首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Nanocomposite fibers of polyamide 6 (PA6) and hydroxyapatite (HA) were prepared and doped with silver to investigate antibacterial activities due to good potential for textile modification. Nano-sized HA could be synthesized using agarose and ethanol as thickener and washing medium, respectively. The PA6/HA nanocomposite fibers could be doped with silver by dipping the fibers having HA in aqueous AgNO3 solution containing 300 ppm of Ag ion for 1 min utilizing HA as a carrier to load silver through ion-exchange mechanism. It was found that silver was successfully doped to PA6/HA nanocomposite fibers from the EDS spectra. The nanocomposite fibers containing 3.3 wt% of HA after silver doping demonstrated such excellent antibacterial activities against K. pneumonia and E. coli that they are expected to serve as functional antibacterial materials in various application fields.  相似文献   

2.
A hierarchically Ag/nylon 6 tree-like nanofiber membrane (Ag/PA6 TLNM) was fabricated by adding tetrabutylammonium chloride (TBAC) and silver nitrate (AgNO3) into spinning solution via one-step electrospinning. TBAC presented in PA6/formic acid (HCOOH) spinning solution was able to cause the formation of a tree-like structure due to its space steric structure and the increasing of solution conductivity. Electrospinning solvent acted as a reducing agent for in situ conversion of AgNO3 into silver nanoparticles (Ag NPs) during the solution preparation. SEM, TEM, FT-IR XPS and XRD confirmed that Ag NPs were doped in the prepared nanofiber membrane successfully and the mechanical properties, pore size distribution and hydrophilicity of the membranes were investigated. The results showed that the tree-like structure improved the mechanical properties and hydrophilicity of the membrane while ensuring high specific surface area and small pore size. And the Ag/PA6 TLNM showed superior antibacterial properties against both E. coli and S. aureus compared with common Ag/PA6 nanofiber membranes (Ag/PA6 NMs). All of the results show that the Ag/PA6 TLNM would have potential applications in water purification.  相似文献   

3.
This study investigated the incorporation of nanoscale germanium (Ge) and silicon dioxide (SiO2) particles into poly(vinyl alcohol) (PVA) nanofibers with the aim of developing nanostructures with far-infrared radiation effects and antimicrobial properties for biomedical applications. Composite fibers containing Ge and SiO2 were fabricated at various concentrations of Ge and/or SiO2 using electrospinning and layered on polypropylene nonwoven. The morphological properties of the nanocomposite fibers were characterized using a field-emission scanning electron microscope and a transmission electron microscope. The far-infrared emissivity and emissive power of the nanocomposite fibers were examined in the wavelength range of 5-20 μm at 37 °C. The antibacterial properties were quantitatively assessed by measuring the bacterial reductions of Staphylococcus aureus, Klebsiella pneumoniae, and Escherichia coli. Multi-component composite fibers electrospun from 11 wt% PVA solutions containing 0.5 wt% Ge and 1 wt% SiO2 nanoparticles exhibited a far-infrared emissivity of 0.891 and an emissive power of 3.44·102 W m?2 with a web area density of 5.55 g m?2. The same system exhibited a 99.9 % bacterial reduction against both Staphylococcus aureus and Escherichia coli, and showed a 34.8 % reduction of Klebsiella pneumoniae. These results demonstrate that PVA nanofibrous membranes containing Ge and SiO2 have potential in medical and healthcare applications such as wound healing dressings, skin care masks, and medical textile products.  相似文献   

4.
The multi-walled carbon nanotube (MWNT)/cellulose nanocomposites were prepared by using monohydrated Nmethylmorpholine-N-oxide (NMMO) as a solvent for dispersing the acid-treated MWNTs (A-MWNTs) as well as for dissolving the cellulose. The A-MWNTs were well dispersed in both monohydrated NMMO and the nanocomposite films. The nanocomposite films were prepared by a film-casting method onto a glass plate. The tensile strain at break, Young’s modulus, and toughness of nanocomposite films increased by ~5, ~2 and ~12 times, respectively at ? (A-MWNT content in the nanocomposite)=0.8 wt%, as compared to those of the pure cellulose film. The thermal degradation temperature of the nanocomposite films also increased from 329 to 339 oC by incorporation of 1 wt% A-MENTs. The electric conductivities of the A-MWNT/cellulose nanocomposites at ? =1 and 10 wt% were 2.09×10?5 and 3.68×10?3 S/cm, respectively. The transmittances were 86, 69 and 55 % at 550 nm for 0.4, 0.8 and 1 wt% nanocomposite films, respectively. Thus, these nanocomposites are promising materials in terms of all the properties studied in this paper and can be used for many applications, such as toughened cellulose fibers, transparent electrodes, etc.  相似文献   

