首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effect of bentonite characteristics on the elemental composition of wine   总被引:3,自引:0,他引:3  
Physical, chemical, and mineralogical characteristics of six bentonites were assessed and related to their elemental release to wine. Extraction essays of bentonites in wine at three pH levels were carried out. The multielemental analysis of bentonites and wines was performed by atomic absorption spectrometry (AAS) and inductively coupled plasma mass spectrometry (ICP-MS). Bentonite addition resulted in significantly higher concentrations of Li, Be, Na, Mg, Al, Ca, Sc, V, Mn, Fe, Co, Ni, Ga, Ge, As, Sr, Y, Zr, Nb, Mo, Cd, Sn, Sb, Ba, W, Tl, Bi, and W. In contrast, the concentrations of B, K, Cu, Zn, and Rb significantly decreased. A strong correlation between Na concentrations of treated wines and its content in bentonite exchange complex was observed. Al and Fe contents reflected bentonite extractable aluminous and ferruginous constituents, while Be, Mg, Ca, V, Mn, Ni, Ge, Zr, Nb, Mo, Sn, Sb, Tl, Pb, and U concentrations reflected the elemental composition of bentonites. Several nonconformances with OIV specifications demonstrated the need for an effective control.  相似文献   

2.
Trace element fingerprints were deciphered for wines from Canada's two major wine-producing regions, the Okanagan Valley and the Niagara Peninsula, for the purpose of examining differences in wine element composition with region of origin and identifying elements important to determining provenance. Analysis by ICP-MS allowed simultaneous determination of 34 trace elements in wine (Li, Be, Mg, Al, P, Cl, Ca, Ti, V, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Br, Rb, Sr, Mo, Ag, Cd, Sb, I, Cs, Ba, La, Ce, Tl, Pb, Bi, Th, and U) at low levels of detection, and patterns in trace element concentrations were deciphered by multivariate statistical analysis. The two regions were discriminated with 100% accuracy using 10 of these elements. Differences in soil chemistry between the Niagara and Okanagan vineyards were evident, without a good correlation between soil and wine composition. The element Sr was found to be a good indicator of provenance and has been reported in fingerprinting studies of other regions.  相似文献   

3.
This paper describes the accumulation pattern of 42 mineral elements in Vitis vinifera L. berries during development and ripening and their distribution in berry skin, seeds, and flesh around harvest time. Grape berries were sampled in two different vineyards with alkaline soil and analyzed using a ICP-MS. Although elemental amounts were significantly different in the grapes from the two vineyards, the accumulation pattern and percentage distribution in different parts of the berries were generally quite similar. Ba, Eu, Sr, Ca, Mg, Mn, and Zn accumulate prior to veraison. Al, Ce, Dy, Er, Ga, Gd, Ho, La, Nd, Pr, Sm, Sn, Zr, Th, Tm, U, Y, and Yb accumulate mainly prior to veraison but also during ripening. Ag, As, B, Cd, Cs, Cu, Fe, Ge, Hg, K, Li, Na, P, Rb, Sb, Se, and Tl accumulate progressively during growth and ripening. With regard to distribution, Ba, Ca, Eu, Fe, Mn, P, Sr, and Zn accumulate mainly in the seeds, Al, B, Ga, Sn, and the rare earths analyzed, except for Eu, accumulate mainly in the skin, and Ag, As, Cd, Cs, Cu, Ge, Hg, K, Li, Mg, Na, Rb, Sb, Se, Th, Tl, U, and Zr accumulate mainly in the flesh. A joint representation of the accumulation and distribution patterns for the elements in the berry is also given.  相似文献   

4.
Twenty-three metallic elements, including almost all essential and toxic metals such as lead, cadmium, mercury, arsenic, silver, and thallium, have been quantified in 35 types of bottled and canned Polish beer by using double-focusing sector field inductively coupled plasma mass spectrometry (ICP-MS) with ultrasonic nebulization. The samples were digested using concentrated HNO3 in closed PTFE vessels and applying microwave energy under pressure. The means and medians of the concentrations of Rb, Mn, and Fe were on the order of 200 ng/mL; Cu, Zn, V, Cr, Sn, As, Pb, and Ni were detected at 1-5 ng/mL; Ag, Ga, Cd, Co, Cs, Hg, U, and Sb were found at < 1 ng/mL; and In, Tl, Bi, and Th were present at < 0.1 ng/mL. The concentrations of Hg, Cd, As, Pb, and Zn were 1-3 orders of magnitude lower than proposed tolerance limits. The interdependences among determined trace elements were examined using the principal component analysis (PCA) method. The PCA model explained 74% of the total variance. The metals tend to cluster together (As, Tl, Cs, Sn, Th, Bi, and Hg; Cd and Co; Cs and Cr; Fe and Zn; Mn and V).  相似文献   

