首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This experiment was conducted to evaluate potential replacements for pharmacological levels of Zn (provided by Zn oxide), such as diet acidification (sodium diformate) and low dietary crude protein (CP: 21 vs 18%) on nursery pig performance and fecal dry matter (DM). A total of 360 weaned pigs (Line 200 × 400, DNA, Columbus, NE; initially 5.90 ± 0.014 kg) were used in a 42-d growth study. Pigs were weaned at approximately 21 d of age and randomly assigned to pens (five pigs per pen). Pens were then allotted to one of eight dietary treatments with nine pens per treatment. Experimental diets were fed in two phases: phase 1 from weaning to day 7 and phase 2 from days 7 to 21, with all pigs fed the same common diet from days 21 to 42. The eight treatment diets were arranged as a 2 × 2 × 2 factorial with main effects of Zn (110 mg/kg from days 0 to 21 or 3,000 mg/kg from days 0 to 7, and 2,000 mg/kg from days 7 to 21), diet acidification, (without or with 1.2% sodium diformate), and dietary CP (21% or 18%, 1.40% and 1.35% in phases 1 and 2 vs. 1.20% standardized ileal digestible Lys, respectively). Fecal samples were collected weekly from the same three pigs per pen to determine DM content. No 2- or 3-way interactions (P > 0.05) were observed throughout the 42-d study for growth performance; however, there was a Zn × acidifier × CP interaction (P < 0.05) for fecal DM on day 7 and for the overall average of the six collection periods. Reducing CP without acidification or pharmacological levels of Zn increased fecal DM, but CP had little effect when ZnO was present in the diet. From days 0 to 21, significant (P < 0.05) main effects were observed where average daily gain (ADG) and gain:feed (G:F) increased for pigs fed pharmacological levels of Zn, sodium diformate, or 21% CP (P < 0.065). In the subsequent period (days 21 to 42) after the experimental diets were fed, there was no evidence of difference in growth performance among treatments. Overall (days 0 to 42), main effect tendencies were observed (P < 0.066) for pigs fed added Zn or sodium diformate from days 0 to 21, whereas pigs fed 21% CP had greater G:F than those fed 18% CP. Pig weight on day 42 was increased by adding Zn (P < 0.05) or acidifier (P < 0.06) but not CP. In summary, none of the feed additives had a major influence on fecal DM, but dietary addition of pharmacological levels of Zn or sodium diformate independently improved nursery pig performance.  相似文献   

2.
Two experiments were conducted to determine the standardized ileal digestible lysine (SID Lys) requirement for weaned pigs fed with low crude protein (CP) diet. In Experiment 1, 144 pigs were fed a normal CP (20%) diet with 12.3 g/kg SID Lys and five low CP (18.5%) diets providing SID Lys levels of 9.8, 11.1, 12.3, 13.5, and 14.8 g/kg, respectively, for 28 days. Reducing dietary CP from 20% to 18.5% enhanced (< 0.05) the growth performance. The average daily gain (ADG) and gain to feed ratio (G:F) increased (linear and quadratic; < 0.05), serum urea nitrogen (SUN) decreased (linear and quadratic; < 0.05) as SID Lys increased. The SID Lys levels required to maximize ADG and optimize G:F were 12.8 and 13.1 g/kg using a curvilinear plateau model, and to minimize SUN was 13.4 g/kg using a two‐slope broken‐line model, which averaged 13.1 g/kg SID Lys. In Experiment 2, 18 pigs were used in a 12‐day N balance trial and received the same diets of Experiment 1. Total N excretion was decreased when dietary CP reduced and further decreased when SID Lys increased. Collectively, 1.5% dietary CP reduction improved the growth performance and decreased the N excretion; the optimal SID Lys requirement was at 13.1 g/kg of 8–20 kg pigs fed with 18.5% CP diet.  相似文献   

3.
Two 21-d experiments were conducted to determine the optimum standardized ileal digestible (SID) Trp:Lys in growing pigs fed corn-based diets compared with non-corn-based diets. The primary response variables in both experiments were ADG and plasma urea N (PUN) concentrations with the optimum SID Trp:Lys determined using broken-line analysis. Experiment 1 evaluated the optimum SID Trp:Lys in growing pigs fed corn-based diets consisting primarily of corn with minor inclusion of Canadian field peas and corn gluten meal to keep the SID Trp:Lys low. This experiment used 120 crossbred pigs (initial BW: 25.73 ± 2.46 kg) that were blocked by sex and initial BW and allotted to 5 SID Trp:Lys with 5 pens each for the first 4 treatments and 4 pens for the last treatment and 5 pigs/pen. Diets were formulated by the addition of supplemental Trp to create various SID Trp:Lys (12.77, 14.07, 15.50, 16.91, and 17.94%) with a constant SID Lys of 0.66%, which was determined to be 83% of the Lys requirement for pigs at this location. As the SID Trp:Lys increased from 12.77 to 17.94%, ADG increased (0.562, 0.648, 0.788, 0.787, and 0.815 kg/d) linearly (P < 0.001) and quadratically (P = 0.009), resulting in an optimum SID Trp:Lys of 15.73% (P < 0.001). Plasma urea N decreased (10.43, 9.30, 8.21, 8.55, and 9.25 mg/dL) linearly (P = 0.069) and quadratically (P = 0.015), resulting in an optimum SID Trp:Lys of 15.83% (P = 0.007). Experiment 2 evaluated the optimum SID Trp:Lys in growing pigs fed non-corn-based diets consisting primarily of barley and Canadian field peas, with smaller proportions of corn and wheat. Experiment 2 used 120 crossbred pigs (initial BW: 28.49 ± 2.92 kg) that were allotted to 5 increasing SID Trp:Lys (13.05, 14.32, 15.59, 16.85, and 18.11%; 0.66% SID Lys) in the same manner as Exp. 1. As SID Trp:Lys increased in Exp. 2, ADG increased linearly (P = 0.007) with the optimum SID Trp:Lys of 15.99% (P = 0.048). Plasma urea N concentrations decreased linearly (P = 0.056) and quadratically (P = 0.067) as SID Trp:Lys increased, resulting in an optimum SID Trp:Lys of 15.29% (P = 0.009). Averaging the break point values for ADG and PUN obtained from broken-line analysis for Exp. 1 and 2 produced optimum SID Trp:Lys of 15.78 and 15.64%, respectively. Based on the results from these 2 experiments, it seems that the optimum SID Trp:Lys is virtually unaffected by the dietary feedstuffs used as long as the diets are formulated on an SID AA basis.  相似文献   

