two years at the North Florida Research and Education Center (NFREC), Marianna, Florida. Eight 1.32 ha fenced pastures or paddocks were divided into two groups of pasture land preparation/planting methods, four pastures for the sod seeding treatments (SS) and four for the prepared seedbed treatments (PS). Two different pasture forages, small grains, (rye/oats mix) with or without ryegrass for the first two years (Study 1); and oats with ryegrass or ryegrass only for the last two years (Study 2) were planted in these pasture lands. Each of the four forage, type, and cultivation combination treatments was assigned to two pastures each year, thereby giving two replicates per pasture treatment per year. Forage samples were collected at the start of pasture grazing and twice monthly thereafter until the end of grazing season, pooled by month, and analyzed for copper (Cu), iron (Fe), zinc (Zn), manganese (Mn), cobalt (Co), molybdenum (Mo), and selenium (Se). Liver biopsies and blood plasma samples were collected from the tester cattle only during the spring of year two of Study 2. Liver was analyzed for Cu, Fe, Mn, Co, Mo, and Se and plasma for Cu, Fe, Zn, and Se. Forage trace mineral concentrations were found to differ by month in Cu (P < 0.01), Fe and Zn (P < 0.0001) in both studies, and with Mn (P < 0.0001) in Study 2 only. Pasture forage type effects on Cu (P < 0.05), Fe and Zn (P < 0.01), and Se (P < 0.05) and forage type by month interactions on Cu and Mn (P < 0.0001), and Zn (P < 0.05) were observed in Study 2. Forage concentrations of Cu, Zn, Mn, and Mo in Study 1 and Mn, Mo, and Se in Study 2 were affected (P < 0.05) by pasture land preparation/planting methods in that these minerals were found to be lower from forages of sod-seeded treatments than from those of prepared seedbed treatments. Forage Cu concentrations were lower than the minimum requirements (10 ppm, DM) for beef cattle among months in both studies. Oats-ryegrass pastures of Study 2 had surprisingly low Fe concentrations (P < 0.01) in all months of the winter-spring grazing season. Cobalt, Mn, Mo, and Se did not vary much month to month during the winter-spring grazing months. All mean forage Se concentrations were lower than the requirements (0.10 ppm, DM) for grazing beef cattle. There were no differences (P > 0.05) in mean Se values between the two studies. Liver Cu, Fe, Co, and Se concentrations were sufficient to indicate adequate status of these minerals in tester animals from both forage types. Liver concentrations of Mn and Mo were slightly low, indicating a low status or these minerals. Plasma concentrations of Cu, Fe, Se, and Zn were all above the recommended concentrations for beef cattle. In conclusion, trace minerals deficient in North Florida during the cool season were Cu, Co, and Se, and a special consideration should be given to include adequate amounts while supplementing the mineral mixtures to growing beef cattle since forage samples reflected deficient concentrations of these minerals.  相似文献   

2.
Abstract

A two‐year study was conducted to determine the trace mineral status of cattle grazing forages (bahiagrass) and soils on a ranch in central Florida. Forage and soil samples were collected every month for two years. Month effect (P < 0.05) on soil trace mineral concentrations were observed in manganese (Mn) and zinc (Zn) in years 1 and 2, and in copper (Cu) and iron (Fe) only in year 2. All soil trace minerals studied showed higher (P < 0.05) concentrations in year 2. Month differences (P < 0.05) in forage trace mineral concentrations were found in cobalt (Co), Cu, Fe, Mn, molybdenum (Mo), selenium (Se), and Zn. The majority of forage trace minerals were higher in spring‐summer months. Year means were similar (P > 0.05) in forage trace mineral concentrations. Few and low correlation coefficients were observed between and within soil and forage trace minerals concentrations. Percentages of total forage collected with trace minerals below critical values (in parentheses) and suggestive of deficiency were as follows: in forage, Co (0.1 ppm), 93%; Cu (8 ppm), 98%; Fe (50 ppm), 75%; Mn (40 ppm), 41%; Mo (> 6 ppm), 0%; Se (0.2 ppm), 98%; and Zn (25 ppm), 84%; in soil, Cu (0.3 ppm), 77%; Fe (2.5 ppm), 7%; Mn (5 ppm), 91%; and Zn (1.5 ppm), 53%.  相似文献   

