首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 847 毫秒
1.
Soil microbial biomass plays important roles in nutrient cycling, plant-pathogen suppression, decomposition of residues and degradation of pollutants; therefore, it is often regarded as a good indicator of soil quality. We reviewed more than a hundred studies in which microbial biomass-C (MB-C), microbial quotient (MB-C/TSOC, total soil organic carbon) and metabolic quotient (qCO2) were evaluated with the objective of understanding MB-C responses to various soil-management practices in Brazilian ecosystems. These practices included tillage systems, crop rotations, pastures, organic farming, inputs of industrial residues and urban sewage sludge, applications of agrochemicals and burning. With a meta-analysis of 233 data points, we confirmed the benefits of no-tillage in preserving MB-C and reducing qCO2 in comparison to conventional tillage. A large number of studies described increases in MB-C and MB-C/TSOC due to permanent organic farming, also benefits from crop rotations particularly with several species involved, whereas application of agrochemicals and burning severely disturbed soil microbial communities. The MB-C decreased in overgrazed pastures, but increased in pastures rotated with well-managed crops. Responses of MB-C, MB-C/TSOC and qCO2 to amendment with organic industrial residues varied with residue type, dose applied and soil texture. In conclusion, MB-C and related parameters were, indeed, useful indicators of soil quality in various Brazilian ecosystems. However, direct relationships between MB-C and nutrient-cycling dynamics, microbial diversity and functionality are still unclear. Further studies are needed to develop strategies to maximize beneficial effects of microbial communities on soil fertility and crop productivity.  相似文献   

2.
The objective of this work was to identify soil parameters potentially useful to monitor soil quality under different soil management and crop rotation systems. Microbiological and chemical parameters were evaluated in a field experiment in the State of Paraná, southern Brazil, in response to soil management [no-tillage (NT) and conventional tillage (CT)] and crop rotation [including grain (soybean, S; maize, M; wheat, W) and legume (lupin, L.) and non-legume (oat, O) covers] systems. Three crop rotation systems were evaluated: (1) (O/M/O/S/W/S/L/M/O/S), (2) (O/S/L/M/O/S/W/S/L/M), and (3) (O/S/W/S/L/M/O/M/W/M), and soil parameters were monitored after the fifth year. Before ploughing, CO2-emission rates were similar in NT and CT soils, but plough increased it by an average of 57%. Carbon dioxide emission was 13% higher with lupin residues than with wheat straw; decomposition rates were rapid with both soil management systems. Amounts of microbial biomass carbon and nitrogen (MB-C and MB-N, respectively) were 80 and 104% higher in NT than in CT, respectively; however, in general these parameters were not affected by crop rotation. Efficiency of the microbial community was significantly higher in NT: metabolic quotient (qCO2) was 55% lower than in CT. Soluble C and N levels were 37 and 24% greater in NT than in CT, respectively, with no effects of crop rotation. Furthermore, ratios of soluble C and N contents to MB-C and MB-N were consistently lower in NT, indicating higher immobilization of C and N per unit of MB. The decrease in qCO2 and the increase in MB-C under NT allowed enhancements in soil C stocks, such that in the 0–40 cm profile, a gain of 2500 kg of C ha−1 was observed in relation to CT. Carbon stocks also varied with crop rotation, with net changes at 0–40 cm of 726, 1167 and −394 kg C ha−1 year, in rotations 1, 2 and 3, respectively. Similar results were obtained for the N stocks, with 410 kg N ha−1 gained in NT, while crop rotations 1, 2 and 3 accumulated 71, 137 and 37 kg of N ha−1 year−1, respectively. On average, microbial biomass corresponded to 2.4 and 1.7% of the total soil C, and 5.2 and 3.2% of the N in NT and CT systems, respectively. Soil management was the main factor affecting soil C and N levels, but enhancement also resulted from the ratios of legumes and non-legumes in the rotations. The results emphasize the importance of microorganisms as reservoirs of C and N in tropical soils. Furthermore, the parameters associated with microbiological activity were more responsive to soil management and crop rotation effects than were total stocks of C and N, demonstrating their usefulness as indicators of soil quality in the tropics.  相似文献   