4.
Fifty weanling crossbred pigs averaging 6.2 kg of initial BW and 21 d of age were used in a 5-wk experiment to evaluate lower dietary concentrations of an organic source of Zn as a Zn-polysaccharide (Zn-PS) compared with 2,000 ppm of inorganic Zn as ZnO, with growth performance, plasma concentrations of Zn and Cu, and Zn and Cu balance as the criteria. The pigs were fed individually in metabolism crates, and Zn and Cu balance were measured on individual pigs (10 replications per treatment) from d 22 to 26. The basal Phase 1 (d 0 to 14) and Phase 2 (d 14 to 35) diets contained 125 or 100 ppm added Zn as Zn sulfate, respectively, and met all nutrient requirements. Treatments were the basal Phase 1 and 2 diets supplemented with 0, 150, 300, or 450 ppm of Zn as Zn-PS or 2,000 ppm Zn as ZnO. Blood samples were collected from all pigs on d 7, 14, and 28. For pigs fed increasing Zn as Zn-PS, there were no linear or quadratic responses (P > or = 0.16) in ADG, ADFI, or G:F for Phases 1 or 2 or overall. For single degree of freedom treatment comparisons, Phase 1 ADG and G:F were greater (P < or = 0.05) for pigs fed 2,000 ppm Zn as ZnO than for pigs fed the control diet or the diet containing 150 ppm Zn as Zn-PS. For Phase 2 and overall, ADG and G:F for pigs fed the diets containing 300 or 450 ppm of Zn as Zn-PS did not differ (P > or = 0.29) from pigs fed the diet containing ZnO. Pigs fed the diet containing ZnO also had a greater Phase 2 (P < or = 0.10) and overall (P < or = 0.05) ADG and G:F than pigs fed the control diet. There were no differences (P > or = 0.46) in ADFI for any planned comparison. There were linear increases (P < 0.001) in the Zn excreted (mg/d) with increasing dietary Zn-PS. Pigs fed the diet containing ZnO absorbed, retained, and excreted more Zn (P < 0.001) than pigs fed the control diet or any of the diets containing Zn-PS. In conclusion, Phase 2 and overall growth performance by pigs fed diets containing 300 or 450 ppm Zn as Zn-PS did not differ from that of pigs fed 2,000 ppm Zn as ZnO; however, feeding 300 ppm Zn as Zn-PS decreased Zn excretion by 76% compared with feeding 2,000 ppm Zn as ZnO.  相似文献   

5.
本试验旨在研究低氮日粮条件下20~75 kg生长猪(20~50、50~75 kg 2个阶段)标准回肠可消化异亮氨酸(SID Ile)与标准回肠可消化赖氨酸(SID Lys)的适宜比例。试验一选取108头体重为(21.48±0.50)kg的杜×长×大生长猪,随机分为3个处理组,即对照组(高氮日粮组)、低氮日粮高SID Lys组和低氮日粮低SID Lys组,每个处理6个重复,每个重复6头猪,研究SID Lys的限制性水平。试验二以试验一的限制性SID Lys水平设计日粮,选取180头体重为(21.46±0.48)kg的杜×长×大生长猪,随机分为5个处理组,每个处理6个重复,每个重复6头猪。2个体重阶段日粮SID Ile:SID Lys设为5个不同水平,以研究其适宜比例。结果表明:试验一中低氮日粮低SID Lys组猪的耗料增重比(F:G)显著高于对照组和低氮日粮高SID Lys组(P0.05);在试验二中,当日粮SID Ile∶SID Lys分别为0.48和0.56时,20~50、50~75 kg生长猪获得最大的日增重(ADG)和最佳的F:G。综上所述,20~50、50~75 kg生长猪日粮粗蛋白(CP)水平分别为14%和12.4%时,其适宜的日粮SID Ile:SID Lys别为0.48和0.56。  相似文献   

