首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of feeding scheme and prey density on survival and development of Eriocheir sinensis zoea larvae was studied in three experiments. Different combinations and densities of rotifers (Brachionus rotundiformis) and newly hatched Artemia nauplii were fed to zoea larvae. Average survival at each stage, larval development (larval stage index, LSI), duration of zoeal stage and individual megalopa dry weight were compared among treatments. This study revealed that, under the experimental conditions, rotifers should be replaced with Artemia between the zoea 3 (Z3) and the zoea 4 (Z4) stage. The optimal rotifer feeding densities for zoea 1 (Z1) and zoea 2 (Z2) were 15 and 20 mL?1 respectively, while the optimal Artemia feeding density for Z3, Z4 and zoea 5 (Z5) was 3, 5 and 8 mL?1 respectively. Further trials in production scale are recommended.  相似文献   

2.
Live food supply is a key factor contributing to the success of larval fish rearing. However, live food densities vary greatly between fish species and management protocols across fish hatcheries. The growth, survival, food selection and consumption of yellowtail kingfish larvae were examined at different regimes of live food supply in an attempt to identify a suitable live food feeding protocol for larval rearing in marine fish. This study was divided into two feeding phases: rotifer phase from 3 to 14 DPH (phase I) and Artemia nauplii phase from 15 to 22 DPH (phase II). In phase I, four rotifer densities (1, 10, 20 and 40 mL−1) were used. In phase II, Artemia started at 0.8 nauplii mL−1 on 15 DPH, and then the density of Artemia was daily incremented by 50%, 70%, 90% and 110%, respectively, in four treatments from 15 to 22 DPH. In phase I, rotifer density significantly affected larval growth, but not survival. By 7 DPH, the number of rotifers consumed by fish larvae reached 170–260 individuals, but did not significantly differ between rotifer densities. During cofeeding, fish larvae selected against Artemia nauplii by 10 DPH, but by 14 DPH Artemia nauplii became the preferred prey item by fish larvae exposed to the 10, 20 and 40 rotifers mL−1. In phase II, both fish growth and survival were affected by Artemia densities. Fish daily consumption on Artemia by 20 DPH reached 500–600 individuals but did not significantly differ between prey densities. The result suggests that rotifer densities be offered at 20–40 mL−1 before 6 DPH and 10–20 mL−1 afterwards to support larval fish growth and survival. Likewise, Artemia is recommended at a daily increment of 90–110% of 0.8 mL−1 from 15 to 22 DPH. This study proposes a management protocol to use appropriate type and quantity of live food to feed yellowtail kingfish larvae, which could be applicable to larval culture of other similar marine fish species.  相似文献   

3.
Blue king crab (Paralithodes platypus) larvae were cultivated to test the effects of diet, temperature and rearing density. Dietary treatments included no feeding (unfed), Artemia nauplii enriched with diatoms Thalassiosira nordenskioeldii (THAL), unenriched Artemia fed in addition to Thalassiosira (A+THAL) and a control diet of Artemia enriched with frozen Isochrysis paste (ISO 6). Trials were conducted at 6 °C, and a rearing density of 10 zoea L?1, with six replicates per treatment. The ISO 6 diet was also tested at 3 °C (ISO 3) and 9 °C (ISO 9), and at densities of 20 (ISO 20) and 40 (ISO 40) zoea L?1. Survival of zoea larvae fed the A+THAL diet (91.7%) was significantly higher than all others, whereas unfed zoea larvae died within 2 weeks. Temperature and rearing density had no significant effects on survival. Time required to reach stage C1 was significantly greater at 3 °C (109 days) than at 6 °C (70 days), but did not decrease further at 9 °C. After reaching the postlarval (glaucothoe) stage, half of the replicates in the ISO 20 and ISO 40 treatments were fed continuously, but survival did not differ significantly from unfed glaucothoe. We conclude that blue king crab larvae are not lecithotrophic and can be cultivated with high survival using the proper diet. These techniques can be used to produce large numbers of juvenile crab for laboratory research, or could be modified for use in stock‐enhancement programmes.  相似文献   