3.
Management practices including various tillage systems influence quantity and composition of soil organic matter (SOM). Parameters for evaluating both the SOM quantity (organic C [Cox], total N [Nt]) and quality (microbial biomass C, hydrophobic and hydrophilic organic components) were determined in soil samples, taken from two soil depths (0–0.1 m and 0.1–0.3 m) in a field experiment in the period 2001–2007, with different tillage systems. The experiment, founded in 1995 in Prague-Ruzyně, includes conventional soil tillage (CT) plus some selected methods of conservation tillage: (a) no tillage (NT), (b) no tillage + mulch (NTM), and (c) minimum tillage with pre-crop residues incorporated (MTS). Cox and microbial biomass C contents increased significantly with conservation tillage as compared to CT in 0–0.1 m layer, non-significant increase was found in 0.1–0.3 m layer. Nt increased non-significantly in both layers. Along with the depth of sampling, the content of the characterized parameters decreased in all variants; but the decrease in the conventionally tilled variant was, for the most part, lower than in the conservation tillage. The functional hydrophobic and hydrophilic groups of soil organic matter were identified by Fourier transform infrared (FTIR) spectroscopy, and the hydrophobic/hydrophilic group intensities ratio was calculated as the parameter of soil hydrophobicity. A higher soil hydrophobicity existed in all three conservation tillage treatments compared to CT due to the significantly higher content of hydrophobic organic components. Cox correlated significantly with microbial biomass C, Nt, hydrophobic components, and soil hydrophobicity (R = 0.552–0.654; P < 0.05). Hydrophilic components did not correlate with other soil characteristics, with the exception of hydrophobic components. These data show that shifting from CT to the conservation tillage systems increased the content of SOM in top soil layer in relatively short time, improved the SOM quality and increased soil hydrophobicity in the condition of experiment.  相似文献   

4.
Conservation tillage (no-till and reduced tillage) brings many benefits with respect to soil fertility and energy use, but it also has drawbacks regarding the need for synthetic fertilizers and herbicides. Our objective was to adapt reduced tillage to organic farming by quantifying effects of tillage (plough versus chisel), fertilization (slurry versus manure compost) and biodynamic preparations (with versus without) on soil fertility indicators and crop yield. The experiment was initiated in 2002 on a Stagnic Eutric Cambisol (45% clay content) near Frick (Switzerland) where the average annual precipitation is 1000 mm. This report focuses on the conversion period and examines changes as tillage intensity was reduced. Soil samples were taken from the 0–10 and 10–20 cm depths and analysed for soil organic carbon (Corg), microbial biomass (Cmic), dehydrogenase activity (DHA) and earthworm density and biomass. Among the components tested, only tillage had any influence on these soil fertility indicators. Corg in the 0–10 cm soil layer increased by 7.4% (1.5 g Corg kg−1 soil, p < 0.001) with reduced tillage between 2002 and 2005, but remained constant with conventional tillage. Similarly, Cmic was 28% higher and DHA 27% (p < 0.001) higher with reduced than with conventional tillage in the soil layer 0–10 cm. In the 10–20 cm layer, there were no significant differences for these soil parameters between the tillage treatments. Tillage had no significant effect on total earthworm density and biomass. The abundance of endogeic, horizontally burrowing adult earthworms was 70% higher under reduced than conventional tillage but their biomass was 53% lower with reduced tillage. Wheat (Triticum aestivum L.) and spelt (Triticum spelta L.) yield decreased by 14% (p < 0.001) and 8% (p < 0.05), respectively, with reduced tillage, but sunflower (Helianthus annuus L.) yield was slightly higher with reduced tillage. Slurry fertilization enhanced wheat yield by 5% (p < 0.001) compared to compost fertilization. Overall, Corg, Cmic, and DHA improved and yields showed only a small reduction with reduced tillage under organic management, but long-term effects such as weed competition remain unknown.  相似文献   

