首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Soil tillage practices affect the soil microbial community in various ways, with possible consequences for nitrogen (N) losses, plant growth and soil organic carbon (C) sequestration. As microbes affect soil organic matter (SOM) dynamics largely through their activity, their impact may not be deduced from biomass measurements alone. Moreover, residual microbial tissue is thought to facilitate SOM stabilization, and to provide a long term integrated measure of effects on the microorganisms. In this study, we therefore compared the effect of reduced (RT) and conventional tillage (CT) on the biomass, growth rate and residues of the major microbial decomposer groups fungi and bacteria. Soil samples were collected at two depths (0-5 cm and 5-20 cm) from plots in an Irish winter wheat field that were exposed to either conventional or shallow non-inversion tillage for 7 growing seasons. Total soil fungal and bacterial biomasses were estimated using epifluorescence microscopy. To separate between biomass of saprophytic fungi and arbuscular mycorrhizae, samples were analyzed for ergosterol and phospholipid fatty acid (PLFA) biomarkers. Growth rates of saprophytic fungi were determined by [14C]acetate-in-ergosterol incorporation, whereas bacterial growth rates were determined by the incorporation of 3H-leucine in bacterial proteins. Finally, soil contents of fungal and bacterial residues were estimated by quantifying microbial derived amino sugars. Reduced tillage increased the total biomass of both bacteria and fungi in the 0-5 cm soil layer to a similar extent. Both ergosterol and PLFA analyses indicated that RT increased biomass of saprophytic fungi in the 0-5 cm soil layer. In contrast, RT increased the biomass of arbuscular mycorrhizae as well as its contribution to the total fungal biomass across the whole plough layer. Growth rates of both saprotrophic fungi and bacteria on the other hand were not affected by soil tillage, possibly indicating a decreased turnover rate of soil microbial biomass under RT. Moreover, RT did not affect the proportion of microbial residues that were derived from fungi. In summary, our results suggest that RT can promote soil C storage without increasing the role of saprophytic fungi in SOM dynamics relative to that of bacteria.  相似文献   

2.
No-tillage systems contribute to physical, chemical and biological changes in the soil. The effects of different tillage practices and phosphorus (P) fertilization on soil microbial biomass, activity, and community structure were studied during the maize growing season in a maize–soybean rotation established for 18 years in eastern Canada. Soil samples were collected at two depths (0–10 and 10–20 cm) under mouldboard plow (MP) and no-till (NT) management and fertilized with 0, 17.5, and 35 kg P ha?1. Results show that the duration of the growing season had a greater effect on soil microbiota properties than soil tillage or P fertilization at both soil depths. Seasonal fluctuations in soil microbial biomass carbon (SMB-C) and nitrogen (SMB-N), in dehydrogenase and alkaline phosphomonoesterase activities, and in total phospholipids fatty acid (PLFA) level, were greater under NT than MP management. The PLFA biomarkers separated treatments primarily by sampling date and secondly by tillage management, but were not significantly affected by P fertilization. The abundance of arbuscular mycorrhizal fungi (AMF; C16:1ω5) and fungi (C18:2ω6,9) was lower under NT than MP at the 10–20-cm soil depth in July. Phosphorus fertilization increased soil microbial biomass phosphorus (SMB-P) and Mehlich-3 extractable P, but had a limited impact on the other soil properties. In conclusion, soil environmental factors and tillage had a greater effect on microorganisms (biomass and activity) and community structure than P fertilization.  相似文献   