6.
Canola meal (CM) contains less crude protein (CP) and more fiber and anti-nutritional factors such as glucosinolates than soybean meal (SBM) and consequently has a lower nutrient digestibility. Therefore, processing strategies that may increase the feeding value of CM warrant study. In two experiments, the effects of extrusion of Brassica napus CM on apparent (AID) and standardized ileal digestibility (SID) of amino acids (AA), apparent total tract digestibility (ATTD) of gross energy (GE) in growing pigs, and growth performance and diet digestibility in weaned pigs were assessed. Solvent-extracted CM was extruded using a single-screw extruder at three screw speeds: 250 (CM-250), 350 (CM-350), or 450 (CM-450) rpm. In exp. 1, in a double 4 × 4 Latin square, eight ileal-cannulated barrows (initial body weight [BW], 68.1 kg) were fed corn starch-based diets containing 50% CM or extruded CM. The CM sample contained 43.2% CP, 33.2% total dietary fiber (TDF), and 8.9 µmol of total glucosinolates/g on a dry matter (DM) basis. Extrusion increased (P < 0.05) the AID of CP, reduced (P < 0.05) apparent hindgut fermentation of CP, and decreased (P < 0.05) predicted net energy (NE) value of diets. Extrusion increased diet AID and CM SID of most indispensable AA by 3.1 to 5.3%-units. In exp. 2, 200 weaned pigs (initial BW, 8.3 kg) were fed diets containing 20% SBM, CM, or extruded CM starting 2 wk postweaning for 3 wk. The CM sample contained 42.7% CP, 28.3% TDF, and 5.3 µmol total glucosinolates/g DM. Wheat-based diets provided 2.3 Mcal NE/kg and 5.1 g SID Lys/Mcal NE. Dietary inclusion of extruded CM replacing SBM decreased (P < 0.05) diet ATTD of DM, GE and CP, and DE value. Average daily feed intake, average daily gain (ADG), and gain:feed (G:F) of pigs did not differ between extruded CM and SBM diets and were not affected by extrusion, but increasing extruder screw speed linearly increased (P < 0.05) ADG for day 1 to 7 and G:F for the entire trial. In conclusion, extrusion increased diet AID and CM SID of AA but not DE and predicted NE values of CM. However, increasing extruder speed did not further increase the SID of most of the AA of CM in growing pigs. Dietary inclusion of 20% CM or extruded CM did not affect the growth performance in weaned pigs.  相似文献   

7.
The purpose of this investigation was to compare the growth performance of grower pigs fed low-CP, corn-soybean meal (C-SBM) AA-supplemented diets with that of pigs fed a positive control (PC) C-SBM diet with no supplemental Lys. Five experiments were conducted with Yorkshire crossbred pigs, blocked by BW (average initial and final BW were 21 and 41 kg, respectively) and assigned within block to treatment. Each treatment was replicated 4 to 6 times with 4 or 5 pigs per replicate pen. Each experiment lasted 28 d and plasma urea N was determined at the start and end of each experiment. All diets were formulated to contain 0.83% standardized ileal digestible Lys. All the experiments contained PC and negative control (NC) diets. The PC diet contained 18% CP and was supplemented with only DL-Met. The NC diet contained 13% CP and was supplemented with L-Lys, DL-Met, L-Thr, and L-Trp. The NC + Ile + Val diet was supplemented with 0.10% Val + 0.06% Ile. The NC + Ile + Val diet was supplemented with either His (Exp. 1), Cys (Exp. 2), Gly (Exp. 2, 3, and 4), Glu (Exp. 3), Arg (Exp. 4), or combinations of Gly + Arg (Exp. 4 and 5) or Gly + Glu (Exp. 5). Treatment differences were considered significant at P < 0.10. In 3 of the 4 experiments that had PC and NC diets, pigs fed the NC diet had decreased ADG and G:F compared with pigs fed the PC diet. The supplementation of Ile + Val to the NC diet restored ADG in 4 out of 5 experiments. However, G:F was less than in pigs fed the PC diet in 1 experiment and was intermediate between the NC and PC diets in 3 experiments. Pigs fed supplemental Ile + Val + His had decreased G:F compared with pigs fed the PC. Pigs fed supplemental Cys to achieve 50:50 Met:Cys had decreased G:F compared with pigs fed the PC. Pigs fed Ile + Val + 0.224% supplemental Gly had similar ADG, greater ADFI, and decreased G:F compared with pigs fed the PC. Pigs fed Ile + Val + 0.52% supplemental Gly had ADG and G:F similar to that of pigs fed the PC. Pigs fed supplemental Glu had decreased G:F compared with pigs fed the PC. Pigs fed Ile + Val + 0.48% supplemental Arg had decreased G:F compared with pigs fed the PC. Pigs fed the diet supplemented with Gly + Arg had ADG and G:F similar to pigs fed the PC. Pigs fed the low-CP diets had reduced plasma urea N compared with pigs fed PC. The results of these experiments indicate that supplementing Gly or Gly + Arg to a low-CP C-SBM diet with 0.34% Lys, Met, Thr, Trp, Ile, and Val restores growth performance to be similar to that of pigs fed a PC diet with no Lys supplementation.  相似文献   