5.
This work analyzes the direct effect of soil management practices on soil microbial communities, which may affect soil productivity and sustainability. The experimental design consisted of two tillage treatments: reduced tillage (RT) and zero tillage (ZT), and three crop rotation treatments: continuous soybean (SS), corn–soybean (CS), and soybean–corn (SC). Soil samples were taken at soybean planting and harvest. The following quantifications were performed: soil microbial populations by soil dilution plate technique on selective and semi-selective culture media; microbial respiration and microbial biomass by chloroform fumigation-extraction; microbial activity by fluorescein diacetate hydrolysis; and fatty acid methyl ester (FAME) profiles. Soil chemical parameters were also quantified. Soil organic matter content was significantly lower in RT and SS sequence crops, whereas soil pH and total N were significantly higher in CS and SC sequence crops. Trichoderma and Gliocladium populations were lower under RTSS and ZTSS treatments. Except in a few cases, soil microbial respiration, biomass and activity were higher under zero tillage than under reduced tillage, both at planting and harvest sampling times. Multivariate analyses of FAMEs clearly separated both RT and ZT management practices at each sampling time; however, separation of sequence crops was less evident. In our experiments ZT treatment had highest proportion of 10Me 16:0, an actinomycetes biomarker, and 16:1ω9 and 18:1ω7, two fatty acids associated with organic matter content and substrate availability. In contrast, RT treatment had highest content of branched biomarkers (i15:0 and i16:0) and of cy19:0, fatty acids associated with cell stasis and/or stress. As cultural practices can influence soil microbial populations, it is important to analyze the effect that they produce on biological parameters, with the aim of conserving soil richness over time. Thus, in a soybean-based cropping system, appropriate crop management is necessary for a sustainable productivity without reducing soil quality.  相似文献   

6.
为了探讨黑河流域保护性耕作对土壤生产力的影响,设计20cm留茬(NS20),20cm留茬压倒(NPS20),40cm留茬(NS40),40cm留茬压倒(NPS40)和传统耕作(CT)5个处理,研究了黑河流域保护性耕作对农田土壤有机质、土壤微生物量C、土壤微生物量N以及作物产量和水分利用效率的影响。结果表明,保护性耕作农田0—20cm土层土壤有机质、土壤微生物量C和N的含量均高于传统耕作,且其在剖面中的变化趋势基本一致,即随土层深度增加下降;土壤微生物量N有明显的"表聚现象";相关分析表明土壤有机质和土壤微生物量C之间显著正相关(r=0.85,p0.05),与土壤微生物量N之间无明显的相关关系(r=0.47,p0.05);保护性耕作提高了春小麦的产量,NPS20和NPS40增产效果最好,较CT分别增产53.08%和46.59%,与CT之间差异达到极显著水平;保护性耕作提高了春小麦的水分利用效率(WUE),NPS20,NS40,NPS40,NS20分别较CT的WUE提高了58.02%,43.40%,47.27%,23.78%。  相似文献   

