首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Larval stages of the Pacific white shrimp, Litopenaeus vannamei (Boone) were fed standard live diets of mixed microalgae from the first to the third protozoea (PZ1 to PZ3), followed by Artemia nauplii until post‐larvae 1 (PL1). Trypsin enzyme activity for each larval stage was determined using N‐α‐p‐toluenesulphonyl‐l ‐arginine methyl ester (TAME) as a substrate. Results were expressed as enzyme content to assess ontogenetic changes during larval development. Tissue trypsin content (IU µg?1 DW for each larval stage) was significantly highest at the PZ1 stage and declined through subsequent stages to PL1. This contrasts with previously observed patterns of trypsin development in Litopenaeus setiferus (Linnaeus) and other penaeid genera, which exhibit a peak in trypsin activity at the third protozoea/first mysis (PZ3/M1) larval stage. Litopenaeus vannamei larvae transferred to a diet of Artemia at the beginning of the second protozoea (PZ2) stage were significantly heavier on reaching the first mysis stage (M1) than those fed algae, while survival was not significantly different between treatments. At both PZ2 and PZ3 stages, trypsin content in larvae feeding on Artemia was significantly lower than in those feeding on algae. The rapid decline in trypsin content from PZ1 and the flexible enzyme response from PZ2 suggest that L. vannamei is physiologically adapted to transfer to a more carnivorous diet during the mid‐protozoeal stages.  相似文献   

2.
The effect of feeding scheme and prey density on survival and development of Eriocheir sinensis zoea larvae was studied in three experiments. Different combinations and densities of rotifers (Brachionus rotundiformis) and newly hatched Artemia nauplii were fed to zoea larvae. Average survival at each stage, larval development (larval stage index, LSI), duration of zoeal stage and individual megalopa dry weight were compared among treatments. This study revealed that, under the experimental conditions, rotifers should be replaced with Artemia between the zoea 3 (Z3) and the zoea 4 (Z4) stage. The optimal rotifer feeding densities for zoea 1 (Z1) and zoea 2 (Z2) were 15 and 20 mL?1 respectively, while the optimal Artemia feeding density for Z3, Z4 and zoea 5 (Z5) was 3, 5 and 8 mL?1 respectively. Further trials in production scale are recommended.  相似文献   

3.
The tolerance of Litopenaeus vannamei larvae to increasing concentrations of total ammonia nitrogen (TAN) using a short‐term static renewal method at 26°C, 34 g L?1 salinity and pH 8.5 was assessed. The median lethal concentration (24 h LC50) for TAN in zoea (1‐2‐3), mysis (1‐2‐3) and postlarvae 1 were, respectively, 4.2‐9.9‐16.0; 19.0‐17.3‐17.5 and 13.2 mg L?1TAN (0.6‐1.5‐2.4; 2.8‐2.5‐2.6 and 1.9 mg L?1 NH3‐N). The LC50 values obtained in this study suggest that zoeal and post‐larval stages are more sensitive to 24 h ammonia exposure than the mysis stage of L. vannamei larvae. On the basis of the ammonia toxicity level (24 h LC50) at zoea 1, we recommend that this level does not exceed 0.42 mg L?1 TAN – equivalent to 0.06 mg L?1 NH3‐N – to reduce ammonia toxicity during the rearing of L. vannamei larvae.  相似文献   

4.
A series of rearing trials in small 1 L cones and large tanks of 30–100 L were carried out to develop optimal rearing techniques for mud crab (Scylla paramamosain) larvae. Using water exchange (discontinuous partial water renewal or continuous treatment through biofiltration) and micro‐algae (Chlorella or Chaetoceros) supplementation (daily supplementation at 0.1–0.2 million cells mL−1 or maintenance at 1–2 millions cells mL−1), six different types of rearing systems were tried. The combination of a green‐water batch system for early stages and a recirculating system with micro‐algae supplementation for later stages resulted in the best overall performance of the crab larvae. No clear effects of crab stocking density (50–200 larvae L−1) and rotifer (30–60 rotifers mL−1) and Artemia density (10–20 L−1) were observed. A stocking density of 100–150 zoea 1 (Z1) L−1, combined with rotifer of 30–45 mL−1 for early stages and Artemia feeding at 10–15 nauplii mL−1 for Z3–Z5 seemed to produce the best performance of S. paramamosain larvae. Optimal rations for crab larvae should, however, be adjusted depending on the species, larval stage, larval status, prey size, rearing system and techniques. A practical feeding schedule could be to increase live food density from 30 to 45 rotifers mL−1 from Z1 to Z2 and increase the number of Artemia nauplii mL−1 from 10 to 15 from Z3 to Z5. Bacterial disease remains one of the key factors underlying the high mortality in the zoea stages. Further research to develop safe prophylactic treatments is therefore warranted. Combined with proper live food enrichment techniques, application of these findings has sustained a survival rate from Z1 to crab 1–2 stages in large rearing tanks of 10–15% (maximum 30%).  相似文献   