4.
Larvae of two caridean shrimp species, Macrobrachium rosenbergii (De Man) and Palaemon elegans Rathke, were fed live and artificial diets. P. elegans larvae fed exclusively live Artemia salina (15 nauplii mL?1) developed into first postlarval stage (PL1) within 12 days at a temperature of 25°C and salinity 32.5 g L?1. Their survival and mean total length at this stage were 88.5% and 6.7 mm respectively. M. rosenbergii larvae fed on 15 Artemia mL?1 started to metamorphose into PLl within 24 days at 29–30°C and 12 g L?1. Attempts to completely replace live Artemia for rearing P. elegans during early stages failed, and only a partial replacement was achieved for the larvae of both species. P. elegans larvae survived (49%) solely on a microgranulated diet (Frippak PL diet) from stage zoea (Z) 4–5 to PL1. Similarly, a microencapsulated diet (Frippak CD3) also sustained M. rosenbergii larvae from Z5–6 to PL1 with a 28% survival. Development of the larvae of both species was retarded by 2–3 days and their survivals were lower than those fed on the live diet. The inability of the early larvae of these caridean species to survive on artificial diets is attributed to their undeveloped guts and limited enzymatic capabilities. Trypsin activity in the larvae was determined for all larval stages. It was found that the highest trypsin activity, at stage Z4–5 in P. elegans and at stage Z5–6 in M. rosenbergii, coincides with a rapid increase in the volume of the hepatopancreas and the formation of the filter apparatus. These morphological changes in the gut structure appear to enable the larvae to utilize artificial diets after stage Z5–6. Low larval trypsin activities may be compensated by the easily digestible content of their live prey during early larval stages (Z1–Z4/5) and by longer gastroevacuation time (GET) and almost fully developed guts during later stages.  相似文献   

5.
Predation of zoeas by megalopae of Ucides cordatus is frequently observed in the laboratory during larval rearing, a phenomenon that could considerably reduce the output of larviculture. Experiments were carried out in the present study to assess how the survivorship of larvae at the end of the larviculture is influenced by cannibalism by megalopae on the larvae of earlier stages, as well as on other megalopae. In addition, tests were performed to assess whether the adoption of different feeding protocols can decrease cannibalism rates. Experiments were carried out in plastic vials containing ocean water (salinity 25 g L?1) under controlled environmental conditions (26 °C and 16:8 h LD photoperiod). An ensemble analysis of all the developmental stages indicated that zoeal mortality rates were significantly higher in the presence of megalopae, a result that is consistent with cannibalism by megalopae. However, separate analysis for each developmental stage indicated that only zoea IV, V and VI show reduced survivorship. No cannibalism was detected among megalopae. Food supplementation using Artemia sp. at a density of 6 nauplii mL?1 proved to be successful in reducing cannibalism rates, whereas supplementation at a lower density (0.3 nauplii mL?1) failed to show such an effect. The implications of these results for the larviculture of U. cordatus are discussed.  相似文献   

6.
It is not known whether rotifers or Artemia nauplii are the best first food for South African mud crab Scylla serrata larvae. In order to test this, larvae were fed with five different test diets. These were rotifers for the first 8 days and newly hatched EG® type Artemia nauplii (San Francisco Bay) from day 6 onwards (treatment R6A); newly hatched EG® type Artemia nauplii throughout the rearing period (treatment EG); newly hatched Vinh-Chau strain (Vietnam) Artemia nauplii throughout the rearing period (treatment VC); decapsulated cysts of EG® type Artemia throughout the rearing period (treatment DECAP); or decapsulated cysts supplemented with low densities of Artemia EG type Artemia nauplii (treatment MIX). Two experiments were conducted approximately 1 month apart using larvae from two different female crabs. Although results showed it is possible to rear S. serrata larvae through metamorphosis on Artemia nauplii exclusively, larval performance (development, survival and successful metamorphosis) was enhanced by the inclusion of rotifers as a first feed.No significant difference in performance was recorded between larvae fed on the two strains of Artemia nauplii. Larvae fed on decapsulated cysts in treatments DECAP and MIX performed poorly, but there were indications that decapsulated cysts and other inert diets may have potential as supplements to live food in the rearing of S. serrata larvae.  相似文献   