7.
In view of the significance of agricultural soils in affecting global C balance, the impact of manipulation of the quality of exogenous inputs on soil CO2–C flux was studied in rice–barley annual rotation tropical dryland agroecosystem. Chemical fertilizer, Sesbania shoot (high quality resources), wheat straw (low quality resource) and Sesbania + wheat straw (high + low quality), all carrying equivalent recommended dose of N, were added to soil. A distinct seasonal variation in CO2–C flux was recorded in all treatments, flux being higher during rice period, and much reduced during barley and summer fallow periods. During rice period the mean CO2–C flux was greater in wheat straw (161% increase over control) and Sesbania + wheat straw (+129%) treatments; however, during barley and summer fallow periods differences among treatments were small. CO2–C flux was more influenced by seasonal variations in water-filled pore space compared to soil temperature. In contrast, the role of microbial biomass and live crop roots in regulating soil CO2–C flux was highly limited. Wheat straw input showed smaller microbial biomass with a tendency of rapid turnover rate resulting in highest cumulative CO2–C flux. The Sesbania input exhibited larger microbial biomass with slower turnover rate, leading to lower cumulative CO2–C flux. Addition of Sesbania to wheat straw showed higher cumulative CO2–C flux yet supported highest microbial biomass with lowest turnover rate indicating stabilization of microbial biomass. Although single application of wheat straw or Sesbania showed comparable net change in soil C (18% and 15% relative to control, respectively) and crop productivity (32% and 38%), yet they differed significantly in soil C balance (374 and −3 g C m−2 y−1 respectively), a response influenced by the recalcitrant and labile nature of the inputs. Combining the two inputs resulted in significant increment in net change in soil C (33% over control) and crop yield (49%) in addition to high C balance (152 g C m−2 y−1). It is suggested that appropriate mixing of high and low quality inputs may contribute to improved crop productivity and soil fertility in terms of soil C sequestration.  相似文献   

8.
选择岷江上游理县山地森林/干旱河谷交错带地区人工刺槐林、人工杨柳林、草地和锥花小檗灌丛这4种植被类型为研究对象,对4种植被下的土壤微生物量及呼吸熵对放牧干扰的响应进行了研究。以距牧道距离远近的不同设置了3种放牧干扰强度处理,分别对各植被类型3种放牧干扰强度的土壤进行了分析。结果表明,在各植被类型下,土壤有机碳(SOC)和土壤微生物量碳(MBC)含量随放牧干扰强度的增加而降低。各植被类型下表层土壤呼吸熵值(qCO2)值随放牧压力的增加而增大(除灌丛中度干扰外),增加幅度为15.14%~100.54%,说明放牧干扰使微生物体的周转率加快,对SOC的利用率降低,释放的CO2增多,土壤碳保存率降低。  相似文献   

9.
The effect of tropical forest conversion on soil microbial biomass   总被引:3,自引:0,他引:3  
We investigated the effects of converting forest to savanna and plough land on the microbial biomass in tropical soils of India. Conversion of the forest led to a significant reduction in soil organic C (40–46%), total N (47–53%), and microbial biomass C (52–58%) in the savanna and the plough land. Among forest, savanna, and plough land, basal soil respiration was maximum in the forest, but the microbial metabolic quotient (qCO2 was estimated to be at a minimum in the forest and at a maximum in the plough land.  相似文献   