5.
Irradiation crosslinking of PA6 fibers with and without the presence of triallyl cyanurate (TAC) was investigated. The dose for incipient gel formation was 500 kGy for pristine PA6 fibers and it decreased to 12 kGy when 5 % TAC was incorporated. Changes in structure and properties of irradiated PA6 fibers were analyzed by X-ray diffraction, infrared spectroscopy and thermal gravimetric analysis. Irradiation crosslinking improved the anti-dripping properties of PA6 fibers effectively. Irradiated samples showed an increase of the breaking strength and then a decrease at further doses due to radiolysis effect, the elongation at break decreased during the irradiation process. Irradiation crosslinking had not changed the crystal form and crystallinity decreased first and then increased to some extent. DSC measurement reported that the melting temperature decreased with increasing the dose. The thermal stability decreased after irradiation whereas the amount of nonvolatile residue at 600 °C increased as the irradiation dosage increased. The infrared spectra of irradiated samples were identical with the unirradiated, no new bands were observed.XPS analysis showed that the number of C-C band increased after irradiation which proves that branching and crosslinking has occurred.  相似文献   

6.
A series of antimicrobial fibers with different weight ratio of chitosan (CS) and polyvinyl alcohol (PVA) were fabricated via a primarily industrialized trail of wet-spinning method, and the morphology and structure of the resulting fibers were studied with the aid of scanning electron micrography (SEM), infrared spectroscopy (FTIR), and X-ray diffraction (XRD). The CP60 blend fiber (60 % chitosan content) was confirmed as the best optimal sample among the blend fibers owing to strong intermolecular hydrogen bonds between PVA and chitosan and showed the maximum mechanical, antistatic, moisture absorption/desorption properties. The CP60 also exhibited good antimicrobial effects against Escherichia coli and Staphylococcus aureus as the chitosan fiber and could be recommended as the alternative material for the wound dressing and the food packing.  相似文献   

7.
An investigation on the role of cupric (Cu2+) ion incorporation during the thermal stabilization of polyamide 6 fibers was carried out using a combination of differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and X-ray diffraction (XRD) measurements. Cupric chloride pretreated and thermally stabilized polyamide 6 (PA6) fibers was characterized by a reduction in fiber diameter and linear density values together with color changes from light brown to black with increasing stabilization time. PA6 fibers were properly stabilized after 8 h of stabilization time prior to carbonization. The results obtained from DSC and TGA measurements indicated that there was an improvement in the thermal stability when cupric (Cu2+) ions were incorporated into the polymer structure. TGA thermograms showed the relative improvement in thermal stability as indicated by increasing char yield with progressing time. Char yield reached a maximum value of 33.6 % at 1000 °C for the cupric chloride pretreated PA6 fibers stabilized for 12 h at 180 °C. Experimental results obtained from DSC and X-ray diffraction methods suggested the loss of crystallinity as a result of perturbation of hydrogen bonds with progressing time. The formation of cupric ion-amide coordination bonds improved the thermal stabilization by encouraging the development of ladder-like structures. The investigation resulted in a new method of evaluation of X-ray stabilization index specifically intended for the thermally stabilized PA6 fiber.  相似文献   

8.
Electrical conductive nanocomposite fibers were prepared with polyaniline (PANI), polyacrylonitrile (PAN) and multi-walled carbon nanotubes (MWCNTs) via electrospinning. The morphology and electrical conductivity of the PANI/PAN/MWCNTs nanocomposite fibers were characterized by scanning electron microscope (SEM) and Van De Pauw method. Electrical conductivity of nanocomposite fibers increased from 1.79 S·m?1 to 7.97 S·m?1 with increasing the MWCNTs content from 3.0 wt% to 7.0 wt%. Compared with PANI/PAN membranes, the mechanical property of PANI/PAN/MWCNTs nanocomposites fiber membranes decreased. The microwave absorption performance of composite films was analyzed using waveguide tube, which indicated that with the thickness increasing the value of RL reduced from ?4.6 to ?5.9 dB.  相似文献   