7.
The present study aimed to evaluate the effect of the supplementation of different crab zoeas to enriched Artemia basal diet for Octopus vulgaris paralarvae during the first month of life. Paralarvae were fed using enriched Artemia nauplii alone and Artemia co‐fed either first zoea stages of Grapsus adscensionis or Plagusia depressa. The experiment was carried out over a period of 28 days, in 0.12 m3 tanks with a flow‐through rearing system. Growth in dry weight as well as mantle length and width were assessed weekly. Additionally, prey and paralarvae fatty acid composition and digestive gland (DG) histology were evaluated. Addition of low amounts of crab zoeas (approx. 100 indv. L?1 day?1) provided during critical life stages of O. vulgaris proved to be good enough to improve paralarvae growth and survival in comparison with those fed exclusively on enriched Artemia. These results were supported by the finding of a higher number of glycoprotein absorption vacuoles in the DG from paralarvae co‐fed crab zoeas, suggesting a higher feeding activity. In addition, fatty acid analysis of crab zoea showed that these are good sources of dietary arachidonic and eicosapentaenoic acids during the octopus planktonic life stage, whereas the low docosahexaenoic (DHA) content suggests the use of additional DHA sources or higher zoea densities to meet paralarvae nutritional demand to carry out a successful metamorphosis to benthic life.  相似文献   

8.
An alternative larval shrimp feeding regime, in which umbrella‐stage Artemia were constituting the first zooplankton source was evaluated in the culture of Litopenaeus vannamei. In a preliminary experiment, umbrella‐stage Artemia were fed to larvae from zoea 2 (Z2) to mysis 2 (M2) stages to identify the larval stage at which raptorial feeding starts and to determine daily feeding rates. The following experiment evaluated the performance of two feeding regimen that differed during the late zoea/early mysis stages: a control treatment with frozen Artemia nauplii (FAN), and a treatment with frozen umbrella‐stage Artemia (FUA). The ingestion rate of umbrella‐stage Artemia increased from nine umbrella per larvae day?1 at Z2 stage to 21 umbrella per larvae day?1 at M2. A steep increase in ingestion and dry weight from Z3 to M2 suggests a shift to a raptorial feeding mode at the M1 stage. Treatment FUA exhibited a significantly higher larval stage index (P < 0.05) during the period that zoea larvae metamorphosed to the mysis stage, and a higher final biomass, compared with treatment FAN. Based on these results and on practical considerations, a feeding regime starting with umbrella‐stage Artemia from Z2 sub‐stage can be recommended for L. vannamei larvae rearing.  相似文献   

9.
The goal of this study is to develop a larviculture protocol for Mithraculus forceps, a popular marine aquarium species. Different temperatures (25±0.5°C and 28±0.5°C), stocking densities (10, 20, 40 and 80 larvae L?1), prey densities (newly hatched Artemia of 1, 4, 7 and 12 nauplii mL?1) and metamorphosis to crab conditions (Systems A and B) were tested. The best survivorship and faster development were obtained when the larvae were reared at a density of 40 larvae L?1 for 7 days post hatching (DPH) in System A, at 28°C and fed with 7 mL?1 of newly hatched Artemia nauplii. After 7 DPH all the megalopa were moved to System B and the same temperature and prey density were maintained. At the end of the experiment, 12 DPH, survivorship of 74.1±4.8% was obtained.  相似文献   

10.
Early larval stages of mud crab Scylla serrata were exposed to different concentrations of nitrite (40, 80 and 160 mg L−1 and a control, without added nitrite) and three salinity levels (25, 30 and 35 g L−1) using a static renewal method. No interactive effect of nitrite and salinity was detected. Estimated LT50 in 96‐h toxicity tests decreased in all stages with increasing nitrite concentrations in all salinity levels. The 96‐h LC50 values of nitrite‐N were 41.58, 63.04, 25.54, 29.98 and 69.93 mg L−1 for zoea 1, 2, 3, 4 and 5 respectively. As the larvae grew, they showed a progressive increase in tolerance to nitrite. The toxicity of nitrite to larvae increased with exposure time. The median lethal concentration was not affected by salinity. The chloride component of salinity within 25–35 g L−1 did not seem to be as effective in alleviating toxicity as has been reported in other crustacean species. Based on 96‐h LC50 and an application factor of 0.1, the ‘safe level’ of rearing mud crab larvae was calculated to be 4.16, 6.30, 2.55, 2.99 and 6.99 mg L−1 nitrite‐N for zoea 1, 2, 3, 4 and 5 respectively.  相似文献   