10.
We studied the effect of no-till (disc seeder), conventional-till (tine scarifier+disc seeder) and rotary-till (rotary hoe+disc seeder) management on soil organic matter (SOM) components, rates of carbon (C) and nitrogen (N) cycling, substrate utilization and microbial community composition. We hypothesized that labile SOM fractions are sensitive to changes in tillage techniques and, in turn mediate any tillage-induced changes in microbial function and composition. A replicated field site was established in May 1998 in the semi-arid agricultural region of Western Australia and soils were collected in September 2004. We found soil pH varied between different tillage techniques as an initial lime application was mixed to deeper soil depths in rotary-till soil than no-till and conventional-till soil. Total-C was greater in surface soil and lower in subsurface soil from no-till and conventional-till plots than from rotary-till plots, but there was no effect of tillage technique on total-C when averaged across soil depths. Light (specific density <1.0 g cm?3) fraction organic matter (LFOM), dissolved organic matter (DOM) and microbial biomass (MB) C and N pools, and rates of C and N cycling all tended to decrease with soil depth. In general, LFOM-C and N, dissolved organic C (DOC) and microbial biomass carbon (MB-C), soil respiration, cellulase activity, gross immobilization rates were positively correlated (r>0.50) and were greater in no-till and conventional-till soil than rotary-till soil both within, and across soil depths. These soil variables generally increased (r>0.5) with increasing soil pH. Dissolved organic N and gross N mineralization were positively correlated (r>0.90) but neither was affected by tillage techniques. No-till soil had greater utilization of carboxylic acids and lower utilization of amino acids and carbohydrates than conventional-till and rotary-till soil; surface soil also had greater utilization of carboxylic acids than subsurface soil. In turn, substrate utilization differed between soil depths, and between no-till soil and conventional-till and rotary-till soil; these differences were correlated with soil pH, total-N, DOC, LFOM-N and microbial biomass nitrogen (MB-N). Bacterial and fungal biomasses generally decreased with soil depth and were greater in no-till and conventional-till soil than rotary-till soil. Microbial community composition differed between all tillage techniques and soil depths; these differences were correlated with soil textural classes, soil pH, and total, LFOM, DOM and microbial C and N pools. These results indicate that most tillage-induced changes to soil properties were associated with the greater soil disturbance under rotary-till than under no-till or conventional-till management. Our results indicate that tillage-induced changes to soil pH, and LFOM, DOM and microbial biomass pools are likely to be important regulators of the rates of C and N cycling, substrate utilization and microbial community composition in this coarse textured soil.  相似文献   

11.
We examined the long-term effects of cattle slurry, applied at high rates, on microbial biomass, respiration, the microbial quotient (qCO2) and various soil enzyme activities. In March, June, July, and October 1991, slurry-amended grassland soils (0–10 cm) contained significantly higher levels of microbial biomass, N mineralization and enzyme activities involved in N, P, and C cycling. With microbial biomass as the relative value, the results revealed that the slurry treatment influenced enzyme production by the microbial biomass. High levels of urease activity were the result not only of a larger microbial biomass, but also of higher levels of enzmye production by this microbial biomass. The ratio of alkaline phosphatase and xylanase to microbial biomass was nearly constant in the different treatments. The metabolic quotient (qCO2) declined with increased levels of slurry application. Therefore it appears that microorganisms in slurry-amended soils require less C and energy if there is no competition for nutrients. The results of this study suggest that urease activity, nitrification, and respiration (metabolic quotient) can be used as indicators of environmental stress, produced by heavy applications of cattle slurry.  相似文献   

12.
The presence of aggregates of various sizes in the soil is an important condition for soil carbon sequestration. In this system, microbial biomass is a key link. This work was devoted to the study of the influence of land use systems on the distribution of SOС, MB-SIR, microbial activity and eco-physiological indices (qCO2, QR, MB-SIR/SOС and qCO2/SOС) in relation to the size of soil aggregates. The distribution of SOС, MB-SIR and mineralization activity among the aggregates was heterogeneous. In the soil of crop rotation, high mineralization activity and MB-SIR were found in the aggregates 0.5–0.1 mm, in the monoculture soil in aggregates <0.1 mm and in the control soil in the aggregates 1–0.25 mm. There was a general trend towards a decrease in microbial activity, MB-SIR and SOС availability with an increase in aggregate size. In agricultural soils, microbial activity was determined by large aggregates (>5 mm), while in the control soil, by the aggregates 5–1 mm. Depending on the type of site and the size of aggregates, the differences in microbial metabolism were revealed. The qCO2 and QR values decreased, and the MB-SIR/SOС and qCO2/SOС increased in the series: control soil > crop rotation > monoculture. In the control soil, the values of the eco-physiological indices decreased with decreasing aggregate size. And vice versa, in agricultural soils, these parameters were the highest in the microaggregates (<0.25 mm). The monoculture soil, in contrast to the control soil and crop rotation soil, turned out to be more energy efficient.  相似文献   