9.
Unfilled polypropylene and polyropylene/ZnO nanocomposite fibers were produced using a melt spinning apparatus; then the fibers were exposed to UV irradiation. The structure and properties of the fibers were examined using scanning electron microscopy, tensile measurements, wide angle X-ray diffraction (WAXD), Fourier transform infrared (FTIR) spectroscopy, birefringence measurements and differential scanning calorimetry (DSC). Following 150 hours of exposure to UV irradiation, some transverse cracks on the surface of unfilled polypropylene fibers were observed. It was observed that both carbonyl and hydroperoxide indexes, which are the criteria for the detection of UV degradation of the fibers, were increased due to the increase in the UV irradiation exposure time and the increase in these indexes was smaller for nanocomposite fibers than those of unfilled Polypropylene fibers. It was also observed that crystallinity, crystallite size and total molecular orientation of UV irradiated nanocomposite fibers were increased in comparison with non-irradiated nanocomposite fibers. It was also found that the extent of increase in molecular orientation of the fibers was higher comparing to that for the nanocomposite fibers due to the UV irradiation exposure for the unfilled polypropylene fibers. Tensile properties of both unfilled and nanocomposite fibers were decreased after UV irradiation; this reduction correlated with the extent of the increase in molecular degradation of the fibers, as determined by measuring carbonyl and hydroperoxide indexes.  相似文献   

10.
Nylon 6 can be dyed with acid dyes and therefore it can also be stained by natural or artificial acid dyes existing in some foods and drinks when they are spilled on nylon fabrics. In this study, cationic dyeable polyamide (CD-PA6) was synthesized with sodium salt from 5-sulfoisophthalic acid (5-SSIPA) and easily cationic dyeable polyamide (ECD-PA6) was prepared with 5-SSIAP and polyethylene glycol (PEG). The influence of the chemical modification to CD-PA6 and ECD-PA6 on the resultant structures were characterized by wide angle X-ray diffraction (WAXD) and Fourier transform infrared spectroscopy (FT-IR), and their thermal properties were tested by differential scanning calorimetry (DSC) and thermogravimetric analysis (TG). The effects of varying 5-SSIPA content on the cationic dye uptake and acid dye resistance rate were also investigated, as well as mechanical properties of the modified PA6. Incorporating PEG not only destroyed the regularity of molecular chain arrangement and created more amorphous regions in the ECD-PA6 samples, but also changed the nylon 6 from α-form to γ-form. Results revealed a considerable improvement in cationic dye uptake and acid dye resistance rate in the modified fibers compared with unmodified fibers.  相似文献   

11.
In order to prevent surgical complications due to microbial infections, we have developed polypropylene suture grafted with silver nanoparticles (PPsuture/Ag nanocomposite) by a simple immersion procedure. Physical and mechanical properties of developed suture are investigated. Suture surface characteristics are examined by scanning electron microscopy (SEM) imaging and atomic force microscopy (AFM). Silver content on suture surface was determined by Inductively coupled plasma atomic emission spectroscopy (ICP-AES). The mechanical properties of developed antibacterial PP suture/Ag were studied. We note that proposed silver coating method has not affected mechanical performances of suture. Antimicrobial performances of PP suture/Ag nanocomposites against S. aureus and E. coli colonies were also investigated.  相似文献   

12.
In the present study, conducting nanofillers are incorporated in thermoplastic polyurethane (TPU) to produce nanocomposite fibers through melt compounding route using micro twin screw extruder attached to a fiber drawing device. Nanocomposite fibers using bulk graphite, nanographite and carbon nanofiber were produced using varying amounts of these nanofillers. Metal coated nanographite, new hybrid nanoparticle produced in house, were also used to impart conductivity to the TPU fiber. The process parameters such as processing temperature, mixing time and rpm of the screw have been optimized considering minimum change in TPU bulk properties. It has been found that the nanofillers can be melt mixed safely up to 4 min with the TPU at 180 °C and 100 screw rpm. These mixing conditions give reasonable amount of dispersion. The studies on such fibers in differential scanning calorimetry (DSC) and thermomechanical analyzer (TMA) reveals that the metal coated nanographite particles make the nanocomposite fibers more thermally stable. Both the D. C. conductivity and A. C. impedance of the nanocomposite fibers have reduced significantly even at very low loading of nanofillers, although the conductivity of the produced fibers are in antistatic range (D.C. conductivity ~10?4 S/m).  相似文献   