3.
Abstract

The experiment rationale was to determine forage micromineral concentrations as effected by biosolids fertilization. We determined the effects of two exceptional quality biosolids on bahiagrass trace mineral concentrations as related to beef cattle requirements. Twenty‐five 0.8‐ha pastures were divided into five blocks. Two biosolids were applied as normal and double agronomic rates. The control received NH4NO3. Forages were analyzed for total copper (Cu), iron (Fe), manganese (Mn), zinc (Zn), molybdenum (Mo), cobalt (Co), and selenium (Se), and soils were analyzed for Mehlich I extractable Cu, Mn, and Zn. Some significant increases (P<0.05) in forage Co, Cu, Fe, Zn, and Se were observed at various sampling times, but the increases were generally small and biologically insignificant. Although forage Mo samples from pastures with the Tampa biosolids applied were consistently higher than the control (P<0.05), at no time did they approach levels considered toxic. Similar results were seen in forage Mn concentrations, with treatment Baltimore‐2X elevating (P<0.05) Mn concentrations as well. Deficiencies of Co, Cu, Zn, and Se are common in this Florida region and slight elevations due to biosolids treatment could be beneficial. Biosolids applied at the highest rates improved soil Cu and Zn concentrations above control soils and soil Mn was increased over the control at both sampling times for Baltimore‐2X. In relation to beef cattle requirements, the majority of forages were deficient in Co, Cu, Se, and Zn. In summary, biosolids fertilization slightly improved the micromineral status of forage and soil, without creating toxicity.  相似文献   

4.
Abstract

A total of 71 forage samples were analyzed for trace mineral and crude protein concentrations in three Agricultural zones of Benue State, Nigeria. The zones consisted of the Northern, Eastern, and Central zones, each of which was made up of four Local Government Areas. In each Local Government Area, grazing animals were followed and forages corresponding to those consumed were collected during the peak of the wet season (June) and analyzed for the nutrient composition. Deficiencies were observed in copper (Cu) and cobalt (Co) concentrations in all classes of forage, and in forage Cu and zinc (Zn) in all Local Government Areas in the Northern zone. A higher (P<0.05) forage Cu concentration was observed in legumes compared to other classes of forage in the Eastern zone. Concentrations of iron (Fe) and manganese (Mn) were considered adequate and their contents were not affected (P>0.05) by class of forage or Local Government Areas. In the Eastern zone, the contents of selenium (Se) in grass and tree leaf hay were higher compared to leguminous forage, which in turn was higher compared to Se concentrations in crop wastes. Only about 18% of total forage samples showed protein concentrations below the critical value of 7%. Supplementation of Cu, Zn, and Co would seem to be necessary in the Northern zone, and to a lesser extent in the Eastern zone for optimum productivity of grazing animals.  相似文献   

5.
Abstract

The in vitro organic matter digestibility (IVOMD), crude protein (CP) content, and mineral composition of 11 grasses were compared between seasons in Puerto Rico and evaluated in relation to grazing ruminant requirements. Digitaria eriantha was the highest in IVOMD for both seasons, being higher (P<0.05) than 6 of 10 forages in the long‐day season and 4 of 10 in the shortday season. No differences (P>0.05) in CP content were observed among accessions at both seasons. Mean macroelement content of the accessions was generally adequate in relation to grazing ruminant requirements with the exception of sodium (Na) and magnesium (Mg). Forage microelement concentrations of cobalt (Co), copper (Cu), and zinc (Zn) were generally under the grazing ruminant requirements for the accessions evaluated during both seasons. Iron (Fe) and manganese (Mn) content were high in relation to requirements, especially during the short‐day season. Molybdenum (Mo) was not in excess for the accessions evaluated. The Zn concentrations were similar to the results reported from other experiments with higher fertilization levels. The selenium (Se) concentrations presented an apparent seasonal variation higher in the short‐day season, which is similar to other experiments with high fertilization levels.  相似文献   