3.
Soil management practices affect soil microbial communities, which in turn influence soil ecosystem processes. In this study, the effects of conventional- (fall disking, chiseling and spring disking, field cultivation) and no-tillage practices on soil microbial communities were examined under long-term continuous cotton (Gossypium hirsutum L.) systems on a Decatur silt loam soil. Soil samples were taken in February, May, and October of 2000 at depths of 0-3, 3-6, 6-12, and 12-24 cm. Compared to the conventional-till treatment, the no-till treatment increased soil organic carbon and total nitrogen contents in the surface layer by 130 and 70%, respectively. Microbial biomass C content under no-till treatment was 60, 140, and 75% greater than under conventional-till treatment in February, May, and October, respectively. Principal components analysis of phospholipid ester-linked fatty acid (PLFA) profile indicated soil microbial communities shifted over time and with soil depth. This change appeared to be driven primarily by soil bacterial populations as indicated by the major PLFA contributors (i.e. fatty acids 16:0, 10Me16:0, cy19:0, 16:1 2OH, and i15:0) to the first two principal components. Tillage treatment differences were revealed by analysis of variance on the first principal components (PC 1), which accounted for 62% of the total sample variance, and by the relative abundance of selected PLFAs and PLFA ratios. The impact of tillage practices was significant in February and May, but not in October. During the growing season, changes in the microbial community may be primarily determined by soil conditions responding to cotton growth and environmental variables such as moisture and temperature; during fallow or prior to cotton establishment, community changes associated with tillage practices become more pronounced. These findings have implications for understanding how conservation tillage practices improve soil quality and sustainability in a cotton cropping system.  相似文献   

4.
Soil tillage alters crop residue placement, soil moisture and soil physical properties, which in turn may affect soil chemical and microbial properties. The impact of tillage on microbial populations was investigated by studying soil microbiological, physical and chemical properties after 11 years of a tillage management experiment with continuous sorghum (Sorghum bicolor L. Moench) on an Orelia sandy clay loam (fine-loamy, mixed, hyperthermic Typic Ochraqualf). Soil from 0–7.5 and 7.5–15 cm depths was sampled from four replications of moldboard plow (MB), conventional till (CT), minimum till (MT) and no-till (NT) treatments in March (before planting) and May (during the growing season), 1989. Heterotrophic bacteria (HB) and actinomycete populations differed among tillage treatments before planting. Soil microbial populations differed with soil depth among all tillage treatments before the growing season (when no plants were present), but were similar among tillage treatments when counts by soil depth were composited, indicating that, although microbial distribution differed, total populations were similar. During the growing season, actinomycetes were lower in NT treatments, while HB counts were not significantly different between treatments. The similarity between treatments was attributed to drier soil conditions and the effect of plant roots in all treatments, which may have stimulated microbes similarly in all treatments. Ammonium oxidizers were lowest and dentrifiers highest in the NT soil a the 0–7.5 cm depth before planting. The sample obtained during the growing season indicated that soil nitrifier populations were usually greater in MT and NT treatments. The MB and CT treatments had significantly larger amounts of soil moisture, clay and nitrate than the NT and MT treatments, indicating that soil physical properties and nitrate levels were altered by tillage treatment. Soil nitrate was significantly correlated with nitrogen-transforming bacteria in several instances, although there was no predictable effect from soil depth or sampling date. In some instances, nitrifier counts fell and denitrifier counts increased as soil nitrate increased. HB and actinomycete population levels were not significantly correlated with the soil physical or chemical properties measured in this study. Although there were tillage treatment differences in soil physical (moisture, bulk density and clay content), chemical (nitrate-nitrogen, NO3---N) and microbiological properties (HB, actinomycetes, and denitrifier, nitrifier and ammonium oxidizer activity), generalizations about tillage system effects on soil microbiological properties were difficult to confirm because of the temporal nature of these differences.  相似文献   

5.
Although reduced tillage is an agricultural practice reported to decrease soil erosion and external inputs while enhancing soil fertility, it has still rarely been adopted by European organic farmers. The objective of this study was to assess the long-term interactive effects of tillage (conventional (CT) vs. reduced (RT)) and fertilization (slurry (S) vs. composted manure/slurry (MCS)) on earthworms and microbial communities in a clay soil under spelt in an organic 6-year crop rotation. Earthworm populations (species, density and biomass, cocoons) were investigated by handsorting the soil nine years after initial implementation of the treatments. Soil microbial carbon (Cmic) and nitrogen (Nmic) were measured by chloroform-fumigation extraction and a simplified phospholipid fatty acid (PLFA) analysis was used to separate for populations of bacteria, fungi and protozoa. Significantly increased total earthworm density in RT plots was mainly attributed to increased numbers of juveniles. Moreover, we found five times more cocoons with RT. Species richness was not affected by the treatments, but tillage treatments had differentially affected populations at the species-level. In addition, cluster analysis at the community level revealed two distinct groups of plots in relation to tillage treatments. In RT plots Cmic increased in the 0–10 cm and 10–20 cm soil layers, while PLFA concentrations indicative of Gram-negative bacteria, fungi and protozoa only increased in the topsoil. Lower bacteria-to-fungi ratios in the upper soil layer of RT plots indicated a shift to fungal-based decomposition of organic matter whereas a higher Cmic-to-Corg ratio pointed towards enhanced substrate availability. Slurry application decreased microbial biomass and enhanced density of juvenile anecic earthworms but overall fertilization effect was weak and no interactions with tillage were found. In conclusion, tillage is a major driver in altering communities of earthworms and microorganisms in arable soils. The use of reduced tillage provides an approach for eco-intensification by enhancing inherent soil biota functions under organic arable farming.  相似文献   