8.
Three experiments were conducted to determine the optimum standardized ileal digestible Val-to-Lys (SID Val:Lys) ratio for 13- to 32-kg pigs. In Exp. 1, 162 pigs weaned at 17 d of age (8 pens/treatment) were used, and a Val-deficient basal diet containing 0.60% l-Lys·HCl, 1.21% SID Lys, and 0.68% SID Val was developed (0.56 SID Val:Lys). Performance of pigs fed the basal diet was inferior to a corn-soybean meal control containing only 0.06% l-Lys·HCl, but was fully restored with the addition of 0.146% l-Val to the basal diet (68% SID Val:Lys). In Exp. 2, 54 individually housed barrows (21.4 kg) were utilized in a 14-d growth assay. Pigs were offered a similar basal diet (1.10% SID Lys), ensuring Lys was marginally limiting with no supplemental l-Val (55% SID Val:Lys). The basal diet was fortified with 4 graded levels of l-Val (0.055% increments) up to a ratio of 75% SID Val:Lys. In Exp. 3, 147 barrows (13.5 kg) were fed identical diets, only with 1 additional level at a SID Val:Lys of 80% and fed for 21 d. In Exp. 2 and 3, a high protein, control diet was formulated to contain 1.10% SID Lys and 0.20% l-Lys·HCl. In Exp. 2, linear effects on ADG (713, 750, 800, 796, and 785 g/d; P = 0.05) and G:F (P = 0.07) were observed with increasing SID Val:Lys, characterized by improvements to a ratio of 65% and a plateau thereafter. In Exp. 3, quadratic improvements in ADG (600, 629, 652, 641, 630, and 642 g/d; P = 0.08) and G:F (P = 0.07) were observed with increasing SID Val:Lys, as performance increased to a ratio of 65% but no further improvement to a ratio of 80%. Pigs fed the control diet did not differ from those fed a ratio of 65% SID Val:Lys in Exp. 2, but did have improved G:F in Exp. 3 (P = 0.03). To provide a more accurate estimate of the optimum SID Val:Lys, data from Exp. 2 and 3 were combined. With single-slope broken-line methodology, the minimum ratio estimate was 64 and 65% SID Val:Lys for ADG and G:F, respectively. With combined requirement estimates, the data indicate that a SID Val:Lys of 65% seems adequate in maintaining performance for pigs from 13 to 32 kg.  相似文献   

9.
Four experiments were conducted to determine the Lys requirement, the maximum amount of supplemental Lys that does not decrease growth performance, and to determine the order of limiting AA beyond Lys, Thr, Trp, and Met in a corn-soybean meal diet for 20- to 45-kg pigs. All experiments were conducted for 27 to 28 d with purebred or crossbred barrows and gilts, which were blocked by initial BW. Treatments were replicated with 4 to 6 pens of 4 to 6 pigs per pen. In all experiments, pigs and feeders were weighed on d 0, 14, and 27 or 28. At the beginning and end of all experiments, blood samples were obtained from all pigs to determine plasma urea N (PUN) concentrations. In Exp. 1, 0.830, 0.872, 0.913, and 0.955% standardized ileal digestible (SID) Lys was fed, whereas 0.747, 0.788, 0.830, 0.872, and 0.913% SID Lys was fed in Exp. 2. Broken-line analysis requirement estimates could not be estimated from any response variable in Exp. 1, but in Exp. 2, using ADG and PUN, the estimated SID Lys requirement was 0.83%. In Exp. 3, 0, 0.118, 0.191, 0.264, and 0.335% supplemental Lys was added to achieve 0.83% SID Lys in all diets, and Thr, Trp, and Met were supplemented to maintain Thr:Lys, Trp:Lys, and TSAA:Lys of 0.65, 0.18, and 0.60, respectively. Based on ADG, ADFI, and G:F, up to 0.23% supplemental Lys can be added along with supplemental Thr, Trp, and Met without negatively affecting growth performance; PUN was linearly decreased (P < 0.001) by supplemental Lys. In Exp. 4, treatments were 1) positive control (PC) without supplemental AA, 2) negative control (NC) with 0.335% supplemental Lys + 0.140% l-Thr + 0.035% l-Trp + 0.117% dl-Met, 3) NC + 0.044% l-Val, 4) NC + 0.021% l-Ile, and 5) NC + 0.044% l-Val + 0.021% l-Ile. Individual addition of Val and Ile did not improve (P > 0.10) ADG or G:F compared with the NC. The combined addition of Val + Ile resulted in ADG that was intermediate between the PC and NC diets but not different from either diet (P > 0.10); G:F was not improved (P > 0.10) to that observed in pigs fed the PC diet. The PUN was not different (P > 0.10) among pigs fed diets with supplemental AA but less (P < 0.10) than pigs fed the PC. The results of this research indicate that the Lys requirement for 20- to 45-kg pigs is 0.83% SID Lys, up to 0.23% supplemental Lys (0.29% l-Lys·HCl or 0.45% l-Lys·SO(4)) can be added along with supplemental Thr, Trp, and Met without negatively affecting growth performance, and another AA besides Val and Ile may be limiting growth performance in a corn-soybean meal diet with 0.335% supplemental Lys.  相似文献   