13.
The Allyl-heptaisobutyl-polyhedral Oligomeric Silsesquioxane (AHO-POSS) grafted polypropylene (PP) nanocomposite monofilaments were prepared by γ-ray irradiation induced grafting. The structure and properties of physically blended and γ-ray irradiated AHO-POSS/PP nanocomposite filaments were investigated by FTIR, wide-angle X-ray diffraction (WAXD), Thermo-gravimetric Analysis and mechanical property studies. Chemical bonding of AHO-POSS with PP after γ-ray irradiation was confirmed by FT-IR spectroscopy. Grafting resulted in change in mechanical and thermal properties and the extent of change was critically dependent on loading of AHO-POSS in PP and radiation dose level. In general, tensile strength decreased almost continuously with increase in radiation dose whereas thermal stability increased upto a radiation dose of 5 kGy and then decreased. The loss in tensile strength was caused due to chain scission, cross linking and loss in orientation.  相似文献   

14.
Leveraging the antibacterial properties of polyester-cotton knitted fabrics has been attempted in this research by admixture of small proportion of polyester-silver nanocomposite fibres. Polyester-cotton (50:50) yarns were spun by mixing 10, 20 and 30 % (wt.%) polyester-silver nanocomposite fibres with normal polyester fibres so that overall proportion of polyester fibre becomes 50 %. The proportion of cotton fibre was constant (50 %) in all the yarns. Three parameters, namely blend proportion (wt.%) of nanocomposite fibres, yarn count and knitting machine gauge were varied, each at three levels, for producing 27 knitted fabrics. Polyester-cotton knitted fabrics prepared from polyester-silver nanocomposite fibres showed equally good antibacterial activity (65-99 %) against both S. aureus and E. coli bacteria. Antibacterial properties were enhanced with the increase in the proportion of polyester-silver nanocomposite fibres, yarn coarseness and increased compactness of knitted fabrics. Yarn count and blend proportion of nanocomposite fibre were found to have very dominant influence in determining the antibacterial properties of knitted fabrics.  相似文献   

15.
Poly(vinyl alcohol) (PVA)/Ag-zeolite nanocomposite hydrogels were prepared by UV irradiation using PVA solution mixed with Ag-zeolite nanoparticles. Physical properties and changes in morphology of the PVA/Ag-zeolite hydrogels were investigated. The PVA/Ag-zeolite hydrogels were prepared at a PVA concentration of 9 wt% with a UV irradiation distance of 15 cm, where gel fraction and swelling ratio were optimized. Hardness of the PVA/Ag-zeolite hydrogels decreased with increasing amounts of Ag-zeolite, reaching that of soft elastomer when the amount of Ag-zeolite was 5 % by weight. The PVA/Ag-zeolite hydrogels showed strong antimicrobial activities against Staphylococcus aureus and Klebsiella pneumoniae, inducing a reduction of bacteria of over 99.9 % at a Ag-zeolite content of 3 wt%.  相似文献   

16.
In order to prepare antimicrobial regenerated cellulose fibers from blended spinning solutions, three non-water soluble polymeric guanidine derivatives, polyhexamethylene guanidine dodecyl benzene sulfonate (PHGDBS), polyhexamethylene guanidine dodecyl sulfate (PHGDSA), and polyhexamethylene guanidine laurylsulfonate (PHGLSO) were synthesized. And the chemical structure of these agents was verified by element analysis, Fourier transform infrared spectroscopy (FTIR), and proton nuclear magnetic resonance (1H-NMR). The antimicrobial activity of the three agents as well as cellulose films containing PHGDBS was also studied. The results showed that the compounds we prepared had strong properties against both bacterial and fungus, including Staphylococcus aureus (S. aureus), Escherichia coli (E. coli), Candida albicans, and Aspergillus niger. Moreover, it was found that three antimicrobial agents were insoluble in water but they can dissolve in solvents of cellulose such as 1-butyl-3-methylimidazolium chloride ([BMIM]Cl) and N-methylmorpholine-N-oxide monohydrate (NMMO·H2O). Meanwhile, it was also proved that [BMIM]Cl had little effect on the antimicrobial properties of these agents. The cellulose films containing only 1.0 wt% PHGDBS showed 99.94 % and 96.95 % bacterial reduction rates for S. aureus and E. coli, respectively. Moreover, still over 91 % of bacterial reduction was maintained after 15 laundering cycles. It suggests that the three agents will be suitable to prepare antimicrobial regenerated cellulose fibers or films.  相似文献   