11.
The growth, survival, food selection and consumption of pompano larvae under different rotifer densities as well as their colour preference during the rotifer feeding stage were examined in this study. Growth and survival of fish larvae were not significantly affected when rotifer density was between 10 and 20 mL?1. Fish larvae grew slower at 1 and 40 rotifers mL?1 than at 10 and 20 rotifers mL?1, and higher fish survival was achieved when fish larvae were exposed to 10 and 20 rotifers mL?1. The rotifer density of 1 mL?1 not only reduced food ingestion during the early stage, but also delayed diet switch from rotifer to copepod nauplii. On 5 days post hatching (DPH), larval pompano ingested more rotifers in dark‐coloured tanks and ingested more rotifers when prey colour was green. Based on the results obtained in the present study, the culture of larval pompano larvae is recommended using dark wall tanks with a feeding density of 10–20 rotifers mL?1 during the initial feeding stage. This study proposes a management protocol to use appropriate type and quantity of live food to feed pompano larvae in a hatchery rearing condition, which could be applicable to the culture of fish larvae in other marine fish species.  相似文献   

12.
This study aimed to establish feeding strategies covering the whole larval period of the forktail blenny, Meiacanthus atrodorsalis, based on the standard hatchery feeds of rotifers and Artemia. Three purposely designed experiments were conducted to determine the appropriate times and techniques to transition larvae from rotifers onto Artemia nauplii of a Great Salt Lake (GSL) strain, and a specialty AF strain, as well as subsequent transition onto enriched metanauplii of GSL Artemia. With a 3‐day co‐feeding period, larvae adapted well to a transition from rotifers to newly hatched GSL Artemia nauplii as early as 5 days posthatching (DPH), and as early as 3 DPH when fed the smaller AF Artemia nauplii. However, prolonging the rotifer‐feeding period up to 11 DPH did not negatively affect survival. Larvae fed Artemia nauplii of the AF strain showed 17–21% higher survival, 24–33% greater standard length and body depth, and 91–200% greater dry weight, after 20 days relative to those fed nauplii of the GSL strain. Meanwhile, enriched Artemia metanauplii of the GSL strain were shown to be an acceptable alternative to AF Artemia nauplii for later larvae, producing similar survival and growth when introduced from 8 DPH. Based on our findings, we recommend feeding M. atrodorsalis larvae rotifers as a first food between 0 and 2 DPH, introducing AF Artemia nauplii from 3 DPH, followed by enriched GSL Artemia metanauplii from 8 DPH onward, with a 3‐day co‐feeding period between each prey change.  相似文献   

13.
Daily food intakes, optimal feeding regimes and food concentrations for laboratory reared Paralithodes camtschaticus (Tilesius, 1815) larvae were investigated. Artemia nauplii hatched at standard conditions were used as food. Daily food intakes of zoeae I–IV at 7–8 °C comprised 11.3, 22.4, 33.2, and 41.8 nauplii individuals (ind)?1 day?1, respectively, taking into account that wet weight of Artemia nauplii used for the experiments constituted 0.026 mg, dry weight 0.0042 mg. Optimal initial Artemia nauplii concentrations for feeding zoeae I–IV was determined as 400–600, 600–800, 800–1000 and 1000–1200 nauplii L?1 respectively. Recommendations on using Artemia nauplii as food for red king crab larvae were outlined on the basis of experimental results. Growth, development and survival rates of zoeae I–IV reared in recycling water system at 7–8 °C and fed Artemia nauplii according to these recommendations were described.  相似文献   

14.
Two feeding experiments were conducted to determine if Brachionus plicatilis and Artemia salina nauplii were ingested by mud crab Scylla serrata larvae. In the first experiment, larvae were fed with increasing densities of Artemia nauplii with or without Brachionus to determine consumption with increasing densities of Artemia and with increasing zoeal stage. This experiment also aimed to determine if the presence of Brachionus as an alternative prey influenced the intake of Artemia by the crab larvae. There was generally an increase in intake with increasing densities of Artemia and increased consumption of Artemia as the larvae grew. Consumption of Brachionus was consistently high in all zoeal stages. There was a significant reduction in the intake of Brachionus with increasing consumption of Artemia in the early zoeal stages (Z1, Z2, Z3), but at later stages (Z4, Z5) the intake of Artemia was no longer affected by the presence of Brachionus. In the second experiment, daily ingestion within instar of zoeal stages and megalopa were compared. There was an increased consumption of Artemia nauplii on the day before molting and increased ingestion of Brachionus on the day after larvae had molted, except at Z3. Megalopae exhibited a decline in Artemia nauplii intake on the days before metamorphosis to crablet.  相似文献   