6.
Abstract

Soils of the Argentine humid pampa region are usually weakly structured due to its high silt content. Selecting crop sequence or tillage systems are an alternative in small farms for the protection of the soil against physical degradation and erosion given that conservation practices, grass meadows, and fertilizers are expensive and therefore rarely used. Evaluation of selected soil properties was conducted on soil sampled from a long‐term tillage experiment with continuous soybean established in 1975 on a Typic Argiudoll silty loam soil in Argentina. Tillage treatments included conventional tillage with moldboard plow (CT), chisel plow (CP), and no till (NT). A comparison with continuous corn under NT was also carried out. Sampling was performed after the emergence of both crops in 1990. Tillage and cropping treatments affected properties related to soil slacking and dispersion to a greater extent than they did on aggregate size distribution. According to the De Leenheer and De Boodt index, aggregate stability within soybean soil classified as bad for CT, unsatisfactory for CP, and very good for NT, whereas the soil with corn under NT classified as excellent. The no tillage treatment within soybean had significantly more organic carbon in the 0–5 cm depth than CP or CT. Soil respiration was significantly higher in NT than in CT in the surface layer, while CT showed higher values in the 10–15 cm depth. Tillage treatments did not significantly affect microbial biomass under soybean cropping. The effect of monoculture corn versus monoculture soybean under NT on soil respiration, biomass and organic carbon was not significant. Soil pH in the 0–5 cm depth under soybean was in the order NT > CP > CT, whereas the soil with corn under NT was more acid than the soybean soil (P=0.05). Cation exchange capacity and exchangeable bases followed a similar trend. Organic carbon (0–5 cm depth) and aggregate stability were significantly correlated when samples from all treatments were considered.  相似文献   

7.
Abstract

Soil carbon sequestration in agricultural lands has been deemed a sustainable option to mitigate rising atmospheric CO2 levels. In this context, the effects of different tillage and C input management (residue management and manure application) practices on crop yields, residue C and annual changes in total soil organic C (SOC) (0–30 cm depth) were investigated over one cycle of a 4-year crop rotation (2003–2006) on a cropped Andisol in northern Japan. For tillage practices, the effects of reduced tillage (no deep plowing, a single shallow harrowing for seedbed preparation [RT]) and conventional deep moldboard plow tillage (CT) were compared. The combination of RT, residue return and manure application (20 Mg ha?1 in each year) increased spring wheat and potato yields significantly; however, soybean and sugar beet yields were not influenced by tillage practices. For all crops studied, manure application enhanced the production of above-ground residue C. Thus, manure application served not only as a direct input of C to the soil, but the greater crop biomass production engendered enhanced subsequent C inputs to the soil from residues. The SOC contents in both the 0–5 cm and 5–10 cm layers of the soil profile were greater under RT than under CT treatments because the crop residue and manure were densely incorporated into the shallow soil layers. Comparatively, neither tillage nor C input management practices had significant effects on annual changes in SOC content in either the 10–20 cm or 20–30 cm layers of the soil profile. When soil C sequestration rates, as represented by annual changes in total SOC (0–30 cm), were assessed on a total soil mass basis, an anova showed that tillage practices had no significant effect on total C sequestration, but C input management practices had significant positive effects (P ≤ 0.05). These results indicate that continuous C input to the soil through crop residue return and manure application is a crucial practice for enhancing crop yields and soil C sequestration in the Andisol region of northern Japan.  相似文献   

