首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Determining the factors that influence recruitment to sequential ontogenetic stages is critical for understanding recruitment dynamics of fish and for effective management of sportfish, particularly in dynamic and unpredictable environments. We sampled walleye (Sander vitreus) and white bass (Morone chrysops) at 3 ontogenetic stages (age 0 during spring: ‘age‐0 larval’; age 0 during autumn: ‘age‐0 juvenile’; and age 1 during autumn: ‘age‐1 juvenile’) from 3 reservoirs. We developed multiple linear regression models to describe factors influencing age‐0 larval, age‐0 juvenile and age‐1 juvenile walleye and white bass abundance indices. Our models explained 40–80% (68 ± 9%; mean ± SE) and 71%–97% (81 ± 6%) of the variability in catch for walleye and white bass respectively. For walleye, gizzard shad were present in the candidate model sets for all three ontogenetic stages we assessed. For white bass, there was no unifying variable in all three stage‐specific candidate model sets, although walleye abundance was present in two of the three white bass candidate model sets. We were able to determine several factors affecting walleye and white bass year‐class strength at multiple ontogenetic stages; comprehensive analyses of factors influencing recruitment to multiple early ontogenetic stages are seemingly rare in the literature. Our models demonstrate the interdependency among early ontogenetic stages and the complexities involved with sportfish recruitment.  相似文献   

2.
Acoustic trawl surveys were conducted in 2000 and 2001 in two troughs located off the eastern coast of Kodiak Island in the Gulf of Alaska as part of a multiyear, multidisciplinary experiment to examine the influence of environmental conditions on the spatial distribution of adult and juvenile walleye pollock (Theragra chalcogramma) and capelin (Mallotus villosus). Continuous underway sea surface temperature samples and water column profiles collected in 2000 and 2001 showed the presence of a sharp shelf‐break front in Chiniak Trough and a mid‐trough front in Barnabas Trough. At distances <22 km from shore, the water column was well mixed, whereas a well‐defined mixed layer was present beyond approximately 22 km from shore. Satellite drifter tracks in Barnabas Trough entered along the upstream edge of the trough and appeared to follow the frontal boundary across the middle portion of the trough. A storm in 2001 weakened stratification and cooled surface water temperature by 1.6–2.1°C. Wind mixing associated with the storm event mixed subsurface chlorophyll a to the surface and enhanced nutrients in the surface waters. The storm event revealed spatial partitioning of summer production in Barnabas Trough, with production concentrated in regions inside the mid‐trough front. In contrast, post‐storm summer production was distributed throughout Chiniak Trough. The spatial distribution of walleye pollock and capelin differed and appeared to be related to differences in habitat characteristics. Acoustic survey data identified four acoustic sign types: age‐1 pollock, adult pollock, capelin, capelin–age‐0 pollock mix. The spatial distribution of these four sign types appears to be influenced by the oceanographic and topographic features of the two troughs. Adult pollock were broadly distributed throughout Chiniak Trough, whereas adult pollock were aggregated on the coastal side of the frontal system in Barnabas Trough. In 2000, capelin occurred with age‐0 pollock. In Chiniak Trough, capelin were most abundant along steep topographic gradients at the edges of the trough and in a deep region near Cape Chiniak, whereas the capelin–age‐0 mix (2000) or capelin (2001) concentrations were observed in slope water intrusions over the outer shelf in Barnabas Trough. Results suggest that habitat selection of walleye pollock and capelin are controlled by different processes. Capelin distributions appear to be limited by oceanographic conditions while other factors appear to be more important for pollock.  相似文献   

3.
This review paper synthesizes published research and unpublished data on the abundance and distribution patterns, ecology and population dynamics of walleye pollock ( Theragra chalcogramma ) during their first year of life (age-0) in the Gulf of Alaska. Distribution patterns have been described using mainly trawl catches, but recently, acoustic methodology has been employed, especially in examining vertical distributions. Although age-0 pollock are found throughout the Gulf, the highest catches occurred west of Kodiak Island. Pollock are pelagic for at least their first 6 months of life but show an ontogenetic increase in depth distribution superimposed on a pronounced diel vertical migration at a larger size. Daily growth rates are variable depending on year, season and area, and growth generally ceases during the winter. The diet of age-0 pollock shifts from mainly copepods in early juveniles to euphausiids by fall, with epibenthic organisms becoming important during the winter months. Feeding occurs mainly at night in surface waters. Age-0 pollock are most frequently associated with gelatinous zooplankton (medusae) and older pollock. Many predators on age-0 pollock have been identified; the most important are arrowtooth flounder ( Atheresthes stomias ), adult pollock, puffins ( Fratercula spp.), murres ( Una spp.), harbor seals ( Phoca vitulina richardsi ) and Steller sea lions ( Eumetopiasjubatus ). Modelling provides some insight into the population dynamics of these juveniles and environmental conditions which interannually affect their survival. These results are discussed relative to the importance of age-0 pollock in the recruitment of this species and to their role in the pelagic ecosystem.  相似文献   