5.
Mineral concentrations of onions (Allium cepa L.) grown under various conditions, including factors (fertilization, crop year, variety, and provenance), were investigated to clarify how much each factor contributes to the variation of their concentrations. This was because the mineral concentrations might be affected by various factors. The ultimate goal of this study was to develop a technique to determine the geographic origins of onions by mineral composition. Samples were onions grown under various conditions at 52 fields in 18 farms in Hokkaido, Japan. Twenty-six elements (Li, Na, Mg, Al, P, K, Ca, Mn, Fe, Co, Ni, Cu, Zn, Rb, Sr, Y, Mo, Cd, Cs, Ba, La, Ce, Nd, Gd, W, and Tl) in these samples were determined by inductively coupled plasma atomic emission spectrometry and inductively coupled plasma mass spectrometry. Fertilization conditions and crop years of onions caused variations of P, Ni, Cu, Rb, Sr, Mo, Cs, and Tl concentrations in onions; different onion varieties also showed variations in numerous element concentrations. However, the variations of mineral compositions of onions by these factors were smaller than the differences between production places with a few exceptions. Furthermore, Na, Rb, and Cs in group IA of the periodic table, Ca, Sr, and Ba in group IIA, and Zn and Cd in group IIB showed similar concentration patterns by group; this result demonstrated that elements in the same periodic groups behaved similarly in terms of their absorption in onions.  相似文献   

6.
The concentrations of 48 trace elements (Li, Be, Sc, V, Cr, Co, Ni, Cu, Zn, Ga, As, Br, Rb, Sr, Y, Zr, Nb, Mo, Ag, In, Cd, Sn, Sb, I, Cs, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, W, Tl, Pb, Bi, Th and U) in 14 soils derived from limestone, sampled at three sites, are compared with the concentrations in 500 soil samples derived from a variety of other parent materials. The 500 samples were collected from 75 sites nationwide in order to include the wide range of common soil types in Japan. Most analytical results were obtained by inductively coupled plasma mass spectrometry (ICP-MS), but Cr, As, Br, Zr, Sn, and I concentrations were determined by energy dispersive X-ray fluorescence spectrometry (EDXRF), because the acid dissolution techniques employed in this study were found to be incapable of recovering these elements completely. In order to examine the reliability of analyses, the concentrations of many elements were also determined by EDXRF, inductively coupled plasma-atomic emission spectrometry (ICP-AES), and atomic absorption spectrometry (AAS). Box and whisker diagrams (Tukey plots), constructed using log-transformed values of each element, show clearly that geometric means of nearly all the trace elements in soils derived from limestone are higher than those in soils derived from other parent materials. The only exceptions are Sr, Ag and Eu, though statistical analysis (Student’s t-test) shows that the differences for these three elements were not significant at p < 0.05. Similarly, the observed differences of geometric means for Sc, Br and Ba between limestone soils and other types of soils were also not significant at p < 0.05. It can be concluded, therefore, that the concentrations of the above-mentioned 48 trace elements in soils derived from limestone are significantly higher than those in other types of soils, with the exception of Sc, Br, Sr, Ag, and Ba, though it was necessary to exclude 81 soil samples, developed on scoriaceous (basaltic) volcanic ash from Mt. Fuji, as an exceptional group for comparisons of V and Cu, as these soils contain higher levels of these two elements. The above results can be attributed to the gradual accumulation of trace elements in the limestone soils due to the intense weathering processes.  相似文献   