8.
The potential benefits of conservation tillage practices depend mainly on the soil and climatic conditions of the site. A study was conducted to determine the effects of three tillage systems (conventional, CT; reduced, RT; zero, ZT) on spring wheat (Triticum aestivum L.) and weed growth on a clay soil in temperate continental climate, northern Alberta (55°43′N, 118°41′W), Canada. A medium duty cultivator with 25 cm sweeps spaced 22 cm apart and a working depth of 8–10 cm was used for tillage in the CT (once in fall and twice in spring) and RT (once in spring) plots. The ZT plots received a harrowing to spread straw and a preseeding application of Roundup (glyphosate) to control weeds. Experimental design was a randomized complete block with four replications and the tillage systems were fixed in space for the 1989, 1990 and 1991 seasons. The RT treatment resulted in higher yields than the CT or ZT treatments. However, the differences were not always significant. The ZT treatment produced higher yields than CT in 1989 and 1991, whereas its yields were lower than CT in 1990. The 3 year means of total dry matter (TDM) were 3899 kg ha−1, 3640 kg ha−1 and 3331 kg ha−1 for the RT, ZT and CT treatments, respectively. The corresponding grain yields were 1728 kg ha−1, 1573 kg ha−1 and 1530 kg ha−1. The concentration of total N in plants and grains of wheat, amounts of extractable NO3-N, NH4-N and P in soil and soil moisture and bulk density were not significantly affected by tillage. The mean weight diameter of aggregates in surface soil was significantly greater under ZT than under the other systems. Wild buckwheat (Polygonum convolvulus L.) was more abundant under CT, but common groundsel (Senecio vulgaris L.), dandelion (Taraxacum officinale Weber), hemp nettle (Galeopsis tetrahit L.), field horsetail (Equisetum arvense L.) and smartweed (Polygonum scabrum Moench) tended to have higher populations under the ZT system. The populations of foxtail barley (Hordeum jubatum L.) wild rose (Rosa sp.), stinkweed (Thlaspi arvense L.) and wild oats (Avena fatua L.) showed no consistent effect of tillage. Tillage or preseeding application of glyphosate did not provide an effective control of all weed species. The spring tillage of the RT system improved crop yields and weed control relative to ZT, whereas the fall tillage of the CT system (in addition to spring tillage) reduced crop yields and had no significant effect on weed population relative to RT. The overall results showed that tillage intensity could be reduced to the level of RT without any adverse influence on crop yields, soil properties or weed populations. The RT system is also economical and environmentally desirable owing to lower tillage and herbicide requirements.  相似文献   

9.
Conservation agriculture practices, such as reduced tillage, cover crops and fertilization, are often associated with greater microbial biomass and activity that are linked to improvements in soil quality. This study characterized the impact of long term (31 years) tillage (till and no-till), cover crops (Hairy vetch- Vicia villosa and winter wheat- Triticum aestivum, and a no cover control), and N-rates (0, 34, 67 and 101 kg N ha−1) on soil microbial community structure, activity and resultant soil quality calculated using the soil management assessment framework (SMAF) scoring index under continuous cotton (Gossypium hirsutum) production on a Lexington silt loam in West Tennessee.No-till treatments were characterized by a significantly greater (P < 0.05) abundance of Gram positive bacteria, actinomycetes and mycorrhizae fungi fatty acid methyl ester (FAME) biomarkers compared to till. Saprophytic fungal FAME biomarkers were significantly less abundant (P < 0.05) under no-till treatments resulting in a lower fungi to bacteria (F:B) ratio. Key enzymes associated with C, N & P cycling (β-glucosidase, β-glucosaminidase, and phosphodiesterase) had significantly higher rates under no-till relative to till, corresponding to significantly greater (P < 0.05) soil C and N, extractable nutrients (P, K and Ca) and yields. Mycorrhizae fungi biomarkers significantly decreased (P < 0.05) with increasing N-rate and was significantly less (P < 0.05) under the vetch cover crop compared to wheat and no cover. Treatments under vetch also had significantly higher β-glucosaminidase and basal microbial respiration rates compared to wheat and no cover.Consequently, the total organic carbon (TOC) and β-glucosidase SMAF quality scores were significantly greater under no-till compared to till and under the vetch compared to wheat and no cover treatments, resulting in a significantly greater overall soil quality index (SQI).Our results demonstrate that long-term no-till and use of cover crops under a low biomass monoculture crop production system like cotton results in significant shifts in the microbial community structure, activity, and conditions that favor C, N and P cycling compared to those under conventional tillage practices. These practices also led to increased yields and improved soil quality with no-till having 13% greater yields than till and treatments under vetch having 5% increase in soil quality compared to no cover and wheat.  相似文献   