4.
Information on the annual variability in abundance and growth of juvenile groundfish can be useful for predicting fisheries stocks, but is often poorly known owing to difficulties in sampling fish in their first year of life. In the Western Gulf of Alaska (WGoA) and Eastern Bering Sea (EBS) ecosystems, three species of puffin (tufted and horned puffin, Fratercula cirrhata, Fratercula corniculata, and rhinoceros auklet, Cerorhinca monocerata, Alcidae), regularly prey upon (i.e., “sample”) age-0 groundfish, including walleye pollock (Gadus chalcogramma, Gadidae) and Pacific cod (Gadus microcephalus, Gadidae). Here, we test the hypothesis that integrating puffin dietary data with walleye pollock stock assessment data provides information useful for fisheries management, including indices of interannual variation in age-0 abundance and growth. To test this hypothesis, we conducted cross-correlation and regression analyses of puffin-based indices and spawning stock biomass (SSB) for the WGoA and EBS walleye pollock stocks. For the WGoA, SSB leads the abundance of age-0 fish in the puffin diet, indicating that puffins sample the downstream production of the WGoA spawning stock. By contrast, the abundance and growth of age-0 fish sampled by puffins lead SSB for the EBS stock by 1–3 years, indicating that the puffin diet proxies incoming year class strength for this stock. Our study indicates connectivity between the WGoA and EBS walleye pollock stocks. Integration of non-traditional data sources, such as seabird diet data, with stock assessment data appears useful to inform information gaps important for managing US fisheries in the North Pacific.  相似文献   

5.
A series of age-specific life tables for walleye pollock ( Theragra chalcogramma ) in the western Gulf of Alaska was compiled for the 1980-91 year classes. The life tables were utilized to perform an exploratory key factor analysis to examine the timing of critical periods in the recruitment process, evidence of density-dependence at different stages and trends in mortality rates. Early larval mortality was significantly correlated with generational mortality (In recruits/spawning bio-mass), but patterns in juvenile mortality also were similar to generational mortality and in some years were clearly dominant in determining the fate of a cohort. Density-dependent mortality, based on the correlation between mortality and initial abundance, was indicated only for the late larval to early juvenile stage. Time trends were marginally significant for juvenile mortality. It is speculated that the observed increase in juvenile mortality is associated with increasing abundance of arrowtooth flounder. Weaknesses in the data base are discussed; these along with the short time series involved make our conclusions tentative and subject to further study. We hypothesize that pollock recruitment levels can be established at any life stage depending on sufficient supply from prior stages, a type of dynamics which can be termed supply dependent multiple life stage control.  相似文献   

6.
Ecosystem‐based fisheries management requires the development of physical and biological time series that index ocean productivity for stock assessment and recruitment forecasts for commercially important species. As recruitment in marine fish is related to ocean condition, we developed proxies for ocean conditions based on sea surface temperature (SST) and biometric measurements of chum salmon (Oncorhynchus keta) captured in the walleye pollock (Gadus chalcogrammus) fishery in the eastern Bering Sea in three periods (July 16–30, September 1–15 and September 16–30). The main purpose of this paper was to evaluate Pacific salmon (Oncorhynchus spp.) growth as a possible indicator of ocean conditions that, in turn, may affect age‐1 walleye pollock recruitment. Marine growth rates of Pacific salmon are the result of a complex interplay of physical, biological and population‐based factors that fish experience as they range through oceanic habitats. These growth rates can, therefore, be viewed as indicators of recent ocean productivity. Thus, our hypothesis was that estimated intra‐annual growth in body weight of immature and maturing age‐4 male and female chum salmon may be used as a biological indicator of variations in rearing conditions also experienced by age‐0 walleye pollock; consequently, they may be used to predict the recruitment to age‐1 in walleye pollock. Summer SSTs and chum salmon growth at the end of July and September explained the largest amount of variability in walleye pollock recruitment indicating that physical and biological indices of ocean productivity can index fish recruitment.  相似文献   