15.
Microbound feeds have been well accepted by shrimps and farmers in many penaeid shrimp hatcheries. The present study focused on an adequate level of replacement of Artemia nauplii and microalgae by a microbound diet for rearing Litopenaeus setiferus (Burkenroad) larvae. A microbound diet (MBD) consisting of fishmeal, squid meal, shrimp meal, yeast meal and soybean meal was used. The first experiment was designed to obtain the optimum level of MBD to complete the live feeding schedule, from Protozoea (PZIII) to Mysis (MIII). The experimental levels of the microbound diet tested were 2, 4, 6 and 8 mg MBD L?1 day?1. The next step was to determine the Artemia nauplii replacement level from PZI to MIII by MBD. These experiments were carried out either in the presence (Experiment 2) or in the absence of algae (Experiment 3). Four replacement levels were tested: 0% (4 mg MBD L?1 day?1: 1 Artemia nauplii mL?1), 40% (5.5 mg MBD L?1 day?1: 0.6 Artemia nauplii), 60% (6.5 mg MBD L?1 day?1: 0.4 Artemia nauplii) and 100% (8 mg MBD L?1 day?1: 0 Artemia nauplii). In all experiments growth, survival, development, quality index (QI) and performance index (PI), were used to determine the optimum concentration of microbound diet. Results showed that 6 mg MBD L?1 day?1 can be recommended as a complement to live food for L. setiferus larvae from PZIII to MIII. In the presence of algae, maximum growth and survival may be obtained in 40–60% (5.5–6.5 mg MBD L?1 day?1) of Artemia nauplii replacement levels. In the absence of algae, the Artemia nauplii replacement resulted in slower development, less salinity resistance, lower growth and lower survival than was obtained in larvae fed with algae.  相似文献   

16.
An important constraint to the commercial rearing of the marine ornamental shrimp Lysmata debelius is high larval mortality during early stages due to inappropriate procedures of larval collection and not feeding a live prey before one day elapsed after hatching. This incorrect feeding practice is commonly adopted in larval rearing of L. debelius and other ornamental marine shrimps because it is wrongly assumed that reserves of the newly hatched are enough for the first 24 h of life. Present work demonstrates that captive newly hatched L. debelius larvae ingest microalgae within minutes after hatching. When fed solely with Artemia nauplii, they have acceptable survival rates with stocking densities at or below 50 larval L–1; but when nauplii are combined with microalgae, survival is further improved to zoea 2 as initial mortality is reduced, and higher stocking densities are supported (up to 75 larvae L–1). The microalgae used were Rhinomonas reticulata, Skeletonema costata and Tetraselmis chuii. Higher survival through metamorphosis to zoea 2 was always observed for groups fed combinations of microalgae including Tetraselmis chuii. It is recommended that, larval collection methods ensure that larvae are fed microalgae within 2–3 h of release.  相似文献   

17.
The effects of the density and type of food on oxygen consumption and ingestion rate of larvae of the white shrimp Penaeus setiferus fed diatoms Chaetoceros ceratosporum, flagellates Tetraselmis chuii and Artemia franciscana nauplii were analysed. Diatoms, flagellates and Artemia nauplii were fed at five densities from 10 to 5 × 103 cells mL?1, 0 to 4 × 103 cells mL?1, and 0.1, 0.5, 1.0, 1.5 and 2 nauplii mL?1, respectively. In three experiments, two of three types of food were maintained constant at concentrations of 30-40 × 103 cells mL?1 (diatoms), 2 × 103 cells mL?1 (flagellates) and 1 Artemia nauplii mL?1. The oxygen consumption in three experiments increased with larval stage, reaching maximum values in Mill except at lower feed concentrations. A maximum ingestion peak in MI was recorded in larvae fed diatoms, whereas that peak was observed in Mil in larvae fed flagellates. The maximum ingestion rate of Artemia nauplii was observed in Mill. Feed concentrations that produced an optimum metabolic rate as a consequence of equilibrium between ingested food and larval stages were obtained with 20 and 30 × 103 cells mL?1 of C. ceratosporum, 2 and 3 × 103 cells mL?1 of T. chuii, and 1.0 Artemia nauplii mL?1. These concentrations would be the most suitable for producing P. setiferus postlarvae.  相似文献   