6.
Abstract

A study was carried out to determine the mineral status of grazing cattle as affected by the eruption of the Cerro Negro Volcano in northwestern Nicaragua. A total of 14 composite soil and forage samples and 30 blood samples were collected at each collection period, before (August 1991) and after (August 1992) the volcanic eruption. Higher soil levels of calcium (Ca), sodium (Na), manganese (Mn) (P<0.01), zinc (Zn) (P<0.05), and lower organic matter (OM) (P<0.01) were found after the volcanic eruption. Phosphorus (P) was the only macromineral found deficient with 93 and 71% of the samples below a critical level before and after volcanic eruption, respectively. Forage Ca, potassium (K), magnesium (Mg), P, Zn, copper (Cu), and selenium (Se) concentrations did not vary between collections. Forage crude protein (CP), in vitro organic matter digestibility [(IVOMD) P<0.05], cobalt (Co), Mn, and Na (P<0.01) were lower after the eruption. Iron (Fe) was the only mineral in forages that increased (P<0.01) after the volcanic eruption. Of the six minerals evaluated in serum only Ca and Mg concentrations were higher (P<0.05) after the volcanic eruption. The macrominerals more likely to be deficient in this area are P and Mg. Trace elements most likely to limit cattle productivity are Zn, Mn, Cu, Se, and Co. Special attention should be given to supplementation of Cu, since both plant and animal tissue samples reflected a deficiency of this mineral.  相似文献   

7.
A shift in oat (Avena sativa L.) production from grain to forage (hay and grazing) is occurring in the southeastern USA. However, most available cultivars were developed for improved grain production, rather than forage yield. We field tested several standard and new oat releases over 2 years, using repeated clippings to determine forage yield, nutrient uptake, and the potential to match plant nutrients with cattle mineral dietary needs. There were no differences in total annual forage yield among the tested cultivars within years but there was a difference between years. Forage tissue phosphorus (P), magnesium (Mg), and calcium (Ca) were sufficient, potassium (K), sulfur (S), and manganese (Mn) were excessive, and iron (Fe), copper (Cu), and zinc (Zn) were occasionally or frequently deficient to meet daily cattle dietary mineral needs. Sulfur, Cu, Fe, Zn, and Mn may be the most challenging to regulate in U.S. Coastal Plain soils at concentrations that satisfy both, oat and cattle nutritional requirements.  相似文献   

8.
Abstract

Dry matter (DM) yield, in vitro organic matter digestibility (IVOMD), crude protein (CP) and mineral composition of eight Digitaria accessions were compared between long‐ and short‐day seasons in the semiarid southern region of Puerto Rico and evaluated in relation to grazing ruminant requirements. Digitaria milanjiana 6416 was consistently among the highest DM yielding accessions in both seasons. The mean IVOMD was similar in both seasons for most accessions. Concentrations of CP, magnesium (Mg), copper (Cu), zinc (Zn), cobalt (Co), and selenium (Se) were below the recommended levels for grazing ruminants in both seasons. This study suggests the need for livestock mineral supplementation, even under conditions of high pasture fertilization (NPK) and forage‐growing conditions in the semiarid southern region of Puerto Rico.  相似文献   

9.
Abstract

The in vitro organic matter digestibility (IVOMD), crude protein (CP) content and mineral composition of ten Panicum maximum accessions were compared between seasons in Puerto Rico and evaluated in relation to grazing ruminants requirements. On short days, PRPI 13605 was superior (P<0.05) in IVOMD to all the other accessions. In terms of the CP content, accession PRPI 3634 was above 11% in both seasons, however, without differing (P>0.05) from most accessions. The mean macroelement content of the accessions was generally adequate in relation to grazing ruminant requirements with the exception of Na and Mg. Phosphorus was less than the critical concentration (0.25%) for one‐half of the accessions in the short day season and 2 of 10 for the long day season. For all samples, Mn was high and Fe was generally adequate in relation to ruminant requirements. Most all samples contained deficient concentrations of Co, Cu, Se, and Zn. Forage Mo concentrations, therefore, did not result in conditioned Cu deficiencies. In this context, it is probable that Na, Se, Cu, Co, Zn, and perhaps Mg, will be needed even if intensive fertilization is practiced in the humid tropical region of Puerto Rico.  相似文献   