7.
Duplicate, bulked surface soil samples, from sites 10m apart, were collected at 97 locations 1000 m apart on a regular grid measuring 8x11 km. Data were obtained for Ag, Ba, Be, Cd, Co, Cr, Cu, Li, Mn, Ni, Pb, V and Zn. One field sample was a good predictor of its nearby duplicate for Co, Cu, Ni and Pb, satisfactory for Ba, Be, Cr, Mn and Zn, but poorer for Cr, Li and V. Maps of the variation in precision of the field samples did not reveal any association between abandoned mine sites and high variability. The median coefficient of variation for trace elements in the field duplicates was between 8 and 19.5%. The duplicated field data were averaged to yield a mean soil metal concentration at each sample location. Concentrations of Ba, Be, Cr, Li, Sr and V were comparable with other published values for similar soils in Missouri. Concentrations of Co, Cu, Mn, Ni, Pb and Zn were higher which was explained by pollution from mining activities. A graphical technique was used to calculate background levels for metals in the second group. Samples of forest litter were collected at 12 locations: Ag, Ba, Cd, Mn, Sr and Zn concentrations were higher in the litter whereas Li and V concentrations were higher in the subjacent mineral soil. Computer isoline maps of the distribution of elements revealed an association between areas of high soil Cu, Co, Ni, Pb and Zn and abandoned mines or mineralized rocks.  相似文献   

8.
The concentration of 27 elements was investigated in 10 samples of precipitation from Göttingen, collected during May and September 1972. Göttingen is a non-industrial town of 130000 inhabitants, situated in a rural area, and essentially all the dissolved and undissolved material in rainwater is locally derived. Elemental concentrations in freshwater and shale are used for comparison with the dissolved elements in precipitation and the undissolved residue. The two phases have been separated after evaporation (concentration factors: 15 to 25-times). Phosphorous, Zn, Mn, and Pb are enriched in rainwater, while Si, Mg, Na, Ca, Cl, Fe, Hg, K, Li, and Al are depleted relative to average freshwater. Sulfate, Cd, and Cu have similar concentrations in rain and freshwater. The factors of accumulation between elements in residue and average shale are calculated after normalization to the Al-value. They are: ? 100 for Ag, Hg, Pb; between 10 and 20 for Zn, Cd, P, Cu, Mo; > 2 for Cr, Bi, Ni, Ba, Ti, V ; between 0.9 and 2.0 for Rb, K, Na, Li, Mg, Mn, Fe, Si, Ca; and 0.5 for Tl. The trace element accumulation is due to different anthropogenic sources: combustion of liquid petroleum fuels contributes to Ph, V, Ni, Mo, Hg, and sulfate, combustion of coal to Ba, sulfate, and chloride, and to the. readily volatile elements such as Hg, Cd, Tl, Bi, and Ag, combustion of refuse to Ag, Bi, Pb, Cd, Hg, Zn, Cr, Cu, Ba, and Mo in highly variable amounts. Fertilizers and road salts change the chemistry of soils and indirectly supply P, alkali and alkaline-earth metals to the fly dust. Modest industrial activity is responsible for high Cu and Cr concentrations. Despite the appreciable accumulation of some toxic elements, the precipitation in Göttingen is relatively pure compared to other areas. Favorable geologic conditions around Göttingen decrease the negative influences of potentially harmful airborne elements. The high carbonate content in the dust neutralizes the anthropogenic acids in the rainwater. Furthermore, the toxic trace elements are diluted, especially in the center of Göttingen, by a large amount of airborne dust.  相似文献   

9.
The aim of the present study was to estimate the geochemical background and anomaly threshold values of the surface soils in Kavala, northern Greece. In order to reach this goal, a simple and practical procedure was applied. This procedure included the extraction of 42 major and trace elements by analytical grade HNO3 from 65 surface soil samples, analysis by inductively coupled plasma?Coptical emission spectrometry and inductively coupled plasma?Cmass spectrometry, the distribution of the elemental data displayed on probability graphs (Q-Q plots), and the visualization of the results spatially by GIS software. The results indicated that natural factors mostly influence the elevated concentrations of Al, Ca, Fe, K, Mg, Si, B, Ba, Ce, Ga, Ge, La, Li, Mn Rb, Sb, Se, Sn, Sr, Y, and Zr, while anthropogenic activities mostly influence the elevated concentrations of Ag, As, Cd, Co, Cr, Cs, Cu, Hg, Mo, Ni, Pb, Th, Ti, U, V, W, and Zn. Nevertheless, almost all the elements determined showed their elevated concentrations inside the industrial part of Kavala area, which implies that the anthropogenic activities taking place in the study area, influence importantly the spatial distribution of the elements. The methodology followed in this research seems to be an adequate alternative for soil environmental studies.  相似文献   