10.
Two experiments were conducted to determine the standardized ileal digestible (SID) lysine (Lys) requirement and the ideal SID sulphur amino acids (SAA) to Lys ratio for 30–50 kg crossbred pigs. In experiment 1, a total of 72 crossbred pigs with an average initial body weight (BW) of 28.9 kg were allotted to one of six dietary treatments in a randomized complete block design. Each diet was assigned to six pens containing two pigs each. Six diets were obtained by supplementing graded levels of L‐Lysine?HCl to create six dietary levels of SID Lys (0.70%, 0.80%, 0.90%, 1.00%, 1.10% and 1.20%). Responses of weight gain (ADG) and gain:feed (G:F) to increasing the SID Lys content of the diet fitted well with the curvilinear‐plateau model; whereas, for plasma urea nitrogen (PUN) two‐slope linear broken‐line model was well fitted. The optimal SID Lys requirement for the pigs of this period was 1.10%. Experiment 2 was a dose–response study using SID Met+Cys to Lys ratios of 50%, 55%, 60%, 65%, 70% and 64%. A total of 72 crossbred pigs with initial BW of 32.9 kg were randomly allotted to receive one of the six diets. Diets 1–5 were formulated to contain 1.0% SID Lys to be second limiting in Lys and diet 6 contained 1.11% SID Lys to be adequate in Lys. The average optimal SID SAA:Lys ratio for maximal ADG and G:F and minimal PUN was 65.2% using curvilinear‐plateau and linear broken‐line models.  相似文献   

11.
The objective of this study was to determine the effect of CP level in corn- and soybean meal-based diets on apparent (AID) and standardized ileal digestibility (SID) of AA. Six pigs (initial BW, 47.1 ± 1.0 kg) fitted with T-cannula at the distal ileum were fed 6 diets for 6 periods in a 6 × 6 Latin square design. The 6 diets consisted of a nitrogen-free diet and 5 corn- and soybean meal-based diets that contained CP of 68, 105, 141, 177, and 214 g/kg. Each period consisted of a 5-d adjustment period and 2 d of ileal digesta collection for 10 h on each of d 6 and 7. The ratio of corn:soybean meal was fixed at 3 to 2 by weight and cornstarch was added to dilute the CP concentration. Chromic oxide was added at 5 g/kg as an indigestible marker. The results showed basal endogenous loss ranged from 65 mg/kg of DMI for Met to 3,104 mg/kg of DMI for Pro. Proline and Gly (1,053 mg/kg of DMI) were the 2 most abundant AA in endogenous flow and together accounted for approximately 43% of the total endogenous AA flow. Of the basal ileal endogenous CP, total AA accounted for 82%. The AID were 80.9 to 84.7%, 85.1 to 87.4%, 72.9 to 79.5%, and 86.5 to 87.9% for Lys, Met, Thr, and Trp, respectively, with corresponding SID being 86.6 to 89.0%, 87.5 to 90.5%, 82.7 to 88.2%, and 90.2 to 94.6%, respectively, as dietary CP increased from 68 to 214 g/kg. There were linear increases in AID of N, Arg, Gly, Ile, Lys, Ser, Thr, Tyr, and Val (P ≤ 0.05) as CP increased and linear decreases in SID of N and all AA measured in this study except Lys, Met, and Pro (P ≤ 0.05). Both linear and quadratic effects were observed in AID for Pro (P < 0.05). In conclusion, the protein content of corn-soybean meal diets evaluated in the current study affected SID of most indispensable and dispensable AA, excluding Lys, Met, and Pro.  相似文献   

12.
Four experiments were conducted to investigate the feeding value of South Dakota-grown field peas (Pisum sativum L.) for growing pigs. In Exp. 1, 96 pigs (initial BW = 22 +/- 3.35 kg) were allotted to four treatment groups (four pigs per pen, six replicate pens per treatment) and fed growing (0.95% Lys) and finishing (0.68% Lys) diets containing 0, 12, 24, or 36% field peas (as-fed basis). There were no differences among the treatment groups in ADG, ADFI, or G:F. Likewise, there were no differences in backfat thickness or lean meat percent among treatment groups, but pigs fed diets containing 12, 24, or 36% field peas had greater (P < 0.05) loin depths than pigs fed the control diet. In Exp. 2, 120 pigs (initial BW = 7.8 +/- 1.04 kg) were allotted to four treatment groups 2 wk after weaning. Pigs were then fed diets containing 0, 6, 12, or 18% field peas (as-fed basis) during the following 4 wk. There were five pigs per pen and six replicate pens per treatment. Results of the experiment showed no differences in ADG, ADFI, or G:F among treatment groups. In Exp. 3, apparent (AID) and standardized (SID) ileal digestibility coefficients of CP and AA in field peas and soybean meal were measured using six individually penned growing pigs (initial BW = 36.5 +/- 2.1 kg) arranged in a repeated 3 x 3 Latin square design. The AID for Met, Trp, Cys, and Ser, and the SID for Met, Trp, and Cys were lower (P < 0.05) in field peas than in soybean meal; but for CP and all other AA, no differences in AID or SID were observed between the two feed ingredients. Experiment 4 was an energy balance experiment conducted to measure the DE and ME concentrations in field peas and corn. Six growing pigs (initial BW = 85.5 +/- 6.5 kg) were placed in metabolism cages and fed diets based on field peas or corn and arranged in a two-period switch-back design. The DE values for field peas and corn (3,864 and 3,879 kcal/kg DM, respectively) were similar, but the ME of corn was higher (P < 0.05) than the ME of field peas (3,825 vs. 3,741 kcal ME/kg DM). The results from the current experiments demonstrate that the nutrients in South Dakota-grown field peas are highly digestible by growing pigs. Therefore, such field peas may be included in diets for nursery pigs and growing-finishing pigs in amounts of at least 18 and 36%, respectively, without negatively affecting pig performance.  相似文献   