5.
Brachionus plicatilis and Artemia nauplii were fed to a number of larval stages of the penaeid prawn Penaeus indicus to determine ingestion rates, larval energy requirements and to establish at which stage larval predation commenced. The raptorial feeding rates were then contrasted on an energy basis with filter feeding rates for P. indicus larvae to compare the relative efficiency of these two feeding mechanisms. Brachionus was first eaten as early as protozoea 1 to protozoea 2, while the maximum ingestion rate of 300 rotifers larva?1 d?1 (1.06 J larva?1 d?1) was obtained during protozoea 3 to mysis 1. Artemia were effectively ingested by P. indicus protozoea 3 (4.1 J larva?1 d?1) to post-larva (8.2 J larva?1 d?1). Daily energy intake rate from filter feeding increased from 1.1 J larva?1 d?1 during protozoea 1 to reach a peak of 5.32 J larva?1 d?1 during mysis 3 after which it declined to 2.66 J larva?1 d?1 during the post-larval stage. This decline in energy intake from filter feeding with a concomitant increase in energy intake from Artemia predation demonstrates a predominant feeding mode changeover point during mysis 3. Energy intake was consistently low with Brachionus, indicating that it may be unnecessary for commercial culture purposes.  相似文献   

6.
Larval rearing of many marine organisms is dependent on the availability of live food. The aim of this study was to optimize larval first feeding for the mud shrimp Upogebia pusilla, by comparing the effectiveness of the two most commonly used live feeds: Brachionus plicatilis and Artemia sp. nauplii. Survival, larval duration, molt synchronism and megalop size were compared using five feeding treatments: Artemia from zoea I to IV (B0), Brachionus during zoea I and Artemia from zoea II to IV (B1), Brachionus during zoea I and II and Artemia during zoea III and IV (B2), Brachionus from zoea I to III and Artemia during zoea IV (B3) and Brachionus from zoea I to IV (B4). The proportion of larvae that reached the megalop stage was 0.00% in treatment B0, 3.33% in treatment B1, 33.33% in treatment B2, 66.67% in treatment B3 and 76.67% in treatment B4. Larvae fed on rotifers until zoea III or zoea IV stages had a higher survival but no differences were found either in time to reach megalop or in megalop size. This study demonstrates that rotifers are essential for the survival and development of U. pusilla early larval stages but that rotifers can be successfully replaced by Artemia nauplii in the zoea IV stage.  相似文献   

7.
The present study aimed to evaluate the effect of the supplementation of different crab zoeas to enriched Artemia basal diet for Octopus vulgaris paralarvae during the first month of life. Paralarvae were fed using enriched Artemia nauplii alone and Artemia co‐fed either first zoea stages of Grapsus adscensionis or Plagusia depressa. The experiment was carried out over a period of 28 days, in 0.12 m3 tanks with a flow‐through rearing system. Growth in dry weight as well as mantle length and width were assessed weekly. Additionally, prey and paralarvae fatty acid composition and digestive gland (DG) histology were evaluated. Addition of low amounts of crab zoeas (approx. 100 indv. L?1 day?1) provided during critical life stages of O. vulgaris proved to be good enough to improve paralarvae growth and survival in comparison with those fed exclusively on enriched Artemia. These results were supported by the finding of a higher number of glycoprotein absorption vacuoles in the DG from paralarvae co‐fed crab zoeas, suggesting a higher feeding activity. In addition, fatty acid analysis of crab zoea showed that these are good sources of dietary arachidonic and eicosapentaenoic acids during the octopus planktonic life stage, whereas the low docosahexaenoic (DHA) content suggests the use of additional DHA sources or higher zoea densities to meet paralarvae nutritional demand to carry out a successful metamorphosis to benthic life.  相似文献   