10.
Different sample preparation methods were evaluated for the simultaneous multielement analysis of wine samples by inductively coupled plasma optical emission spectrometry (ICP-OES) and inductively coupled plasma mass spectrometry (ICP-MS). Microwave-assisted digestion in closed vessel, thermal digestion in open reactor, and direct sample dilution were considered for the determination of Li, Be, Na, Mg, Al, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Sr, Y, Mo, Cd, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Tl, Pb, and Bi in 12 samples of red wine from Valencia and Utiel-Requena protected designation of origin. ICP-MS allows the determination of 17 elements in most of the samples, and using ICP-OES, a maximum of 15 elements were determined. On comparing the sample pretreatment methodology, it can be concluded that the three assayed procedures provide comparable results for the concentration of Li, Na, Mg, Al, K, Ca, Mn, Fe, Zn, and Sr by ICP-OES. Furthermore, ICP-MS data found for Cu, Pb, and Ba were comparable. Digestion treatment provides comparable values using both total decomposition in open system and microwave-assisted treatment for Cu by ICP-OES and for Cr, Ni, and Zn by ICP-MS. Open vessel total digestion provides excess values for Cr, Mn, Fe, and Zn by ICP-OES and defect values for Se. However, direct measurement of diluted wine samples provided uncomparable results with the digestion treatment for Mn, Cu, Pb, Zn, Ba, and Bi by ICP-OES and for Mg, Cr, Fe, Ni, and Zn by ICP-MS. Therefore, it can be concluded that microwave-assisted digestion is the pretreatment procedure of choice for elemental analysis of wine by ICP-based techniques.  相似文献   

11.
Little is known about solubility and soil solution concentrations of most elements occurring in the solid phase of soils. This study reports changes in solution concentrations of 60 mineral elements following CaCO3 addition to a moderately acid semi‐natural soil, and possible mechanisms accounting for the differing solubility patterns as related to soil acidity are discussed. Soil solutions were obtained by high‐speed centrifuging and ultrafiltration (0.2 μm) of samples at 60% water‐holding capacity of the A horizon of a Cambisol developed from a shale–gneiss moraine and supplied with CaCO3 at 20 rates to yield a soil solution pH range of 5.2–7.8. Concentrations of elements were determined in the solutions by ICP‐AES or (for most elements) ICP‐MS. Several distinct patterns of soil solution concentrations as a function of soil solution pH were demonstrated. Positively related to pH and CaCO3 supply were soil solution concentrations of As, Br, Mo, S, Sb, Se, U, and W, and to a lesser degree, Co, Cr, Hg, Mg, and Sr. Inversely related to pH were concentrations of Al, B, Ba, Bi, Cs, Ce, Eu, Ga, Ge, Fe, Li, K, Rb, Na, Th, and Ti; less distinctly inversely rated were Dy, Er, Gd, Hf, La, Lu, Mn, Nd, Pr, Sm, Sc, Si, Tl, Tm, and Yb. ‘U‐shaped’ relationships to pH were demonstrated for the concentrations of Ag, Cd, Nb, Ni, P, V, and Zr. There were no or irregular relations between pH and concentrations of Be, Cu, Ho, Pb, Ta, and Tb. Differences between elements in their soil solution concentrations as related to total (HNO3‐digestible) concentrations and the solubility of organic C were also treated. Increasing the pH of a soil by adding CaCO3 changes the solubility of most mineral elements substantially, the several distinct patterns observed being governed by, for example, ionic properties and charge, affinity for organic compounds, and pH‐dependent formation and solubility of complexes.  相似文献   

12.
The concentrations of 21 elements were determined in 1 yr old needles of Norway spruce (Picea abies) at 39 different sites: The following soil parameters were measured at 3 different depths: pH, loss on ignition, total and EDTA-extractable concentrations of 28 elements. Needle concentrations were tested for correlations with soil parameters. The following significant correlations were found with pH: Al, Co, Cs, Mn, and Rb in needles increased with decreasing soil pH, whereas Ba and Sr decreased. Needle concentrations of As, Ca, Cu, Fe, K, La, Mg, P, Sb, Sc, V, and Zn had no significant correlations with soil pH. AI and Ba in needles correlated also with A1 and Ba extracted from the soil. Needle concentrations of the pairs Co and Mn, Cs and Rb, and Ba and Sr showed significant positive interelement correlations, whereas concentrations of P and K had negative interelement correlations with Mn.  相似文献   