7.
Physical and biological variables affecting juvenile Pacific herring (Clupea pallasi) in Prince William Sound (PWS) from 1995 to 1998 were investigated as part of a multifaceted study of recruitment, the Sound Ecosystem Assessment (SEA) program. Though more herring larvae were retained in eastern PWS bays, ages‐0 and ‐1 herring used bays throughout PWS as nursery areas. Water transported into PWS from the Gulf of Alaska (GOA) contributed oceanic prey species to neritic habitats. Consequently, variations in local food availability resulted in different diets and growth rates of herring among bays. Summer food availability and possible interspecific competition for food in nursery areas affected the autumn nutritional status and juvenile whole body energy content (WBEC), which differed among bays. The WBEC of age‐0 herring in autumn was related to over‐winter survival. The limited amount of food consumption in winter was not sufficient to meet metabolic needs. The smallest age‐0 fish were most at risk of starvation in winter. Autumn WBEC of herring and winter water temperature were used to model over‐winter mortality of age‐0 herring. Differences in feeding and energetics among nursery areas indicated that habitat quality and age‐0 survival were varied among areas and years. These conditions were measured by temperature, zooplankton abundance, size of juvenile herring, diet energy, energy source (GOA vs. neritic zooplankton), WBEC, and within‐bay competition.  相似文献   

8.
Interannual variability in growth of larval walleye pollock Theragra chalcogramma was examined from 1983 to 1991 and of juveniles from 1985 to 1990. ANCOVA was used to assess differences in population growth rates, and an alternate method was developed to examine variations between annual length-at-age data and average 'expected' values over different age groupings. For larvae, the years 1986, 1987, 1989 and 1990 had higher than average length-at-age, and 1988 and 1991 had lower than average values. Relationships between growth and SST and larval density were not clear. A tentative relationship between copepod nauplii abundance and larval length-at-age was noted. The consequence of larval growth to larval mortality, late larval abundance or recruitment was not clear. We conclude that larval mortality rates are highly variable and tend to mask effects of moderate variability in growth on later abundance. For juveniles, 1987 had significantly lower than average length-at-age and 1988 had higher than average values. Although there are few years of data, they tend to support the importance of juvenile growth in the recruitment process. Conditions for the large 1988 year class are documented and discussed, including warm SST, calm winds, relatively low larval growth rates, low abundances of potential predators on larvae, low larval mortality rates, and high juvenile growth rates.  相似文献   

9.
A three-dimensional biophysical nutrient–phytoplankton–zooplankton model was used to investigate the spatial and temporal dynamics of food resources for young walleye pollock in the western Gulf of Alaska, to further understanding of recruitment processes for pollock. We modeled nitrogen, phytoplankton, a large herbivorous grazer parameterized as Neocalanus spp. (the biomass dominant copepod in the Gulf), and the 13 stages (egg, naupliar and copepodite) of Pseudocalanus spp. (a major constituent of the diet of pollock) so that the appropriate size class of food for each size of larval pollock was represented. Model results identified an area between the Semidi and Shumagin Islands that may not be suitable as a nursery area early in the year due to low prey abundance. Modeled mesoscale eddies, previously hypothesized to be important for larval pollock retention in Shelikof Strait, contained higher prey concentrations than the surrounding waters when they were cyclonic. This work also help to understand the consistency of pollock spawning in time and space in Shelikof Strait, by examining the timing and location of prey availability which, along with transport, narrows the window for optimal spawning.  相似文献   