8.
Larvae of two caridean shrimp species, Macrobrachium rosenbergii (De Man) and Palaemon elegans Rathke, were fed live and artificial diets. P. elegans larvae fed exclusively live Artemia salina (15 nauplii mL?1) developed into first postlarval stage (PL1) within 12 days at a temperature of 25°C and salinity 32.5 g L?1. Their survival and mean total length at this stage were 88.5% and 6.7 mm respectively. M. rosenbergii larvae fed on 15 Artemia mL?1 started to metamorphose into PLl within 24 days at 29–30°C and 12 g L?1. Attempts to completely replace live Artemia for rearing P. elegans during early stages failed, and only a partial replacement was achieved for the larvae of both species. P. elegans larvae survived (49%) solely on a microgranulated diet (Frippak PL diet) from stage zoea (Z) 4–5 to PL1. Similarly, a microencapsulated diet (Frippak CD3) also sustained M. rosenbergii larvae from Z5–6 to PL1 with a 28% survival. Development of the larvae of both species was retarded by 2–3 days and their survivals were lower than those fed on the live diet. The inability of the early larvae of these caridean species to survive on artificial diets is attributed to their undeveloped guts and limited enzymatic capabilities. Trypsin activity in the larvae was determined for all larval stages. It was found that the highest trypsin activity, at stage Z4–5 in P. elegans and at stage Z5–6 in M. rosenbergii, coincides with a rapid increase in the volume of the hepatopancreas and the formation of the filter apparatus. These morphological changes in the gut structure appear to enable the larvae to utilize artificial diets after stage Z5–6. Low larval trypsin activities may be compensated by the easily digestible content of their live prey during early larval stages (Z1–Z4/5) and by longer gastroevacuation time (GET) and almost fully developed guts during later stages.  相似文献   

9.
Two experiments were conducted regarding the effect of poly‐β‐hydroxybutyrate (PHB) on the survival and development of Chinese mitten crab (Eriocheir sinensis Milne‐Edwards) larvae. Different PHB delivery approaches (particulate, enriched in filter feeding prey, or a combination of both) and feeding levels were applied to crab larvae from the zoea 2 (Z2) up to the megalopa stage. Bio‐encapsulation into rotifers and Artemia at a PHB dose of 100 mg L?1 seemed an efficient approach to deliver PHB to the larvae and resulted in a significantly enhanced survival, development rate and osmotic tolerance. The results indicate that PHB should only be applied as a feed additive rather than as a food source, and that the availability of an adequate amount of nutrients seems to be of major importance for the PHB to induce these beneficial effects.  相似文献   

10.
In three separate experiments, harpaticoid copepods Tisbe monozota (alive and dead) and a microparticulate microbound diet were evaluated as alternatives to live Artemia nauplii as food, beginning at either stage PZ2 or M1, in the larval culture of Litopenaeus vannamei. Larvae were cultured in 2 L round bottom flasks at a density of 150 L− 1 (Experiment 1) and 100 L− 1 ( 3.2 and 3.3) at 28 °C, 35‰ salinity and 12:12 LD photoperiod, and fed 4×/day- 1. Larvae were initially fed a mixture of phytoplankton to stages PZ2 or M1 and then fed either live Artemia, live or dead copepods, or a microparticulate microbound diet. The experiments were terminated and all larvae were harvested when more than 80% of larvae had molted to postlarvae 1 (PL1) within any flask representing any of the treatments. The comparative value of the different diets and feeding regimes was determined by mean survival, mean dry weight and total length of individual larva, and percentage of surviving larvae that were PL1. Trypsin activity of samples of larvae from each treatment was also determined. The microparticulate microbound diet effectively served as a complete substitute for Artemia nauplii when fed beginning at stage M1. When fed at the beginning of the PZ2 stage, survival was comparable to that of larvae fed Artemia, but mean dry weight, mean total length, and percent of surviving larvae that were PL1 generally were significantly less. Responses to the feeding of copepods, whether fed dead or live, as a substitute were generally significantly less than those of larvae fed either the Artemia nauplii or the microparticulate diet. Values of trypsin activity (10− 5 IU/μg- 1 dry weight) corresponded to the relative proportions of the different larval stages within a treatment, with higher activity being characteristic of early stages. Previously demonstrated successful results with another species of crustacean suggest that the microparticulate microbound diet has characteristics that should be effective in the culture of the carnivorous stages of other crustacean and fish larvae that are currently fed live Artemia nauplii.  相似文献   