13.
This study was conducted to evaluate the supplementation of glutamic acid(Glu)to reduced protein diets on the performance of weanling pigs.One hundred and eighty crossbred weanling pigs([YorkshireLandrace]Duroc,21 d old)having similar body weight(BW)of 6.45 kg were randomly allotted to 1 of 6 dietary treatments(5 pigs per pen[2 barrows and 3 gilts];6 pens per treatment)based on BW and sex during a 6-week trial.Dietary treatments consisted of positive control(PC)diet formulated to have 226.9,205.6,and 188.8 g crude protein(CP)during phases 1,2,and 3,respectively,and negative control(NC)diets with 20 g CP reduction from PC diets and addition of Glu with increasing levels,resulting in the calculated Lys-to-Glu ratios of 1:2.25,1:2.30.1:2.35,1:2.40,and 1:2.45,designated as NC,NC1,NC2,NC3,and NC4,respectively.The BW of pigs receiving PC diet was higher(P<0.05)than those receiving NC diet at d 7,21 and 42.A higher(P<0.05)average daily gain(ADG)from d 1 to 7,8 to 21,22 to 42 and during the overall experiment period was observed in pigs fed PC than NC diet.Pigs fed NC diets including the graded level of Glu linearly increased(P<0.05)BW at d 42,ADG and gain-to-feed ratio(G:F)during the overall experimental period.In addition,trends in linear increase in BW(P=0.056)at d 7 and ADG from d 1 to 7 and d 22 to 42(linear effect,P=0.081,P=0.058 respectively)were observed.A tendency in the linear increment of NH3(P=0.082)at d 21 and linear reduction in methyl mercaptans(P=0.054)emission at d 42 was observed in pigs fed NC diets supplemented with graded level of Glu.In conclusion,supplementing the reduced protein diet with Glu enhanced the growth performance in weanling pigs suggesting that supplementation of Glu can compensate the reduction of 2%CP in the basal diets.  相似文献   

14.
Three experiments were conducted to determine the Val and Ile requirements in low-CP, corn-soybean meal (C-SBM) AA-supplemented diets for 20- to 45-kg pigs. All experiments were conducted for 26 to 27 d with purebred or crossbred barrows and gilts, which were blocked by initial BW. Treatments were replicated with 5 or 6 pens of 3 or 4 pigs per pen. At the beginning of Exp. 1 and the end of all experiments, blood samples were obtained from all pigs to determine plasma urea N (PUN) concentrations. All diets were C-SBM with 0.335% supplemental Lys to achieve 0.83% standardized ileal digestible (SID) Lys, which is the Lys requirement of these pigs. In Exp. 1, 0, 0.02, 0.04, 0.06, 0.08, or 0.10% L-Val was supplemented to achieve 0.51, 0.53, 0.55, 0.57, 0.59, or 0.61% dietary SID Val, and Thr, Trp, Met, and Ile were supplemented to maintain Thr:Lys, Trp:Lys, TSAA:Lys, and Ile:Lys ratios of 0.71, 0.20, 0.62, and 0.60, respectively. Also, supplemental Gly and Glu were added to all diets to achieve 1.66% Gly + Ser and 3.28% Glu, which is equal to the Gly + Ser and Glu content of a previously validated positive control diet that contained no supplemental AA. Treatment differences were considered significant at P < 0.10. Valine addition increased ADG, ADFI, and G:F in pigs fed 0.51 to 0.59% SID Val (linear, P < 0.08), but ADG and ADFI were decreased at 0.61% SID Val (quadratic, P ≤ 0.10). On the basis of ADG and G:F, the SID Val requirement is between 0.56 and 0.58% in a C-SBM diet supplemented with AA. In Exp. 2 and 3, 0, 0.02, 0.04, 0.06, or 0.08% L-Ile was supplemented to achieve 0.43, 0.45, 0.47, 0.49, or 0.51% dietary SID Ile, and Thr, Trp, Met, and Ile were supplemented to maintain Thr:Lys, Trp:Lys, TSAA:Lys, and Val:Lys ratios of 0.71, 0.20, 0.62, and 0.74, respectively. Also, supplemental Gly and Glu were added to achieve 1.66% Gly + Ser and 3.28% Glu as in Exp. 1. Data from Exp. 2 and 3 were combined and analyzed as 1 data set. Daily BW gain, ADFI, and G:F were not affected by Ile additions to the diet; however, ADFI was decreased among pigs fed the diet with 0.45% SID Ile (P < 0.10) compared with pigs fed the 0.43% SID Ile diet. Broken-line analysis requirements could not be estimated for the combined data from Exp. 2 or 3. The results of this research indicate that the SID Val requirement is between 0.56 to 0.58% (0.67 to 0.70 SID Val:Lys), and the Ile requirement is adequate at 0.43% SID Ile (0.52 SID Ile:Lys) for 20- to 45-kg pigs.  相似文献   