10.
Detailed information on the profile distributions of agronomically important soil properties in the planting season can be used as criteria to select the best soil tillage practices. Soil cores (0–60 cm) were collected in May, 2012 (before soybean planting), from soil transects on a 30‐yr tillage experiment, including no‐tillage (NT), ridge tillage (RT) and mouldboard plough (MP) on a Brookston clay loam soil (mesic Typic Argiaquoll). Soil cores were taken every 19 cm across three corn rows and these were used to investigate the lateral and vertical profile characteristics of soil organic carbon (SOC), pH, electrical conductivity (EC), soil volumetric water content (SWC), bulk density (BD), and penetration resistance (PR). Compared to NT and MP, the RT system resulted in greater spatial heterogeneity of soil properties across the transect. Average SOC concentrations in the top 10 cm layer were significantly greater in RT than in NT and MP (= 0.05). NT soil contained between 0.8 and 2.5% (vol/vol) more water in the top 0–30 cm than RT and MP, respectively. MP soil had lower PR and BD in the plough layer compared to NT and RT soils, with both soil properties increasing sharply with depth in MP. The RT had lower PR relative to NT in the upper 35 cm of soil on the crop rows. Overall, RT was a superior conservation tillage option than NT in this clay loam soil; however, MP had the most favourable soil conditions in upper soil layers for early crop development across all treatments.  相似文献   

11.
Soils were sampled from plots with four variants of tillage methods: (1) conventional tillage (CT); (2) no tillage (NT); (3) minimum tillage (MTS); and (4) no tillage + mulch (NTM). Our aim was to study the influence of tillage on selected soil microbial properties. Determination of urease, dehydrogenase, invertase, arylsulphatase, potential nitrogenase activity, CFU of Azotobacter spp., and carbon microbial biomass has been conducted for time period 2002–2007. Soil samples from 0–0.1 m, 0.1–0.3 m, and 0.3–0.5 m were collected in the spring and autumn. Enzymatic activities (dehydrogenase, urease, arylsulphatase, and invertase) were significantly affected by soil depth and the tillage system employed. The statistically significant higher activity of urease was measured using the minimum tillage system (MTS), compared to the conventional tillage (CT) at soil depths of 0–0.1 m. The highest dehydrogenase activity was measured during the protective tillage treatment (NTM – no tillage with mulch). As far as other enzymatic activities (invertase and arylsulphatase) are concerned, the highest values were recorded in the protective tillage treatments. The highest counts of Azotobacter spp., as well as the highest nitrogenase activity (both statistically significant) were found in the no tillage + mulch (NTM) variant, at depths of 0.1–0.3 m. Microbial biomass (C-biomass) was the highest with the minimum tillage (MTS). The results show a positive influence of protection soil tillage on the reviving of upper layer of topsoil, especially in the variants where soil was supplied with organic matter.  相似文献   