10.
Abstract

A two‐year experiment was conducted at a north Florida farm to evaluate the mineral status of bahiagrass forages and soils. Forage samples were collected every 28 d throughout the grazing season, and soils evaluated twice yearly. The minerals calcium (Ca), sodium (Na), copper (Cu), cobalt (Co), selenium (Se), and zinc (Zn) were uniformly below the dietary requirements for growing beef cattle in both years. Forage magnesium (Mg), phosphorus (P), potassium (K), crude protein (CP), and manganese (Mn) were generally adequate throughout the grazing season, with the exception of low P concentration at the end of the growing season for both years. Extractable soil concentrations of Ca, P, K, Mg and Zn were adequate but low in Cu. Although CP was adequate (>7.0%) throughout the grazing season, IVOMD values were relatively low. There was a general trend for forage P, K, and IVOMD to decrease (P<0.05) with time.  相似文献   

11.
为了更好地评价云南省区域性反刍家畜饲料矿物质元素营养状况,并按照调盈补缺的原则科学合理地制作反刍家畜矿物质元素添加剂。对云南省反刍家畜主要生产基地所属的6个地质背景区的土壤、岩石和饲料样品的钴、铁、锰和硒元素进行测定分析,同时将岩石—土壤—饲料系统中各元素含量在空间不同方向上进行了相关统计,结果发现:在水平方向上,从岩石、土壤到饲料,四个元素之间一直呈较强的正相关,表现了该系统的统一。垂直方向岩石与土壤之间锰和钴的相关系数都大于0.39(n=149,P<0.01),其余各元素的相关系数也都为正值;土壤—饲料之间,综合各主要饲料,土壤和饲料中的钴、铁和硒元素间的相关性最好,而岩石和饲料间各矿物质元素相关性较差,对区域性饲料矿物质元素营养价值的评价没有太大的指导意义。  相似文献   

12.
Abstract

An experiment was conducted on a commercial farm located in the western part of Venezuela (10.5°N and 72°W; mean annual rainfall of 1000 mm; mean annual temperature of 28°C; sandy‐loam Alfisol with pH of 5.5). The purpose of the experiment was to evaluate the in vitro organic matter digestibility (IVOMD), crude protein (CP) content and mineral composition of four Leucaena leucocephala (Lam.) De Wit accessions under rotational grazing by heifers over a 6‐month period covering dry and rainy seasons, using a split‐plot experimental design with two replications. Neither accessions nor the accession x season interaction affected (P>0.05) any of the variables. The mean IVOMD was 68.6%, whereas CP content during the rainy season (26.5%) was higher (P<0.05) than in the dry season (24.3%). Average mineral content of the accessions were adequate in relation to grazing ruminant requirements with the exception of phosphorus [(P) 0.13%], sodium [(Na) 0.038%], copper [(Cu) 6.9 ppm], and zinc [(Zn) 19.7 ppm]. Forage P concentration may have been influenced by the low soil P content of the experimental site. The mean forage Ca:P ratio (11.3:1) was considerably wider than desirable. During the dry season, ash content increased (P<0.05), Na, iron (Fe), and cobalt (Co) decreased (P<0.05), but Fe and Co still remained above the critical levels. Mean concentrations of other elements were not affected (P>0.05) by season. Forage molybdenum (Mo) concentrations were low and, therefore, would not result in conditioned Cu deficiency. The four L. leucocephala accessions had similar feeding value for grazing ruminants and their quality was not markedly reduced in the dry season. Mineral supplementation of ruminants grazing this legume may be needed to correct specific deficiencies and imbalances.  相似文献   