15.
This study was conducted to investigate the effect of dietary crude protein (CP) levels of semi‐purified diets on the additivity of values for standardized ileal digestibility (SID) of amino acids (AA) in mixed diets from multiple protein sources for growing pigs. A total of 28 barrows (initial BW, 66.4 ± 1.3 kg) were surgically fitted with simple T‐cannulas at the distal ileum and assigned to a replicated 14 × 4 incomplete Latin square design with 14 diets and 4 periods. The 14 experimental diets consisted of a nitrogen‐free diet; a corn‐based diet (80 g CP/kg); nine semi‐purified diets containing soya bean meal (SBM), canola meal (CM) or corn distillers dried grains with solubles (cDDGS), each type (protein source) of semi‐purified diets supplied 80, 120 or 160 g CP/kg, respectively; three mixed diets based on corn, SBM, CM and cDDGS formulated to contain 120, 160 and 200 g CP/kg respectively. Pigs were fed each of the 14 diets during a seven‐day period, and ileal digesta were collected from 08:00 a.m to 6:00 p.m on day 6 and 7. Chromic oxide was added as an indigestible marker. Results indicated that the SID of CP and AA were not affected by CP levels (p > .05). Values for SID of AA were additive (> .05) with the exception of His and Lys; Arg and Lys; Arg, Lys, Thr, Asp, Cys and Gly in the mixed diets containing 120, 160 and 200 g CP/kg respectively (p < .05). In conclusion, additivity of SID values of AA in the mixed diets at different CP levels was not affected by the CP levels of semi‐purified diets for growing pigs. Therefore, it is recommended that SID values of AA should be used to formulate practical diets containing multiple ingredients for pigs.  相似文献   

16.
This study investigated the effects of amino acids (AA) supplementation in low crude protein (CP) diets on growth performance and carcass characteristics in finishing gilts. One hundred and eighty gilts (59.1 ± 5.1 kg) were randomly allotted to one of five diets which consisted of a high CP (15.6%) diet or four low CP (11.6%) diets for 50 days. The low CP diets were supplemented with lysine + threonine + methionine (LCM), LCM + tryptophan (LCT), LCT + valine (LCV) or LCV + isoleucine (LCI), respectively. Gilts were housed at six pigs per pen with six pens per treatment. At the end of the 50‐day experiment, 30 gilts (one pig per pen) with average body weight (BW) of 98 kg were killed to evaluate carcass traits. The pigs fed the diet supplemented with LCV obtained the highest average daily gain (ADG), which was higher than those of pigs fed the diet supplemented with LCM (P < 0.05). Dietary supplementation with tryptophan, valine and isoleucine in low CP diets increased ADG (linear and quadratic effect, P < 0.05), serum levels of valine (quadratic effect, P < 0.05) and isoleucine (linear and quadratic effect, P < 0.05) and immunoglobulin G (IgG) and IgA (linear and quadratic effect, P < 0.05) in finishing gilts. © 2016 Japanese Society of Animal Science  相似文献   

17.
A total of 90 gilts were used to investigate the effects of various standard ileal digestible (SID) total sulfur amino acid (TSAA) to lysine (Lys) ratios on the performance and carcass characteristics of late finishing gilts receiving low crude protein (CP) diets supplemented with crystalline amino acids (CAA). Graded levels of crystalline methionine (Met) (0, 0.3, 0.5, 0.8 or 1.1 g/kg) were added to the basal diet to produce diets providing SID TSAA to Lys ratios of 0.48, 0.53, 0.58, 0.63 or 0.68. At the termination of the experiment, 30 gilts (one pig per pen) with an average body weight (BW) of 120 kg were killed to evaluate carcass traits. Increasing the SID TSAA to Lys ratio increased average daily gain (ADG) (linear and quadratic effect, P < 0.05), improved feed conversion ratio (FCR) (linear and quadratic effect, P < 0.05) and decreased serum urea nitrogen (SUN) concentration (linear and quadratic effect, P < 0.05) of finishing gilts. No effects were obtained for carcass traits. The optimum SID TSAA to Lys ratios to maximize ADG as well as to minimize FCR and SUN levels were 0.57, 0.58 and 0.53 using a linear‐break point model and 0.64, 0.62 and 0.61 using a quadratic model.  相似文献   