11.
This study aimed at (1) evaluating the efficacy of live food organisms (Artemia and natural zooplankton) and an artificial diet in the larval rearing of African carp Labeo parvus and (2) determining appropriate rearing conditions. After yolk sac resorption, the larvae were separated into five different feeding trials with two replicates. At the end of the larval rearing period (28 days post‐hatching), the highest (94.6%) and the lowest (53.7%) cumulative survival rates were found when larvae were fed with natural zooplankton for 7 days followed by Nippai food for 21 days, and when larvae were fed from the beginning of exogenous feeding with Nippai food only respectively. The significant highest body weight (351.6 mg), total length (34.4 mm) and specific growth rates (15.5%day?1) were recorded when the larvae were fed with Artemia nauplii for 14 days followed by Nippai food for 14 days. The lowest growth performance (body weight and specific growth rates) were obtained when larvae were fed exclusively Nippai food. These results indicate that L. parvus can be successfully cultured in indoor nursery systems from hatching to the early juvenile stage.  相似文献   

12.
Blue king crab (Paralithodes platypus) larvae were cultivated to test the effects of diet, temperature and rearing density. Dietary treatments included no feeding (unfed), Artemia nauplii enriched with diatoms Thalassiosira nordenskioeldii (THAL), unenriched Artemia fed in addition to Thalassiosira (A+THAL) and a control diet of Artemia enriched with frozen Isochrysis paste (ISO 6). Trials were conducted at 6 °C, and a rearing density of 10 zoea L?1, with six replicates per treatment. The ISO 6 diet was also tested at 3 °C (ISO 3) and 9 °C (ISO 9), and at densities of 20 (ISO 20) and 40 (ISO 40) zoea L?1. Survival of zoea larvae fed the A+THAL diet (91.7%) was significantly higher than all others, whereas unfed zoea larvae died within 2 weeks. Temperature and rearing density had no significant effects on survival. Time required to reach stage C1 was significantly greater at 3 °C (109 days) than at 6 °C (70 days), but did not decrease further at 9 °C. After reaching the postlarval (glaucothoe) stage, half of the replicates in the ISO 20 and ISO 40 treatments were fed continuously, but survival did not differ significantly from unfed glaucothoe. We conclude that blue king crab larvae are not lecithotrophic and can be cultivated with high survival using the proper diet. These techniques can be used to produce large numbers of juvenile crab for laboratory research, or could be modified for use in stock‐enhancement programmes.  相似文献   

13.
An important constraint to the commercial rearing of the marine ornamental shrimp Lysmata debelius is high larval mortality during early stages due to inappropriate procedures of larval collection and not feeding a live prey before one day elapsed after hatching. This incorrect feeding practice is commonly adopted in larval rearing of L. debelius and other ornamental marine shrimps because it is wrongly assumed that reserves of the newly hatched are enough for the first 24 h of life. Present work demonstrates that captive newly hatched L. debelius larvae ingest microalgae within minutes after hatching. When fed solely with Artemia nauplii, they have acceptable survival rates with stocking densities at or below 50 larval L–1; but when nauplii are combined with microalgae, survival is further improved to zoea 2 as initial mortality is reduced, and higher stocking densities are supported (up to 75 larvae L–1). The microalgae used were Rhinomonas reticulata, Skeletonema costata and Tetraselmis chuii. Higher survival through metamorphosis to zoea 2 was always observed for groups fed combinations of microalgae including Tetraselmis chuii. It is recommended that, larval collection methods ensure that larvae are fed microalgae within 2–3 h of release.  相似文献   