13.
Information is needed on the ability of different crop management factors to maintain or increase soil C and N pools, especially in intensively tilled short crop rotations. Soil samples from field experiments in Maine were used to assess the effect of cover crop, green manure (GM) crop, and intermittent or annual amendment on soil C and N pools. These field experiments, of 6–13 years duration, were all characterized by a 2-year rotation with either sweet corn ( Zea mays L.) or potato ( Solanum tuberosum L.), and primary tillage each year. Total, particulate organic matter (POM), and soil microbial biomass (SMB)-C and -N pools were assessed for each experiment. Total C and N stocks were not affected by red clover ( Trifolium pratense L.) cover crop or legume GM, but were increased by 25–53% via a single application of papermill sludge or an annual manure and/or compost amendment. With the exception of continuous potato production which dramatically reduced the SMB-C and SMB-N concentration, SMB-C and -N were minimally affected by changes in cropping sequence, but were quite sensitive to amendments, even those that were primarily C. POM-C and -N, associated with the coarse mineral fraction (53–2,000 µm), were more responsive to management factors compared to total C and N in soil. The change in soil C fractions was a linear function of increasing C supply, across all experiments and treatments. Within these intensively tilled, 2-year crop rotations, substantial C and N inputs from amendments are needed to significantly alter soil C and N pools, although cropping sequence changes can influence more labile pools responsible for nutrient cycling.  相似文献   

14.
Subsidence of drained, high organic matter Histosols in the Everglades Agricultural Area (EAA) is a concern for the sustainability of crop production in southern Florida. Histosol subsidence is primarily due to oxidation of organic matter by aerobic microorganisms, but far less is known about the influence of agricultural practices. The use of shallow tillage, as opposed to deep tillage, combined with proper plant residue management, may help to reduce the present rate of subsidence and soil CO2 emissions. The present study was conducted on a Lauderhill soil (euic, hyperthermic, Lithic Haplosaprist) previously cropped in sugarcane (Saccharum spp.). The objectives were to (1) determine the effects of tillage depth on short-term CO2 losses in a herbicide-killed weedy residue covered field and another field kept fallow without residue cover, and (2) compare soil respiration measurements made with two different dynamic closed-system portable chamber techniques. Four tillage practices common to the EAA were used to produce soil disturbance ranging in depth from approximately 20 to 300 mm. These practices included switch plowing, disk harrowing, and single and multiple tine cultivation. Twenty-four hours after tillage, cumulative CO2 loss from the deepest tillage treatment (switch plow; 300 mm deep) was as much as 33 times greater than that from the no-till (control) treatment. Cumulative CO2 loss following intermediate tillage (disk harrow; 78–145 mm deep) was as much as 2.3-fold greater than the no-till treatment, but shallower tillage (tine cultivation; 20–41 mm deep) was generally not different. Short-term tillage-induced CO2 loss was primarily related to soil moisture content and soil porosity. Soil respiration measurements made with the two chamber techniques agreed well with each other except for the deepest tillage treatment, where the larger chamber measured CO2 flux that was approximately 10 times greater than for the smaller chamber. Results indicate that minimum or no-tillage may reduce short-term tillage-induced CO2 emissions on organic soils, thus minimizing soil subsidence.  相似文献   

15.
The relationship between the fungal: bacterial biomass ratio and the metabolic quotient (qCO2) was studied in three different soils. In addition, the effect of the fungal: bacterial biomass ratio on the relationship between CO2 evolution and the size of the soil microbial biomass was examined. Soil samples were collected from three experimental fields amended with various organic materials (Yatsugatake, Ibaraki, and Tochigi fields). The range of the fungal:bacterial biomass ratio in the Yatsugatake and Ibaraki fields was small (1.54–2.24 and 1.11–1.71, respectively), but it was large in the Tochigi field (1.18–3.75). We found a high negative correlation between this ratio and the metabolic quotient (qCO2=2.10–0.361 (fungal:bacterial biomass ratio), R=–0.851, P<0.01) in the Tochigi field. Therefore, we suggest tha qCO2 decreases with an increase in the fungal:bacterial biomass ratio, which may be due to a higher efficiency of substrate C use by fungal flora in comparison with bacterial flora. In the Yatsugatake and Ibaraki fields, there was a high positive correlation between CO2 evolution and total microbial biomass. In contrast, no correlation was observed between these two parameters in the Tochigi field, probably reflecting the wide range of values for the fungal:bacterial biomass ratio. From the results obtained, we suggest that the fungal: bacterial biomass ratio is an important factor regulating the relationship between CO2 evolution and the size of the microbial biomass.  相似文献   