12.
The farming practices in vineyards vary widely, but how does this affect vineyard soils? The main objective of this study was to evaluate the effects of vineyard management practices on soil organic matter and the soil microbial community. To this end, we investigated three adjacent vineyards in the Traisen valley, Austria, of which the soils had developed on the same parent material and under identical environmental/site conditions but were managed differently (esp. tillage, fertilizer application, cover crops) for more than 10 yrs. We found that topsoil bulk density (BD) decreased with increasing tillage intensity, while subsoil BD showed the opposite trend. Soil organic carbon (SOC) stocks in 0–50 cm depth increased from 10 kg m?2 in an unfertilized and frequently tilled vineyard to 17 kg m?2 in a regularly fertilized but less intensively tilled vineyard. Topsoil microbial biomass per unit SOC, estimated by the sum of microbial phospholipid fatty acids (PLFAs), followed this trend, albeit not statistically significantly. Principal component analysis of PLFA patterns revealed that the microbial communities were compositionally distinct between different management practices. The fungal PLFA marker 18:2ω6,9 was highest in the vineyard with the lowest amount of extractable Cu (by 0.01 m CaCl2), and the bacterial‐to‐fungal biomass ratio was positively correlated with extractable Cu. Our results indicate that tillage and fertilizer application of vineyards can strongly affect vineyard soil properties such as BD and SOC stocks and that the application of Cu‐based fungicides may impair soil fungal communities.  相似文献   

13.
The impact of conservation tillage practices on carbon sequestration has been of great interest in recent years. Changes in the soil organic carbon (SOC) as influenced by tillage, is more noticeable under long-term rather than short-term tillage practices. This experiment analyzed the organic carbon status of soils sampled at depth increments from 0 to 60 cm after 25 years of five tillage treatments in a silt loam soil. Zero tillage (ZT) treatment was compared to conventional tillage practices of mouldboard and chisel plow operations conducted either during the fall or spring season in a randomized complete block design with four replications. The SOC was calculated on depth and equivalent soil mass bases. Contrast analysis showed a significantly (5%) higher soil bulk density for zero versus fall and zero versus chisel tillage operations at 5–10 cm soil depth. The SOC concentration was dependent on the depth of tillage operation and followed the trend of higher SOC for zero, chisel, and mouldboard tillage at 0–5, 5–10, and 20–40 cm depth, respectively. There were more significant differences in the SOC storage when expressed on depth compared to an equivalent soil mass basis. SOC storage was significantly higher for ZT at the 0–5 cm soil depth compared to conventional tillage practices. Contrast analysis on an equivalent mass basis showed that SOC storage was significantly higher for spring tillage compared to fall tillage at 0–60 cm depth. In conclusion, ZT practices increased SOC concentration and storage compared to conventional tillage operations only for the surface layer but not for the entire soil profile.  相似文献   

14.
保护性耕作对黑土微生物群落的影响   总被引:9,自引:2,他引:7  
耕作方式通过影响土壤微生物群落而影响土壤生态系统过程。本研究以传统耕作玉米连作处理为对照,通过测定土壤微生物量碳及磷脂脂肪酸含量,分析了保护性耕作(包括免耕玉米连作和免耕大豆-玉米轮作)对黑土微生物群落的影响。结果表明,保护性耕作可显著增加土壤表层(0~5cm)全碳、全氮、水溶性有机碳、碱解氮和微生物量碳(P0.05),为微生物代谢提供了丰富的资源。同时,保护性耕作显著提高了土壤表层(0~5cm)总脂肪酸量、真菌和细菌生物量(P0.05),提高了土壤的真菌/细菌值,有利于农田土壤生态系统的稳定性。研究结果对于探讨保护性耕作的内在机制具有重要意义。  相似文献   