14.
The nematode Panagrellus redivivus (Linné) has been suggested as a source of live food in the rearing of larval fish and shrimp species. This study tested the use of P. redivivus in the early rearing of the bottom‐feeding catfish Synodontis petricola (Matthes). A comparison of feeding rates of 5000–10 000 nematodes larva−1 day−1 showed that fish receiving 5000 nematodes larva−1 day−1 grew faster than those fed a dry diet, but slower than treatments fed 200 and 600 Artemia larva−1 day−1. Enrichment of nematodes with SuperSelco® improved fish growth relative to a non‐enriched control treatment, with both treatments receiving 5000 nematodes larva−1 day−1. In the first two trials, feeding commenced 2 days after hatching. In the third study, fish were fed nematodes 6 days after hatching and there was no difference in growth between Artemia‐fed fish (600 Artemia larva−1 day−1) and fish fed 5000 nematodes larva−1 day−1. Thus, it is suggested to feed S. petricola at a nematode density of at least 10 000nematodes larva−1 day−1 in order to achieve growth comparable to that of fish fed Artemia, or, alternatively, to feed 5000 nematodes larva−1 day−1 to improve growth relative to that achieved with a dry diet. Furthermore, nematodes may be enriched with essential fatty acids to improve the growth of S. petricola larvae.  相似文献   

15.
Two feeding experiments were conducted to determine if Brachionus plicatilis and Artemia salina nauplii were ingested by mud crab Scylla serrata larvae. In the first experiment, larvae were fed with increasing densities of Artemia nauplii with or without Brachionus to determine consumption with increasing densities of Artemia and with increasing zoeal stage. This experiment also aimed to determine if the presence of Brachionus as an alternative prey influenced the intake of Artemia by the crab larvae. There was generally an increase in intake with increasing densities of Artemia and increased consumption of Artemia as the larvae grew. Consumption of Brachionus was consistently high in all zoeal stages. There was a significant reduction in the intake of Brachionus with increasing consumption of Artemia in the early zoeal stages (Z1, Z2, Z3), but at later stages (Z4, Z5) the intake of Artemia was no longer affected by the presence of Brachionus. In the second experiment, daily ingestion within instar of zoeal stages and megalopa were compared. There was an increased consumption of Artemia nauplii on the day before molting and increased ingestion of Brachionus on the day after larvae had molted, except at Z3. Megalopae exhibited a decline in Artemia nauplii intake on the days before metamorphosis to crablet.  相似文献   

16.
We investigated the first‐feeding success of two species: southern bluefin tuna (Thunnus maccoyii) and yellowtail kingfish (Seriola lalandi) to determine if similar culture parameters can be used for both, especially when S. lalandi are held in the same tanks as prey for T. maccoyii. The feeding performance (proportion and intensity) was examined in three short‐duration (4 h) experiments: prey density, prey size and larval density. Increasing prey density from 0.5 to 25 rotifers mL?1 increased the proportion of T. maccoyii and S. lalandi larvae feeding. Prey size alone did not affect feeding in either species. Seriola lalandi had a decreased proportion of larvae feeding when larval density reached 50 larvae L?1 concurrent with a gradual increase in feeding intensity between 2 and 50 larvae L?1. In T. maccoyii, there was no pattern to the effect of larval density on the proportion of larvae feeding. The overall feeding performance of larvae was higher in T. maccoyii than S. lalandi. Increased prey density improved the first‐feeding ability of T. maccoyii and S. lalandi larvae. The effect of larval density on S. lalandi feeding requires further investigation, to ensure that they remain feeding when provided as prey in T. maccoyii culture. The identification of factors in this study, which increase first‐feeding success, will improve the culture of both species.  相似文献   

17.
This study aimed at evaluating the effects of two starvation modes (fasting‐feeding mode and feeding‐fasting mode) on survival, growth and development of mysis larvae of Exopalaemon carinicauda. It showed that food restriction significantly affected the survival, growth and development in both starvation modes. With the extension of initial starvation period, a significantly reduced survival rate during metamorphosis was observed. In the fasting‐feeding mode, the duration of metamorphosis was extended and the body lengths of the individuals, which experienced successful metamorphosis to the post‐larval stage 1, were much shorter. In the feeding‐fasting mode, the extension of initial feeding period led to dramatically increased survival rate and body lengths, while there was no significant difference in duration of metamorphosis of those groups that reached to post‐larval stage. The 50% point‐of‐no‐return and the 50% point‐of‐reserve‐saturation were 3.85 days and 4.81 days respectively. The results of this study indicate that E. carinicauda mysis have the ability to withstand or recover from relatively extended starvation, but to ensure the success of commercial seedling, timely and adequate feeding is necessary. The information obtained from this study could provide a basis to optimize the feeding schedule of artificial seedling of E. carinicauda.  相似文献   