17.
Nanoparticle drug delivery (NDDS) is a novel system in which the drugs are delivered to the site of action by small particles in the nanometer range. Natural or synthetic polymers are used as vectors in NDDS, as they provide targeted, sustained release and biodegradability. Here, we used the chitosan and hepatoma cell-specific binding molecule, glycyrrhetinic acid (GA), to synthesize glycyrrhetinic acid-modified chitosan (GA-CTS). The synthetic product was confirmed by Fourier transformed infrared spectroscopy (FT-IR) and 1H-nuclear magnetic resonance (1H-NMR). By combining GA-CTS and 5-FU (5-fluorouracil), we obtained a GA-CTS/5-FU nanoparticle, with a particle size of 217.2 nm, a drug loading of 1.56% and a polydispersity index of 0.003. The GA-CTS/5-FU nanoparticle provided a sustained release system comprising three distinct phases of quick, steady and slow release. We demonstrated that the nanoparticle accumulated in the liver. In vitro data indicated that it had a dose- and time-dependent anti-cancer effect. The effective drug exposure time against hepatic cancer cells was increased in comparison with that observed with 5-FU. Additionally, GA-CTS/5-FU significantly inhibited the growth of drug-resistant hepatoma, which may compensate for the drug-resistance of 5-FU. In vivo studies on an orthotropic liver cancer mouse model demonstrated that GA-CTS/5-FU significantly inhibited tumor growth, resulting in increased survival time.  相似文献   

18.
The objective of this research was to impart antimicrobial properties to hemp fibers by incorporation of silver ions in hemp fibers by chemisorption. Sorption properties of hemp fibers were improved by non-selective oxidation using hydrogen peroxide and potassium permanganate. The optimal conditions for silver ions sorption by hemp fibers were determined by changing sorption conditions: pH value and concentration of aqueous silver nitrate solution, as well as duration of sorption. The maximum sorption capacity of modified hemp fibers was 1.84 mmol of Ag+ ions per gram of fibers. Antimicrobial activity of silver-loaded hemp fibers against different pathogens: Staphylococcus aureus, Escherichia coli, and Candida albicans was evaluated in vitro. Obtained silver-loaded hemp fibers show antimicrobial activity against tested pathogens.  相似文献   

19.
This article presents a non-complex method of producing biodegradable polylactide (PLA) fiber mats containing Al2O3-Ag nanopowder which display strong antimicrobial activities against E.coli and S. lutea. The method of preparing fiber mats was electrospinning. This article also gathers the results of the analysis of morphology and mechanical properties of both the Al2O3 nanopowder and the PLA-Al2O3/Ag fiber mats. The examination of the Al2O3 nanopowder was conducted with the use of a scanning electron microscope (SEM) and surface area measurements (BET). The morphology of the PLAAl2O3/Ag fiber mats was examined using SEM and TEM. The results of the study confirm the great potential of the electrospun PLA-Al2O3/Ag fiber mats for antibacterial application.  相似文献   

20.
The ultrafine composite fibers consisting of lauric acid (LA) and polyamide 6 (PA6) as form-stable phase change materials (PCMs), were prepared successfully by electrospinning. The effect of carbon nanotubes (CNTs) on the structural morphology, phase change behaviors, thermal stability, flammability and thermal conductivity properties of electrospun LA/PA6 composite fibers was investigated by field-emission scanning electron microscopy (FE-SEM), differential scanning calorimetry (DSC), thermogravimetric analyses (TGA), microscale combustion calorimeter (MCC) and melting/freezing times measurements, respectively. SEM observations indicated that the LA/PA6 and LA/PA6/CNTs composite fibers possessed flat and ribbon-shaped morphologies, but the neat PA6 fibers had cylindrical shape with smooth surface; and the average fiber diameters for LA/PA6 composite fibers decreased generally with the addition of CNTs. DSC measurements indicated that the heat enthalpies of the composite fibers were lower that that of neat LA powders, while the amounts of CNTs had no appreciable effect on the phase change temperatures and heat enthalpies of the composite fibers. TGA results showed that the addition of CNTs increased the onset thermal degradation temperature, maximum weight loss temperature and charred residue at 700 °C of the composite fibers, attributed to the improved thermal stability properties. It could be found from MCC tests that there were two-step combustion processes for composite fibers, and corresponded respectively to combustion of LA and polymer chains (PA6) in composite fibers. The addition of CNTs reduced the peak of heat release rate (PHRR) of electrospun composite fibers, contributing to the decreased flammability properties. The improved thermal conductivity performances of LA/PA6/CNTs composite fibers was also confirmed by comparing the melting/freezing times of LA/PA6 composite fibers with that of neat LA powders. The results from the SEM observation showed that the composite fibers had no appreciable variations in shape and diameter after heating/cooling processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号