15.
Reduction in soil disturbance can stimulate soil microbial biomass and improve its metabolic efficiency, resulting in better soil quality, which in turn, can increase crop productivity. In this study we evaluated microbial biomass of C (MB-C) by the fumigation-extraction (FE) or fumigation-incubation (FI) method; microbial biomass of N (MB-N); basal respiration (BR) induced or not with sucrose; metabolic quotient (obtained by the ratio BR/MB-C) induced (qCO2(S)), or not with sucrose (qCO2); and crop productivity in a 14-year experiment in the state of Paraná, southern Brazil. The experiment consisted of three soil-tillage systems [no-tillage (NT), conventional tillage (CT) and no-tillage using a field cultivator every 3 years (FC)] and two cropping systems [a soybean–wheat-crop sequence (CS), and a soybean–wheat–white lupin–maize–black oat–radish crop rotation (CR)]. There were six samplings in the 14th year, starting at the end of the winter crop (wheat in the CS and lupin in the CR plots) and finishing at full flowering of the summer crop (soybean in the CS and maize in the CR). Differences in microbiological parameters were greater than those detected in the total C (TCS) and total N (TNS) contents of the soil organic matter (SOM). Major differences were attributed to tillage, and on average NT was higher than the CT in the following parameters: TCS (19%), TNS (21%), MB-C evaluated by FE (74%) and FI (107%), and MB-N (142%). The sensibility of the microbial community and processes to soil disturbance in the tropics was highlighted, as even a moderate soil disturbance every 3 years (FC) affected microbial parameters but not SOM. The BR was the parameter that most promptly responded to soil disturbance, and strong differences were perceived by the ratio of qCO2 evaluated with samples induced and non-induced with sucrose. At plowing, the qCO2(S):qCO2 was five times higher under CT, indicating a C-starving low-effective microbial population in the C-usage. In general, crop rotation had no effect on microbial parameters or SOM. Grain yield was affected by tillage and N was identified as a limiting nutrient. Linear regressions between grain yields and microbial parameters showed that soybean was benefited from improvements in the microbial biomass and metabolic efficiency, but with no significant effects observed for the maize crop. The results also indicate that the turnover of C and N in microbial communities in tropical soils is rapid, reinforcing the need to minimize soil disturbance and to balance inputs of N and C.  相似文献   

16.
Soil quality in rice (Oryza sativa L.)–wheat (Triticum aestivum L.) cropping systems is governed primarily by the tillage practices used to fulfill the contrasting soil physical and hydrological requirements of the two crops. The objective of this study was to develop a soil quality index (SQI) based on bulk density (BD), penetration resistance (PR), water stable aggregates (WSA) and soil organic matter (OM) to evaluate this important cropping system on a Vertisol in India. Regression analysis between crop yield and SQI values for various tillage and crop residue management treatments indicated SQI values of 0.84–0.92, 0.88–0.93 and 0.86–0.92 were optimum for rice, wheat and the combined system (rice + wheat), respectively. The maximum yields for rice and wheat were 5806 and 1825 kg ha−1 occurred at SQI values of 0.85 and 0.99, respectively. Using zero tillage (ZT) for wheat had a positive effect on soil quality regardless of the treatments used for rice. Regression analyses to predict sustainability of the various tillage and crop residue treatments showed that as puddling intensity for rice increased, sustainability without returning crop residues decreased from 6 to 1 years. When residue was returned, the time for sustainable productivity increased from 6 to 15 years for direct seeded rice, 5 to 11 years with low-intensity puddling (P1) and 1 to 8 years for high-intensity (P2) puddling. For sustainability and productivity, the best practice for this or similar Vertisols in India would be direct seeding of rice with conventional tillage and residues returned.  相似文献   

17.
耕作方式对长期免耕农田土壤微生物生物量碳的影响   总被引:5,自引:1,他引:4  
以华北冬小麦-夏玉米两熟区长期免耕土壤为研究对象, 研究不同耕作方式(免耕、翻耕和旋耕)对长期免耕土壤微生物生物量碳(SMBC)的影响, 为制定合理的轮耕制度提供依据。试验结果表明: 长期免耕土壤进行耕作处理后SMBC 的时空分布和稳定性产生显著变化。不同耕作处理SMBC 含量在0~5 cm 和5~10 cm 土层变化明显, 小麦起身期含量最低, 收获期最高; 深层SMBC变化不明显。免耕处理SMBC 随土壤层次明显降低, 且各土壤层次SMBC 差异达显著(P<0.05)水平; 翻耕、旋耕处理0~5 cm 和5~10 cm 土层间SMBC 无明显差异, 其他层次间差异显著(P<0.05)。从生育期平均值看, 0~5 cm 土层免耕处理SMBC 含量较高, 翻耕和旋耕处理则分别比免耕降低6.7%、6.1%; 与免耕相比, 5~10 cm 土层SMBC 翻耕、旋耕处理分别增加30.2%和20.7%(P<0.01),10~20 cm 土层SMBC 翻耕、旋耕处理比免耕增加48.1%(P<0.01)和10.5%(P<0.05)。在冬小麦生育期内, 0~20 cm土层SMBC 稳定性表现为翻耕>旋耕>免耕, 20~30 cm 土层SMBC 稳定性表现为免耕>翻耕>旋耕。  相似文献   