18.
The effect of varying levels of dietary n-3 highly unsaturated fatty acid (HUFA) and docosahexaenoic acid/eicosapentaenoic acid (DHA/EPA) ratios on growth, survival and osmotic stress tolerance of Eriocheir sinensis zoea larvae was studied in two separate experiments. In experiment I, larvae were fed rotifers and Artemia enriched with ICES emulsions with 0, 30 and 50% total n-3 HUFA levels but with the same DHA/EPA ratio of 0.6. In experiment II, larvae were fed different combinations of enriched rotifers and Artemia, in which, rotifers were enriched with emulsions containing 30% total n-3 HUFA, but different DHA/EPA ratio of 0.6, 2 and 4; while Artemia were enriched with the same emulsions, but DHA/EPA ratio of 0.6 and 4. In both experiments, un-enriched rotifers cultured on baker's yeast and newly-hatched Artemia nauplii were used as control diets. Larvae were fed rotifers at zoea 1 and zoea 2 stages; upon reaching zoea 3 stage, Artemia was introduced.Experiment I revealed no significant effect of prey enrichment on the survival of megalopa among treatments, but higher total n-3 HUFA levels significantly enhanced larval development (larval stage index, LSI) and resulted in higher individual dry body weight of megalopa. Furthermore higher dietary n-3 HUFA levels also resulted in better tolerance to salinity stress. Experiment II indicated that at the same total n-3 HUFA level, larvae continuously receiving a low dietary DHA/EPA ratio had significantly lower survival at the megalopa stage and inferior individual body weight at the megalopa stage, but no negative effect was observed on larval development (LSI). The ability to endure salinity stress of zoea 3, zoea 5 and megalopa fed diets with higher DHA/EPA ratio was also improved.  相似文献   

19.
Because of the filter‐feeding behavior of shrimp larvae, it is important to define precisely the size of the particle ingested in the different stages until postlarval stage where raptorial habits are more evident than the filter‐feeding lifestyle. Selectivity assays were conducted by using Polystyrene DVB particles with diameter between 1 and 50 μm as food. A group of organisms from each stage were put into the particle suspension for 15 min to let the polystyrene particles be ingested. The particle distribution in the media and the content of the gut of the larvae were characterized with digital image processing analysis. The results were compared using Ivlev selectivity formula, which compares the frequency distribution of each size of the particle in the media and in the gut of larvae. The results of selectivity were adjusted with a third‐order polynomial regression to determine the optimum and preferred size of the food particles for each larval stage between Zoea I and Postlarva I. It is concluded that the different larval stages of Litopenaeus vannamei may be considered as a single group of larvae who ingest foods with size between 5.71 and 20.33 μm. The optimal size of the food ingested was 14.42 μm wide.  相似文献   

20.
The nematode Panagrolaimus sp. was tested as live feed to replace Artemia nauplii during first larval stages of whiteleg shrimp Litopenaeus vannamei. In Trial 1, shrimp larvae were fed one of four diets from Zoea 2 to Postlarva 1 (PL1): (A) Artemia nauplii, control treatment; (NC) nematodes enriched in docosahexaenoic acid (DHA) provided by the dinoflagellate Crypthecodinium cohnii; (N) non‐enriched nematodes; and (Algae) a mixture of microalgae supplemented in C. cohnii cells. In Trial 2, shrimp were fed (A), (NC) and a different treatment (NS) with nematodes enriched in polyunsaturated fatty acids (PUFAs) provided by the commercial product S.presso®, until Postlarva 6 (PL6). Mysis 1 larvae fed nematodes of the three dietary treatments were 300 μm longer (3.2 ± 0.3 mm) than control larvae. At PL1, control shrimp were 300 μm longer (4.5 ± 0.3 mm) than those fed DHA‐enriched or PUFAs‐enriched nematodes. No differences were observed in length and survival at PL6 between control larvae and those fed DHA‐enriched nematodes (5.1 ± 0.5 mm; 33.1%–44.4%). Shrimp fed microalgae showed a delay in development at PL1. This work is the first demonstration of Panagrolaimus sp. suitability as a complete substitute for Artemia in rearing shrimp from Zoea 2 to PL6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号