18.
Larval rearing of many marine organisms is dependent on the availability of live food. The aim of this study was to optimize larval first feeding for the mud shrimp Upogebia pusilla, by comparing the effectiveness of the two most commonly used live feeds: Brachionus plicatilis and Artemia sp. nauplii. Survival, larval duration, molt synchronism and megalop size were compared using five feeding treatments: Artemia from zoea I to IV (B0), Brachionus during zoea I and Artemia from zoea II to IV (B1), Brachionus during zoea I and II and Artemia during zoea III and IV (B2), Brachionus from zoea I to III and Artemia during zoea IV (B3) and Brachionus from zoea I to IV (B4). The proportion of larvae that reached the megalop stage was 0.00% in treatment B0, 3.33% in treatment B1, 33.33% in treatment B2, 66.67% in treatment B3 and 76.67% in treatment B4. Larvae fed on rotifers until zoea III or zoea IV stages had a higher survival but no differences were found either in time to reach megalop or in megalop size. This study demonstrates that rotifers are essential for the survival and development of U. pusilla early larval stages but that rotifers can be successfully replaced by Artemia nauplii in the zoea IV stage.  相似文献   

19.
Mulloway (Argyrosomus japonicus) is an emerging aquaculture species in Australia, but there is a need to improve the production technology and lower costs, including those associated with larval rearing and live feeds. Three experiments were conducted to determine appropriate weaning strategies from live feeds, rotifers (Brachionus plicatilis) and Artemia, to cheaper formulated pellet diets. Experiment 1 examined the effects of feeding Artemia at different levels [0%, 50% or 100% ration of Artemia fed from 18 days after hatching (dah); based on current hatchery protocols] and a pellet diet from two larval ages (14 or 23 dah). In addition, rotifers were supplied to larvae in all treatments for the duration of the experiment (14–29 dah), at which time all larvae were successfully weaned onto the pellet diet. No significant (P>0.05) differences existed between the growth of fish fed a 50% and 100% ration of Artemia; however, fish fed a 0% ration of Artemia had significantly (P<0.05) reduced growth. The time of pellet introduction had no significant (P>0.05) effects on the growth of larvae. Experiments 2 and 3 were designed to determine the size [total length (TL), mm] at which mulloway larvae selected Artemia equally or in preference to rotifers, and pellet (400 μm) equally or in preference to Artemia respectively. Each day, larvae were transferred from a holding tank to experimental vessels and provided with rotifers (2 mL?1), Artemia (2 mL?1) or a combination of rotifers (1 mL?1) and Artemia (1 mL?1) (Experiment 2), and Artemia (2 mL?1), a pellet diet or a combination of Artemia (1 mL?1) and a pellet diet that was broadcast every 15 min (Experiment 3). After 1 h, a sub‐sample of larvae was randomly selected from each replicate vessel (n=5) and the gut contents were examined under a light microscope. Mulloway larvae began selecting Artemia equally to rotifers at 5.2 ± 0.5 mm TL and selected pellets equally to Artemia at 10.6 ± 1.8 mm TL. Our results have led to the establishment of weaning protocols for larval mulloway, which optimize larval growth while reducing feed cost by minimizing the amount of Artemia used during production.  相似文献   

20.
Heterobranchus longifilis larvae were reared over a 35 d period to evaluate the effects of stocking densities and feeding regimes on growth and survival. In experiment 1, larvae (12.3?±?2.1 mg) were stocked into glass aquaria at densities of 1, 2, 5, 10, 15, 20, and 25 larvae L?1. Larvae were fed on Artemia nauplii ad libitum. Significant variations in terms of growth performance and feed utilization occurred at all levels of density treatments. Specific growth rate (SGR), body weight gain (BWG), and feed efficiency (FE) of the larvae decreased significantly as density increased. However, survival rate increased with the increase of stocking density. In experiment 2, larvae (13.4?±?1.1 mg) stocked at a density of 15 larvae L?1, in the same conditions as experiment 1, were fed on three different regimes: Artemia nauplii; 35%?protein beef brain; and 35%?protein commercial catfish feed (CN+). SGR, BWG, and coefficient of variation (CV) of larvae fed on Artemia nauplii were significantly higher than those fed on beef brain and CN+. The survival rate of larvae fed on beef brain was significantly higher (88.40?±?9.75%) than those of Artemia (69.21?±?6.69%) and CN+ (40.40?±?6.22%). The results of this study suggest that the optimum stocking density is 15 larvae L?1 and the beef brain can be used as alternative feed to Artemia in rearing H. longifilis larvae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号