18.
A field study was carried out to analyze the short-term (2 years) effect of tillage and crop rotation on microbial community structure and enzyme activities of a clay loam soil. The experimental design was a split-plot arrangement of treatments, consisting of two tillage treatments—ridge tillage (RT) and no-tillage (NT)—in combination with two crop rotation treatments—corn (Zea mays L.) monoculture and a 2-year corn-soybean (Glycine max L.) rotation. Phospholipid fatty acid (PLFA) profiles were used to assess soil microbial community structure. No-tillage resulted in significantly higher total PLFAs compared to the RT treatment, which was accompanied by higher activities of protease, β-glucosaminidase, and β-glucosidase. This suggests a close link between soil microbial communities and enzyme activities in response to tillage. The increase of total microbial lipid biomass in the NT soils was due to the increase in both fungal and bacterial PLFAs. Crop rotation had little effect on soil bacterial communities and enzyme activities, but it significantly influenced soil fungal communities, particularly arbuscular mycorrhizal fungi. Soils under monoculture corn had higher fungal biomass than soils under corn-soybean rotation regardless of tillage treatment.  相似文献   

19.
Soil organic carbon (SOC) and nitrogen (N) are directly influenced by tillage, residue return and N fertilization management practices. Soil samples for SOC and N analyses, obtained from a 23-year field experiment, provided an assessment of near-equilibrium SOC and N conditions. Crops included corn (Zea mays L.) and soybean [Glycine max L. (Merrill)]. Treatments of conventional and conservation tillage, residue stover (returned or harvested) and two N fertilization rates were imposed on a Waukegan silt loam (fine-silty over skeletal, mixed, superactive, mesic Typic Hapludoll) at Rosemount, MN. The surface (0–20 cm) soils with no-tillage (NT) had greater than 30% more SOC and N than moldboard plow (MB) and chisel plow (CH) tillage treatments. The trend was reversed at 20–25 cm soil depths, where significantly more SOC and N were found in MB treatments (26 and 1.5 Mg SOC and N ha−1, respectively) than with NT (13 and 1.2 Mg SOC and N ha−1, respectively), possibly due to residues buried by inversion. The summation of soil SOC over depth to 50 cm did not vary among tillage treatments; N by summation was higher in NT than MB treatments. Returned residue plots generally stored more SOC and N than in plots where residue was harvested. Nitrogen fertilization generally did not influence SOC or N at most soil depths. These results have significant implications on how specific management practices maximize SOC storage and minimize potential N losses. Our results further suggest different sampling protocols may lead to different and confusing conclusions regarding the impact of tillage systems on C sequestration.  相似文献   

20.
The long-term impact of tillage and residue management on soil microorganisms was studied over the growing season in a sandy loam to loamy sand soil of southwestern Quebec, growing maize (Zea mays L.) monoculture. Tillage and residue treatments were first imposed on plots in fall 1991. Treatments consisted of no till, reduced tillage, and conventional tillage with crop residues either removed from (−R) or retained on (+R) experimental plots, laid out in a randomized complete block design. Soil microbial biomass carbon (SMB-C), soil microbial biomass nitrogen (SMB-N) and phospholipid fatty acid (PLFA) contents were measured four times, at two depths (0-10 and 10-20 cm), over the 2001 growing season. Sample times were: May 7 (preplanting), June 25, July 16, and September 29 (prior to corn harvest). The effect of time was of a greater magnitude than those attributed to tillage or residue treatments. While SMB-C showed little seasonal change (160 μg C g−1 soil), SMB-N was responsive to post-emergence mineral nitrogen fertilization, and PLFA analysis showed an increase in fungi and total PLFA throughout the season. PLFA profiles showed better distinction between sampling time and depth, than between treatments. The effect of residue was more pronounced than that of tillage, with increased SMB-C and SMB-N (61 and 96%) in +R plots compared to −R plots. This study illustrated that measuring soil quality based on soil microbial components must take into account seasonal changes in soil physical and chemical conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号