10.
Juvenile marine growth (SW1) of salmon and a new temperature change (TC) index were evaluated as ecosystem indicators and predictors for the post age‐0 year class strength (YCS) of groundfish in the Gulf of Alaska (GOA) and eastern Bering Sea (EBS). Our hypothesis was that SW1, as measured on the scales of adult Pacific salmon (Oncorhynchus spp.), is a proxy for ocean productivity on the continental shelf, a rearing area for young salmon and groundfish. Less negative TC index values are the result of a cool late summer followed by a warm spring, conditions favorable for groundfish YCS. In the GOA, SW1 was a positive predictor of age‐1 pollock (Theragra chalcogramma), but not age‐2 sablefish (Anoplopoma fimbria) YCS, indicating that the growth of the Karluk River sockeye salmon that enter Shelikof Strait is a proxy for ocean conditions experienced by age‐0 pollock. Contrary to our hypotheses, the TC index was a negative predictor of GOA pollock YCS; and the SW1 a negative predictor of EBS pollock and cod YCS since the 1980s. Recent fisheries oceanography survey results provide insight into possible mechanisms to support the inverse SW1 and YCS relationship. For the EBS, the TC index was a significant positive predictor for pollock and cod YCS, supporting the hypothesis that a cool late summer followed by a warm spring maximizes the over‐wintering survival of pollock and cod (Gadus macrocephalus), especially since the 1980s. The TC and SW1 index showed value for the assessment of pollock and cod, but not sablefish.  相似文献   

11.
I examined the age, growth, maturity, mortality, and body condition of walleye pollock, Theragra chalcogramma, in the northeastern Japan Sea (northern Japan Sea population) and evaluated their resilience to exploitation. Walleye pollock were collected in pre-spawning (October 1991-1995) and post-spawning (April 1990-1996) seasons. Estimated ages ranged from 3 to 18 years for both sexes. A von Bertalanffy growth model showed that females had longer asymptotic fork length (460 mm) than males (425 mm). Fifty percent of females and males were mature at 348 mm (4.6 years) and 322 mm (3.9 years), respectively. The instantaneous natural mortality rate was estimated to be 0.22. These life-history traits in the northern Japan Sea population were compared to those in the Bering Sea, the Gulf of Alaska, and the Japan Pacific populations. As a result, female walleye pollock in this population matured at small body sizes, grew rapidly toward small maximum sizes, and had short reproductive lifespans with low size-specific fecundity and poor body condition. Low prey availability and habitat temperatures are considered as a possible mechanism for the small maximum sizes in this population. The potential rate of population increase of both the northern Japan Sea population and other pollock populations tended to be lower than other exploited populations of non-viviparous marine fishes, suggesting potentially lower resilience to exploitation in this population and walleye pollock populations in general.  相似文献   

12.
Here we investigate processes affecting productivity of capelin and walleye pollock in the Gulf of Alaska. We examine pelagic habitat selection by comparing the distribution of juvenile fish and their prey with oceanographic properties and we evaluate the potential for interspecific competition by comparing diets and measures of foraging. The primary field study was conducted in Barnabus Trough, Kodiak Island, Alaska, during September 2005. The distribution of fish was assessed acoustically and trawls were used to collect individual fish for stomach content analyses. Physical and biological data were collected with conductivity–temperature–depth probes and zooplankton tows. Age‐0 pollock were distributed in cool waters offshore of a mid‐trough front, coincident with the distribution of euphausiids, their preferred prey. In contrast, capelin and their prey (copepods) were distributed throughout the trough. We observed that sympatric capelin (occurring with pollock) often had reduced foraging success compared to allopatric capelin (occurring alone). Results of a bioenergetic model also suggest that the exclusion of capelin from foraging on euphausiids can have negative consequences for capelin growth.  相似文献   

13.
Abiotic and biotic factors affecting the recruitment variability of the Japanese Pacific stock (JPS) of walleye pollock (Theragra chalcogramma) were examined using a bivariate regression and multivariate combined model. Of the abiotic variables around Funka Bay (spawning ground), February sea surface temperature (SST) and wind direction index showed significant bivariate relationships with recruitment. February SST was positively related to recruitment, suggesting that warmer water temperature in February favors JPS recruitment. On the other hand, the relationship between February wind direction index and recruitment predicts high JPS recruitment under predominant northwest winds in February. For the biotic variables in the Doto area (nursery ground), significant and negative bivariate relationships with recruitment were observed for catch per unit effort of Kamchatka flounder (Atheresthes evermanni), Pacific cod (Gadus macrocephalus), and walleye pollock, implying an important impact of predation by these groundfishes on JPS recruitment. The overall model incorporating these abiotic and biotic factors successfully reproduced the variability in JPS recruitment. Temperature and wind conditions around the spawning ground along with predator condition in the nursery ground appear to play a dominant role in the recruitment dynamics of JPS. Based on these results and prior knowledge, we propose a new hypothesis to explain the processes controlling JPS recruitment.  相似文献   