13.
Abstract

A two‐seasonal study was conducted to determine the trace mineral status of goats' grazing forages and soils in southern Punjab, Pakistan. Soil and forage samples were collected fortnightly for two seasons. Sampling period effects were found in soil copper, zinc, and selenium, and all forage minerals except selenium were affected by sampling times. Seasonal effects were observed in iron, manganese, and selenium for soils and in copper, iron, zinc, manganese, and selenium for forages. All soil mineral levels except cobalt and selenium were found to be above critical levels and likely to be adequate for normal growth of plants growing therein, whereas soil cobalt and selenium were severely deficient during both seasons. The levels of iron, zinc, cobalt, and selenium in soil were higher and copper and manganese were lower during winter than during summer. Forages contained marginal to deficient levels of cobalt during the winter, copper and selenium during the summer, and moderately deficient levels of iron and severely deficient levels of zinc, manganese, and cobalt during the summer. Forage copper, iron, zinc, manganese, and selenium during winter were found to be adequate for the requirements of ruminants. Consequently grazing animals at this location need continued mineral supplementation of these elements to prevent deficiency diseases and to support optimum animal productivity.  相似文献   

14.
在广西54个县、市采集了81种常用饲料、牧草778个样本进行铜、锌、铁、锰、钴、钼6种微量元素分析,结果表明,这些微量元素的含量随饲料、牧草种类和地区的不同而有较大的差异。广西大多数饲料、牧草缺锌。铜、锰和铁的含量在谷类籽实较低。钴在大多数饲料中含量正常。钼的含量正常并低于中毒量6mg/kg。  相似文献   

15.
Nutritive value of winter cereal forages is one of interested subjects of farmers for animal feeding. Field experiments were established in 2007–2008 and 2008–2009 growing seasons in northeast Turkey to investigate the effect of organic solid cattle manure application (0, 10 and 20 Mg ha?1 yr?1) on nutritive value of three annual cereals for forage. The winter cereal forages were: wheat (Triticum aestivum L.), oat (Avena sativa L.) and rye (Secela cereale L.). ADF (acid detergent fiber), NDF (neutral detergent fiber) CP (crude protein), nitrogen, phosphorus, potassium, sulfur, calcium, copper, iron, magnesium, manganese, sodium, zinc and boron (N, P, K, S, Ca, Cu, Fe, Mg, Mn, Na, Zn and B) concentrations were researched in this study. Wheat had the highest CP, N, Ca, Cu, Na and Zn concentration, whereas oat had the lowest ADF and NDF and the highest K, Fe and Mn concentrations. The greatest Mg and P concentrations were determined in rye. Organic solid cattle manure applications had no effect on N and CP contents, but it decreased ADF and NDF contents. However, in most cases it positively affected the P, B, Cu, Fe, Mg and Na concentrations, whereas it decreased K, Ca, Mn and Zn concentrations. The results showed that wheat and oat are more nutritive species than rye in terms of animal feeding and the organic solid cattle manure, in some cases increased the nutritive values of wheat, oat and rye under organic agriculture conditions.  相似文献   

16.
A 68‐day study was conducted in North Florida to evaluate forage and beef cattle serum, liver, and urine mineral concentrations, emphasizing magnesium (Mg). Forty‐two Angus, Brangus, and Romosinuano cows in early lactation were divided into two groups and placed on ryegrass or oat pasture. Samples were collected every 2 weeks except for liver biopsies, which were collected only on day 68. Mineral concentrations were determined for forage, plasma, urine, and liver samples. All forage mineral concentrations except Mg, calcium (Ca), copper (Cu), cobalt (Co), selenium (Se), and zinc (Zn) were greater than critical levels for a beef cow in lactation. Forage Mg and Cu were severely deficient in both oats and ryegrass. All blood plasma mineral levels were greater than critical levels, but plasma Mg was borderline to slightly deficient. There should be special attention given to Mg supplementation because forages are deficient and contain excess potassium (K).  相似文献   

17.
To obtain a general picture of the herbage zinc, iron and manganese concentrations and their relation to dietary requirements of ruminants on organic farms, we analysed soil and herbage samples from four regions in Norway. The soil median Zn, Fe and Mn concentrations were 0.18, 13 and 0.84 mg/L, respectively. The herbage median (10th–90th percentile) Zn, Fe and Mn concentrations (mg/kg) in herbage in the first cut were 19 (14–34), 50 (36–88), 34 (22–86) and in the second cut 21 (16–37), 84 (52–171) and 66 (36–205), respectively. The results of mixed model analysis of herbage Zn, Fe and Mn indicate that soil pH, soil texture, soil mineral concentration and botanical composition are the most influencing factors. We conclude that Zn, Fe and Mn did not limit plant growth, and that the herbage concentrations, except for Zn, were sufficient to meet the dietary needs of ruminants on organic dairy farms.  相似文献   