16.
Understanding soil organic matter (SOM) decomposition and its interaction with rhizosphere processes is a crucial topic in soil biology and ecology. Using a natural 13C tracer method to separately measure SOM-derived CO2 from root-derived CO2, this study aims to connect the level of rhizosphere-dependent SOM decomposition with the C and N balance of the whole plant–soil system, and to mechanistically link the rhizosphere priming effect to soil microbial turnover and evapotranspiration. Results indicated that the magnitude of the rhizosphere priming effect on SOM decomposition varied widely, from zero to more than 380% of the unplanted control, and was largely influenced by plant species and phenology. Balancing the extra soil C loss from the strong rhizosphere priming effect in the planted treatments with C inputs from rhizodeposits and root biomass, the whole plant–soil system remained with a net carbon gain at the end of the experiment. The increased soil microbial biomass turnover rate and the enhanced evapotranspiration rate in the planted treatments had clear positive relationships with the level of the rhizosphere priming effect. The rhizosphere enhancement of soil carbon mineralization in the planted treatments did not result in a proportional increase in net N mineralization, suggesting a possible de-coupling of C cycling with N cycling in the rhizosphere.  相似文献   

17.
Soil incubations are often used to investigate soil organic matter (SOM) decomposition and its response to increased temperature, but changes in the activity and community composition of the decomposers have rarely been included. As part of an integrated investigation into the responses of SOM components in laboratory incubations at elevated temperatures, fungal and bacterial phospholipid fatty acids (PLFAs) were measured in two grassland soils contrasting in SOM quality (i.e. SOM composition), and changes in the microbial biomass and community composition were monitored. Whilst easily-degradable SOM and necromass released from soil preparation may have fuelled microbial activity at the start of the incubation, the overall activity and biomass of soil microorganisms were relatively constant during the subsequent one-year soil incubation, as indicated by the abundance of soil PLFAs, microbial respiration rate (r), and metabolic quotient (qCO2). PLFAs relating to fungi and Gram-negative bacteria declined relative to Gram-positive bacteria in soils incubated at higher temperatures, presumably due to their vulnerability to disturbance and substrate constraints induced by faster exhaustion of available nutrient sources at higher temperatures. A linear correlation was found between incubation temperatures and the microbial stress ratios of cyclopropane PLFA-to-monoenoic precursor (cy17:0/16:1ω7c and cy19:0/18:1ω7c) and monoenoic-to-saturated PLFAs (mono/sat), as a combined effect of temperature and temperature-induced substrate constraints. The microbial PLFA decay patterns and ratios suggest that SOM quality intimately controls microbial responses to global warming.  相似文献   