14.
Fisheries-Oceanography Coordinated Investigations (FOCI) is a National Oceanic and Atmospheric Administration (NOAA) research programme seeking to understand recruitment processes of commercially exploited Alaskan fishes. The FOCI is mainly comprised of scientists at the Pacific Marine Environmental Laboratory and the Alaska Fisheries Science Center who study both the biotic and abiotic environment, including processes within larval patches through integrated field, laboratory, and modelling studies. The initial focus of studies was walleye pollock ( Theragra chakogramma ) spawning in Shelikof Strait, Gulf of Alaska. The choice of this population for our research was based on development of a large fishery and the substantial variation in recruitment that was observed in the late 1970s and early 1980s. Also, the early life history of this population is quite predictable and restricted both temporally and spatially. Walleye pollock spawn consistently in a small part of Shelikof Strait in early spring from which a large patch of eggs and later larvae is produced. In most years this concentration of larvae drifts to the south-west through the strait during April and May. Large numbers of larvae are often found in eddies which frequent the area and we have observed improved feeding conditions for larvae, in as opposed to out of eddies. We have found that first-feeding larvae have higher survival rates during calm periods, rather than in storms, and that in many years recruitment is largely set by the end of the larval period, although in some years age-0 juvenile mortality is also important. FOCI now generates information that is being used for management of this resource.  相似文献   

15.
The southwestern Pacific coast of Hokkaido is the main spawning ground for the Japanese Pacific stock of walleye pollock Theragra chalcogramma. A commercial gillnet fishery targeting spawning adult pollock in this area mainly operates from October to January to coincide with the migration of adult pollock from the feeding ground. Given the results of acoustic surveys, and changes in the proportion of the monthly total catch that was monthly walleye pollock caught by the commercial gillnet fishery, it is thought that the timing of walleye pollock spawning migration to the Donan area varies among years and that the pollock catch of the gillnet fishery clearly reflects changes in pollock abundance in this area. A time series of interannual variability in catch data from 1980 to 2005 suggested that adult pollock migrated and concentrated on their spawning ground later in the 1980s and after 2000 than in the 1990s. Such decadal-scale shifts are presumably caused by climatic changes (e.g., in water temperature) in the Oyashio region. These shifts affect the gillnet fishery through differences in monthly unit prices of pollock and changes in the formation of fishing grounds. These scientific findings can aid the establishment of rules for more efficient walleye pollock resource management under the total allowable catch system.  相似文献   

16.
In 2003, the Alaska walleye pollock industry reported product quality issues attributed to an unspecified parasite in fish muscle. Using molecular and histological methods, we identified the parasite in Bering Sea pollock as Ichthyophonus. Infected pollock were identified throughout the study area, and prevalence was greater in adults than in juveniles. This study not only provides the first documented report of Ichthyophonus in any fish species captured in the Bering Sea, but also reveals that the parasite has been present in this region for nearly 20 years and is not a recent introduction. Sequence analysis of 18S rDNA from Ichthyophonus in pollock revealed that consensus sequences were identical to published parasite sequences from Pacific herring and Yukon River Chinook salmon. Results from this study suggest potential for Ichthyophonus exposures from infected pollock via two trophic pathways; feeding on whole fish as prey and scavenging on industry‐discharged offal. Considering the notable Ichthyophonus levels in pollock, the low host specificity of the parasite and the role of this host as a central prey item in the Bering Sea, pollock likely serve as a key Ichthyophonus reservoir for other susceptible hosts in the North Pacific.  相似文献   

17.
Maltais E, Daigle G, Colbeck G, Dodson JJ. Spawning dynamics of American shad (Alosa sapidissima) in the St. Lawrence River, Canada–USA.
Ecology of Freshwater Fish 2010: 19: 586–594. © 2010 John Wiley & Sons A/S Abstract – The most northerly population of American shad (Alosa sapidissima), located in the St. Lawrence River, is considered vulnerable because of low population abundance and limited spawning habitat located at the upstream extent of the population’s anadromous migration. Here, we aimed to establish the temporal and spatial extent of spawning based on a novel hatch‐date analysis of juveniles. Spawning activity lasted from early May to early July. We found that juveniles captured downstream during the summer hatched later in the year than those captured further upstream. As a result, younger juveniles were distributed somewhat further downstream. In addition, we found significant multimodality in hatch‐date distributions at midstream and downstream sampling stations. Together, these results provide evidence that the 2‐month spawning period involved numerous spawning events that progressed in a downstream direction as the season advanced, rather than being restricted to upstream sites over the spawning season.  相似文献   