13.
The multi-element (Ag, Al, Au, Ba, Bi, Ca, Cd, Co, Cr, Cs, Cu, Dy, Er, Fe, Ga, Gd, Ho, In, Ir, La, Lu, Mn, Mo, Nb, Nd, P, Pb, Pd, Pr, Pt, Rb, Re, Rh, Ru, Sb, Sc, Sm, Sn, Sr, Ta, Tb, Th, Ti, Tl, Tm, U, V, Y, Yb, and Zn) concentrations (microg/kg, fresh weight) in potatoes (Solanum tuberosum, Folva) were investigated in this study. The potatoes were grown in two fertilization practices; one with pig slurry and one with calcium ammonium nitrate at three levels of N fertilization (0, 60, and 120 kg of N/ha). The experiment field was located at the Riso National Laboratory Agronomy Farms in Roskilde, Denmark. High-resolution-inductively coupled plasma mass spectrometry (HR-ICPMS) was used for analyses of the samples. The effect of three levels of N fertilization on elemental concentrations of the crop are evaluated by use of discriminant partial least-squares regression (PLS). The results provide useful biological and nutritional information on potatoes.  相似文献   

14.
Sterckeman  T.  Douay  F.  Proix  N.  Fourrier  H.  Perdrix  E. 《Water, air, and soil pollution》2002,135(1-4):173-194
Ag, As, Bi, Cd, Co, Cr, Cu, Hg, In, Ni, Pb, Sb, Se, Sn,Tl, Th, U and Zn contamination of cultivated surfacehorizons has been assessed around two lead and zincsmelters in the North of France. The verticaldistribution of Ag, As, Bi, Cu, Hg, Se, Sb and Tl inthe soils has also been examined. The soils around thelead and zinc smelter at Noyelles-Godault arecontaminated by Ag, As, Bi, Cd, Cu, Hg, In, Ni, Pb, Sb,Se, Sn, Tl and Zn. The original concentration in themost contaminated soils may be multiplied by a factorof around 2 to 100, according to the element. Cadmium,Pb and Zn are the most abundant contaminants. The Pband Zn concentrations are correlated to those of theother contaminants, with the exception of Se. Aroundthe Auby zinc smelter, there is a contamination by thesame elements, but in different proportions, inaddition to Cr contamination. Contamination by Se canreach a depth of around 1 m, whereas contamination byAg, As, Bi, Cu, Hg, Sb and Tl is confined to the top 30cm. Although the contaminant content in most soilsdepends on the distance from the plant, Secontamination would appear to vary to a greater extentaccording to the physico-chemical soil conditions.  相似文献   

15.
The bottom sediments of Sörfjord, West Norway, contain unusually high concentrations of Ag, Ba, Bi, Cd, Cu, In, Pb, Sb, Sn, and Zn. The concentrations of Zn and Pb reach ~ 10% by weight in some sediments. The concentrations of most of the elements are positively correlated, those of Pb, Cd, and Cu with Zn being particularly well developed; correlations also exist between Sb and Zn, and Ag and Cu. The concentrations of the metals in the bottom sediments decrease southwards and northwards from a locality close to a source of industrial waste.  相似文献   

16.
湘中下寒武统黑色页岩土壤的地球化学特征   总被引:11,自引:0,他引:11  
以湘中发育于下寒武统黑色页岩之上的土壤为研究对象,选择安化东坪、烟溪,桃江,宁乡等地的典型土壤及相应成土母岩,利用等离子质谱(ICP-MS)、X射线荧光光谱(XRF)等分析技术,对土壤、成土母岩(黑色页岩)的主量元素和微量元素(包括重金属元素、稀土元素等)进行了较系统的分析测定。结果表明,湘中下寒武统黑色页岩土壤风化作用强烈,风化指数CIA均在73以上。强烈的风化使得土壤具有明显贫CaO、Na2O,而富Al2O3、Fe2O3的化学组成特征。土壤因继承成土母岩(黑色页岩)的特征而富集Mo、Cd、Sn、Sb、U、V、Cr、Co、Ni、Cu、Zn、Tl、Pb、Th等多种重金属元素,其综合富集指数(EI值)平均在3以上,最高达17。地质累计指数(Igeo)评价结果显示,土壤重金属的富集已达到污染程度,土壤存在Cd、Mo、Sb、U、Sn、V、Cu、Tl、Ba等重金属的污染,并以Cd、Mo、Sb等重金属污染最强,达中度至极强污染程度。重金属与主量元素的相关性分析显示,土壤中的重金属主要赋存于黏土矿物和铁氧化物(针铁矿)等矿物相中,其中Ba、Sn、Th、Cu、Sc等主要赋存黏土矿物中;Zn、Ni、Mn、Co、Cd、Tl、Pb等则主要赋存于铁氧化物矿物(针铁矿)中;而Cr、V、Mo、Sb、U等则不受黏土矿物和铁氧化物矿物的控制。此外,不同地区土壤的Zr/Hf、Ta/Nb、Nd/Sm等元素比值相对稳定,依次为36.20、0.085、5.30(n=73),并与相应的成土母岩(黑色页岩)相应值基本一致。土壤与成土母岩具有相同的稀土配分型式,且成土过程中稀土元素不发生明显的分异。微量元素比值和稀土元素特征指示土壤中的重金属来自成土母岩(黑色页岩)本身,为自然污染源。  相似文献   