18.
Three experiments were conducted to evaluate pet food by-product (PFB) as a component of nursery starter diets and its effects on pig performance. The PFB used in these studies was a pelleted dog food that contained (as-fed basis) 21% CP, 1.25% total lysine, and 8.3% ether extract. In Exp. 1, 288 early-weaned pigs (5.2 kg at 14 d) were used to determine the effects of replacing animal protein and energy sources with PFB at 0, 10, 30, and 50% (as-fed basis) inclusion levels in phase I (d 0 to 7 after weaning) and phase II (d 7 to 21 after weaning) diets. Phase I diets contained 27.5% whey, 18.75% soybean meal, 1.50% lysine, 0.90% Ca, and 0.80% P, with PFB substituted for corn, fat, plasma protein, fish meal, limestone, and dicalcium phosphate. Phase II diets had a constant 10% whey, 1.35% lysine, and PFB was substituted for blood cells, a portion of the soybean meal, and other ingredients as in phase I diets. In phase I, growth performance by pigs fed PFB-containing diets was similar to that of the control diet. In phase II, ADG (linear; P < 0.05 and quadratic, P < 0.005), ADFI (linear and quadratic, P < 0.01), and G:F (quadratic, P < 0.01) were increased with increasing PFB inclusion. In Exp. 2, 80 weaned pigs (6.7 kg at 21 d) were fed a common phase I diet for 1 wk and used to further evaluate the effect of PFB in phase II diets (same as Exp 1; initial BW = 8.1 kg) on growth performance and apparent total tract nutrient digestibility. There were no differences in ADG, ADFI, or G:F across treatments. Dry matter and energy digestibility did not differ among diets; however, digestibilities of CP (P < 0.05) and the essential AA, arginine (P < 0.02), histidine (P < 0.01), lysine (P < 0.001), threonine (P < 0.01), and valine (P < 0.01), were greater as PFB was increased in the diet. In Exp. 3, the performance by pigs (n = 1 70; 5.5 kg; 21 d of age) fed diets with 0 or 30% PFB in both phases I and II was examined. Growth performance was similar in both diets. These studies demonstrate that pet food by-product can effectively be used as a partial replacement for animal protein sources and grain energy sources in the diets of young nursery pigs.  相似文献   

19.
Two experiments were conducted using corn from clean or aflatoxin B1 (AFB1)-contaminated (182 ppb) sources. Weanling pigs (28 d) were fed one of eight dietary treatments arranged in a 2 x 2 x 2 factorial design. In Exp. 1 (192 pigs), treatments varied in corn source (clean or AFB1-contaminated), CP level (18 or 20%) and added fat (0 or 5%). At the end of the 28-d growth trials, plasma samples were obtained. An AFB1 x CP level interaction was detected (P less than .05) for growth rate (ADG), feed intake (FI) and feed/gain ratio (F/G). Feeding AFB1 reduced (P less than .05) ADG (.30 vs .37 kg/d) and FI (.57 vs .66 kg/d) and increased F/G (1.88 vs 1.78) of pigs fed 18% CP diets. Performance of pigs fed 20% CP diets was not altered by AFB1. Adding 5% fat to diets improved (P less than .05) F/G but did not improve ADG of pigs fed AFB1. There was an AFB1 x CP x fat interaction (P less than .05) for plasma cholesterol. Adding fat or increasing the CP level prevented the depression of plasma cholesterol in pigs fed AFB1. In Exp. 2 (96 pigs), all diets contained 18% CP and the treatments varied in corn source (clean or AFB1-contaminated), added L-lysine HCl (0 or .25%) and added DL-methionine (0 or .15%). Feeding AFB1 reduced (P less than .05) ADG of pigs fed the 18% CP diet (.44 vs .50 kg/d) but not of pigs fed diets supplemented with .25% lysine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Four experiments were conducted with 730 weanling pigs to determine the effects of soy protein concentrate (SPC) in diets for weanling pigs. Experimental diets were fed from d 0 to 14 postweaning and a common diet was fed from d 15 to 28 for Exp. 1, 2, and 3; experimental diets were fed from d 0 to 7 postweaning in Exp. 4. In Exp. 1, the 4 experimental diets included 1) a 0% soybean meal (SBM) diet containing animal protein sources; 2) a 40% SBM diet; or a 28.55% SPC (replacing the 40% SBM on a total Lys basis) diet from 3) source 1, or 4) source 2. Pigs fed diets containing either animal protein or 40% SBM had greater ADG and ADFI (P <0.05) than pigs fed either SPC source. In Exp. 2, the 5 experimental treatments included diets 2, 3, and 4 from Exp. 1, along with 14.28% SPC from each SPC source used in Exp. 1 (replacing half of the total Lys from the 40% SBM diet). From d 0 to 14 and d 0 to 28, the SPC source x level interaction was significant for ADG (P <0.01) and was a tendency for ADFI (P <0.07). Replacing SBM with SPC from source 1 did not affect pig performance. However, replacing SBM with SPC from source 2 resulted in an improvement (quadratic, P <0.05) in ADG for pigs fed the diet containing 14.3% SPC, but resulted in no benefit from replacing all the SBM with SPC. Replacing SBM with SPC from either source improved G:F (quadratic, P <0.01), with the greatest G:F observed for pigs fed the diets with 14.3% SPC. Experiment 3 evaluated increasing levels of source 2 SPC, with treatments consisting of 1) 0% (40% SBM); 2) 7.14%; 3) 14.28%; 4) 21.42%; and 5) 28.55% SPC. There was a tendency for increased ADG (quadratic, P <0.06) and increased ADFI (quadratic, P <0.04) as inclusion of SPC in the diet increased. The gain-to-feed ratio improved (linear, P <0.01) as the SPC level in the diet increased. Inclusion of approximately 14 to 21% SPC from source 2 maximized pig performance. In Exp. 4, pigs were offered a choice of consuming the diets containing 40% SBM or 28.6% SPC from source 2. Daily feed intake was greater (P <0.0001) for the SBM diet (186 g/d) than for the SPC diet (5 g/d). Our results suggest that replacing a portion, but not all, of the high-SBM diet with SPC from source 2, but not from source 1, improves pig performance. The poor intake of pigs fed high levels of SPC may indicate a palatability problem, thus limiting its inclusion in nursery pig diets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号