18.
  • 1. The lacustrine brown trout (Salmo trutta) is endangered and of high conservation importance. In the only spawning habitat of the population in the Bavarian Lake Walchensee, the River Obernach, a substantial decrease in spawning runs has been reported. In this study, the present ecological state of the spawning stream was analysed with the objective of identifying life‐stage specific limitations to successful recruitment attributable to deficiencies in (i) spawning migration, (ii) spawning habitat quality, and (iii) habitat quality for juveniles.
  • 2. Structural stream analysis showed that discharge and several migration barriers — particularly near the river outlet into the lake — prevent successful spawning migrations at normal water levels. Migration barriers are probably the main limiting factor for reproduction of lacustrine brown trout, whereas structural variability of the Obernach meets the habitat requirements of both spawners and juveniles.
  • 3. Spawning site quality was suitable for trout, as indicated by stream substratum texture and high exchange rates between free‐flowing water and the interstitial zone in physico‐chemical parameters (redox potential, dissolved oxygen, pH, temperature and conductivity).
  • 4. Analyses of fish community structure revealed dominance of lithophilic species, in particular of riverine brown trout (Salmo trutta). Its density and intact demographic population structure suggest that spawning and juvenile habitat quality for salmonids is not limiting. Recapture of stocked lacustrine trout juveniles also indicates habitat suitability for the juvenile stage.
  • 5. In conclusion, the results show that the methodology used in this study is suitable for the identification of life‐stage specific habitat deficiencies in lacustrine brown trout and other fish species. Availability of habitat data throughout the species' distribution range is a first crucial step for the development of an effective recovery plan. Copyright © 2009 John Wiley & Sons, Ltd.
  相似文献   

19.
In order to understand better the recruitment variability in European anchovy in the Bay of Biscay, it is important to investigate the processes that affect survival during the early life stages. Anchovy juvenile growth trajectories and hatch‐date distributions were inferred over a 3‐year period based on otolith microstructure analysis. Otolith growth trajectories showed a characteristic shape depending on their hatch‐date timing. Earlier‐born juveniles had notably broader maximum increments than later born conspecifics, resulting in higher growth rates. This observation suggests that early hatching would be beneficial for larval and juvenile growth, and, therefore, survival. The estimated juvenile hatch‐date distributions were relatively narrow compared with the extended anchovy spawning season (March–August) in the Bay of Biscay and indicated that only individuals originated mainly from the summer months (June–August) survived until autumn. Hatch‐date distributions were markedly different among years and seemed to influence the interannual recruitment strength of anchovy. We conclude that years characterized by juvenile survivors originating from the peak spawning period (May and June) would lead to considerable recruitment success. Downwelling events during the peak spawning period seem to affect larval survival. Furthermore, size‐dependent overwinter mortality would be an additional process that regulates recruitment strength in the anchovy population in the Bay of Biscay.  相似文献   

20.
The tufted puffin (Fratercula cirrhata) is a generalist seabird that breeds throughout the North Pacific and eats more than 75 different prey species. Using puffins as samplers, we characterized the geographic variability in pelagic food webs across the subarctic North Pacific from the composition of ~10,000 tufted puffin meals (~56,000 prey items) collected at 35 colonies in the Gulf of Alaska (GoA) and Aleutian Archipelago. Cluster analysis of diet species composition suggested three distinct forage fish communities: (i) in the northern GoA, multiple age‐classes of coastal and shelf residents such as capelin, sand lance and herring dominated the food web, (ii) in the western GoA to eastern Aleutians, the shelf community was dominated by transient age‐0 walleye pollock, and (iii) in the western Aleutians, shelf‐edge and mesopelagic forage species such as squid, lanternfish, and Atka mackerel were prevalent. Geographic patterns of abundance of capelin and sand lance in tufted puffin diets were corroborated by independent research fisheries and diets of piscivorous fish, indicating that puffin diets reflect the local abundance of forage species, not just selection of favored species. Generalized additive models showed that habitat characteristics predict, in a non‐linear fashion, forage species distribution and abundance across two large marine ecosystems. We conclude that major biogeographic patterns in forage fish distribution follow gradients in key habitat features, and puffin diets reflect those patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号