17.
In line with the present-day ecological and toxicological data obtained by Dutch ecologists, heavy metals/metalloids form the following succession according to their hazard degree in soils: Se > Tl > Sb > Cd > V > Hg > Ni > Cu > Cr > As > Ba. This sequence substantially differs from the succession of heavy elements presented in the general toxicological GOST (State Norms and Standards) 17.4.1.02-8, which considers As, Cd, Hg, Se, Pb, and Zn to be strongly hazardous elements, whereas Co, Ni, Mo, Sb, and Cr to be moderately hazardous. As compared to the general toxicological approach, the hazard of lead, zinc, and cobalt is lower in soils, and that of vanadium, antimony, and barium is higher. The new sequence also differs from that of the metal hazard in soils according to the Russian standard on the maximal permissible concentration of mobile metal forms (MPCmob): Cu > Ni > Co > Cr > Zn. Neither an MPCmob nor an APCmob has been adopted for strongly hazardous thallium, selenium, and vanadium in Russia. The content of heavy metals in contaminated soils is very unevenly studied: 11 of them, i.e., Cu, Zn, Pb, Ni, Cd, Cr, As, Mn, Co, Hg, and Se, are better known, while the rest, much worse, although there are dangerous elements (Ba, V, Tl) among them.  相似文献   

18.
方肇伦  宋达泉  叶炳 《土壤学报》1963,11(2):130-142
土壤中的微量元素在动植物生活中所起的重要作用日益被人们所重视.了解土壤中的这一部分资源对指导微量元素肥料的施用,从而达到农业增产以及对消除由土壤微量元素缺乏或过剩引起的某些动植物病害均具有重要的意义.探讨土壤微量元素在土壤剖面中的累积和迁移及其地理分布规律,则可进一步阐明土壤发生过程与生物地球化学特性的关系.  相似文献   

19.
Lotus japonicus was used to study the distribution and interconnections of 15 elements in plant tissues, including essential and non-essential elements: boron (B), sodium (Na), magnesium (Mg), potassium (K), calcium (Ca), manganese (Mn), iron (Fe), nickel (Ni), copper (Cu), zinc (Zn), arsenic (As), strontium (Sr), molybdenum (Mo), cadmium (Cd) and cesium (Cs). Large amounts of B and Ca accumulated in plant leaves, while Fe, Na, Ni, As and Cd tended to mainly occur in the roots, and Mo was the only element to accumulate in the stems. The elemental compositions within plants were severely disturbed by treatment with toxic elements. Competition between element pairs in the same group (e.g. K and Cs; Ca and Sr) was not found. Iron, Cu and Zn accumulation were induced by Cd and Ni addition. When natural variants grew in a nutrition solution with subtoxic levels of As, Cd, Cs, Ni, Mo and Sr, intriguing relationships between the elements (such as Fe, As and K; Mg and Ni; Mn and Ca) were revealed using principal-component analysis. This study on the plant ionome offers detailed information of element interactions and indicates that chemically different elements might be closely linked in uptake or translocation systems.  相似文献   

20.
The cement industry has been one of the major sources of air pollution in the past and the Turkish Air Quality Protection Regulation has issued limits also to trace elementemissions to minimise the polluting effects of this industrialsector. In the present study, dust samples were obtained isokinetically from 18 main stacks of 10 cement plants locatedin different geographical areas of Turkey. The samples were analysed for trace elements Hg, Cd, Cr, Pb, Ni, Se, Te, TI, V, Sb, Ba, Zn, Co, Sr, Cu, Bi, Mo, Be, and As. The results are presented both as concentration in the dust samples as well as emissions per unit production, and concentration inthe stack gas. The trace element emissions of the main stacksagree to great extent with the values given in the literature. On the other hand, the trace element emissions of the plants considered are well below the limits set in the Turkish Air Quality Protection Regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号