18.
Kudzu (Pueraria montana), a vigorous, perennial warm-season invasive legume is widely spread in the southeastern United States and has the potential to be used as feed by ruminants during its growing season from May until first frost (usually in October). The purpose of this study was to determine the nutritive value of kudzu during a drought-prone growing season. Five samples of apical leaves and stems were harvested once a week from random locations within a 43-year-old kudzu infestation grown on a Cecil clay loam (fine, kaolinitic, thermic Typic Kanhapludults) at the Clemson University Experimental Forest (Clemson, S.C.). We report the effects of plant part, sampling date, mean air temperature (MAT), and precipitation on dry matter (DM), crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF), calcium (Ca), magnesium (Mg), phosphorus (P), potassium (K), sulfur (S), zinc (Zn), copper (Cu), manganese (Mn), and iron (Fe) of the kudzu. Dry matter and CP were significantly greater in the apical leaf than in the stem; CP had a significant mean air temperature by plant part interaction. A significant temperature by plant part interaction also existed for Mg. Magnesium was greater in leaf than in the stem at the beginning of the growing season until the end of October, when small differences in Mg concentrations between stem and leaf were observed. Stem and leaf Ca concentrations were not significantly different. Calcium concentrations did vary across the dates (P?=?0.002). A significant temperature by plant part interaction existed for Mg concentrations (P?=?0.003), Ca to P ratio (P < 0.0001), P concentrations (P?=?0.0007), S (P < 0.0001), Zn (P?=?0.0053), Mn (P?=?0.0014), and Cu (P?=?0.006). Overall, kudzu's nutritive value as feed for ruminants during the growing season is highly variable; however, chemical composition was very comparable to other common forages. More frequent and intensive droughts predicted as a result of climate change may limit forage choices; however, kudzu maintains its forage potential for feeding both domestic and wild animals during drought-prone growing season.  相似文献   

19.
The concentrations of iron (Fe), zinc (Zn), manganese (Mn), copper (Cu), and cobalt (Co) in malformed and healthy panicles of mango (Mangifera indica L.), leaves and shoots bearing them were analyzed at: (i) fully swollen bud, (ii) bud inception, (iii) fully grown panicles prior to full bloom, and (iv) full bloom over three consecutive years. The concentrations of Fe, Zn, Cu, Mn, and Co varied in malformed and healthy organs at various developmental stages. Malformed panicles exhibited lower levels of Fe, Zn, Cu, and higher Mn than healthy ones. The leaves on the shoots bearing malformed panicles showed higher levels of Fe, Mn, Cu, and higher Zn than the leaves on the shoots bearing healthy panicles. The shoots bearing malformed panicles revealed higher levels of Fe, Zn, Mn, and Cu than shoots bearing malformed panicles. The levels of Co in healthy and malformed organs did not differ much. The findings of the present study, therefore, seem to point that floral malformation in mango is not caused by the deficiency of these micronutrients.  相似文献   

20.
Dual purpose wheat provides valuable forage resources for cattle in the southern Great Plains during winter. In this study, 96 recombinant inbred lines (RILs) were analyzed for variation in concentrations of 11 mineral elements in leaves. The mean concentration was 133.4 mg kg?1 for manganese (Mn) and 293 mg kg?1 for iron (Fe), being much higher than the 30 mg kg ?1 recommended for each of these two minor mineral elements. Mean concentrations of zinc (Zn) (24.1 mg kg?1) and copper (Cu) (4.4 mg kg?1) were much lower than recommended concentrations. A highly significant correlation was detected between major minerals, magnesium (Mg) and calcium (Ca) (r = 0.9272**) and between minor minerals, Fe and nickel (Ni) (r = 0.8905**). Copper had no significant correlation with any minerals except Zn (r = 0.2529*), whereas Zn had significant correlations with all of the tested minerals except Cu, Mn, and Ni. The interrelations between different minerals provided information for effective selection strategy for ideal mineral concentrations in breeding of dual purpose wheat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号