18.
Microbial biomass, respiratory activity, and in‐situ substrate decomposition were studied in soils from humid temperate forest ecosystems in SW Germany. The sites cover a wide range of abiotic soil and climatic properties. Microbial biomass and respiration were related to both soil dry mass in individual horizons and to the soil volume in the top 25 cm. Soil microbial properties covered the following ranges: soil microbial biomass: 20 µg C g–1–8.3 mg C g–1 and 14–249 g C m–2, respectively; microbial C–to–total organic C ratio: 0.1%–3.6%; soil respiration: 109–963 mg CO2‐C m–2 h–1; metabolic quotient (qCO2): 1.4–14.7 mg C (g Cmic)–1 h–1; daily in‐situ substrate decomposition rate: 0.17%–2.3%. The main abiotic properties affecting concentrations of microbial biomass differed between forest‐floor/organic horizons and mineral horizons. Whereas microbial biomass decreased with increasing soil moisture and altitude in the forest‐floor/organic horizons, it increased with increasing Ntot content and pH value in the mineral horizons. Quantities of microbial biomass in forest soils appear to be mainly controlled by the quality of the soil organic matter (SOM), i.e., by its C : N ratio, the quantity of Ntot, the soil pH, and also showed an optimum relationship with increasing soil moisture conditions. The ratio of Cmic to Corg was a good indicator of SOM quality. The quality of the SOM (C : N ratio) and soil pH appear to be crucial for the incorporation of C into microbial tissue. The data and functional relations between microbial and abiotic variables from this study provide the basis for a valuation scheme for the function of soils to serve as a habitat for microorganisms.  相似文献   

19.
Forest soils can be sources or sinks of greenhouse gases (GHGs) depending on soil attributes that affect biomass and activity of soil micro-organisms involved in GHGs fluxes. In this work, we tested the hypothesis that soil physical, chemical and microbiological attributes, under different forests ecosystems, affect the soil GHGs [nitrous oxide (N2O), carbon dioxide (CO2) and methane (CH4)] fluxes. The study was carried out in two locations in southern Brazil in 2019, with three experimental plots of 900 m2 in native forests of the Atlantic Forest biome and in loblolly pine (Pinus taeda) plantations. Air samples released from the soil surface were analysed for concentration and flux of CO2, N2O and CH4. Soil samples were analysed for chemical attributes, density (Ds), soil microporosity (MiPs), soil macroporosity (MaPs), total porosity (TP), water-filled pore space (WFPS), microbial biomass carbon (MB-C), basal respiration (BR), microbial (qMic) and metabolic (qCO2) quotient and activities of soil urease and β-glucosidase enzymes. The seasons influenced the CO2 and N2O emissions, probably because of the changes in seasonal conditions. However, native forests consumed more CH4 than pine plantations. Meanwhile, the native forests presented soils with lower Ds (average 21.5% lower), more TP (average 12.5% higher) and more moisture (average 33% higher), which improved the microbiological attributes of the soil (20% to 60% more MB-C, 67% higher urease activity and 30% higher β-glucosidase activity) compared with pine plantations. Native forests contributed more intensely to CH4 consumption than pine plantations because they present better physical, chemical and microbiological soil conditions. Therefore, it is possible that forestry practices that improve soil physical attributes are likely to contribute to increase CH4 consumption, and to reduce GHGs emissions in forest ecosystems.  相似文献   

20.
In semi-arid Mediterranean areas, studies of the performance of conservation tillage systems have largely demonstrated advantages in crop yield, soil water storage and soil protection against wind and water erosion. However, little attention has been given to interactions between soil biochemical properties under different tillage practices. Biochemical properties are useful tools to assess changes caused by different soil tillage systems in long-term field experiments. This study deals with the effect of long-term tillage practices (reduced tillage and no-tillage vs. traditional tillage) on soil chemical properties and microbial functions in three different sites of Spain (two of them located in the Northeast and one in the Southwest) under semi-arid Mediterranean conditions. Soil biological status, as index of soil quality, was evaluated by measuring microbial biomass carbon (MBC) and dehydrogenase (an oxidoreductase) and protease (a hydrolase) activities at three soil depths (0–5, 5–10 and 10–25 cm). In the three experimental areas, increases in soil organic matter content, MBC and enzymatic activities were found at the superficial layers of soil under conservation tillage (reduced tillage and no-tillage) in comparison with traditional tillage. Values of the stratification ratio of some biochemical properties were significantly correlated with yield production in Northeast sites.Conservation tillage has proven to be an effective strategy to improve soil quality and fertility in Mediterranean areas of Spain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号