首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Feeding by pine weevil (Hylobius abietis L.) causes severe damage to newly planted conifer seedlings in most parts of Scandinavia. We investigated the effect of planting time and insecticide treatment on pine weevil damage and seedling growth. The main objective was to study if planting in early autumn on fresh clear-cuts would promote seedling establishment and reduce the amount of damage caused by pine weevil the following season. The experiment was conducted in southern Sweden and in south-eastern Norway with an identical experimental design at three sites in each country. On each site, Norway spruce seedlings with or without insecticide treatment were planted at four different planting times: August, September, November and May the following year. In Sweden, the proportion of untreated seedlings that were killed by pine weevils was reduced when seedlings were planted at the earliest time (August/September) compared to late planting in November, or May the following year. This pattern was not found in Norway. The average length of leading shoot, diameter growth and biomass were clearly benefited by planting in August in both countries. Insecticide treatment decreased the number of seedlings killed or severely damaged in both Norway and Sweden.  相似文献   

2.
Damage caused by pine weevil (Hylobius abietus L.) to planted seedlings and cuttings of Norway spruce (Picea abies (L.) Karst.) was studied at five clearcut sites in south-eastern Sweden. The main objective was to compare the two types of stock in terms of attack frequency and mortality due to pine weevil feeding. Cuttings and seedlings with the same initial stem-base diameter (4 mm) were compared. Two sites were harvested and scarified shortly before planting, two were harvested shortly before planting, but were not scarified, and one was harvested 2 years before and scarified the autumn before planting. The total mortality 5 years after planting was highest, greater than 90%, at the new, non-scarified sites, and lowest, 23%, at the old, scarified site. More than 90% of the mortality was caused by pine weevil feeding. Attack frequency and pine weevil induced mortality were significantly higher among seedlings than among cuttings. Mortality due to pine weevil damage was 4–43% higher in seedlings than in cuttings after the fifth year. Of the cuttings and seedlings that were attacked in the first year, a significantly higher frequency of the seedlings were girdled. The higher resistance of cuttings to pine weevil damage may partly explain the more rapid growth of cuttings reported in other studies. However, the causes of their higher resistance need to be further investigated. The thicker bark and needles on the stem base of the cuttings could be important in this respect.  相似文献   

3.
Replanting at appropriate times after harvesting a coniferous forest stand can help efforts to suppress seedling mortality caused by the pine weevil Hylobius abietis, but optimal times are uncertain. We hypothesized that planting in June rather than May in the third season after harvest would reduce feeding damage by the pine weevil and increase seedling survival rates in central Sweden, where new-generation weevils mainly fly away from their development sites in May/early June. An experimental test of the hypothesis in eight clear-cuts confirmed that planting in June instead of May reduced proportions of seedlings attacked by pine weevil, bark removal from seedlings’ stems, and proportions of seedlings killed by feeding damage. These differences between seedlings planted in May and June declined to some extent with time but still remained significant after two growing seasons. The total seedling mortality after two seasons did, however, not differ significantly between seedlings planted in May and June. Overall, 29% of all seedlings were killed by pine weevil, 4.0% by Hylastes bark beetles, and 2.3% by drought. The results indicate that replanting in spring during the third season after harvest can advantageously continue until mid-June with respect to damage and mortality.  相似文献   

4.
Damage to planted conifer seedlings by the pine weevil, Hylobius abietis (L.), is considered to be less severe in shelterwoods than in clear-cuttings. To evaluate possible reasons for this reduction, this study investigated the relationship between seedling damage and pine weevil population density in the presence and absence of shelter trees. Assessments of seedling damage throughout a full growth season and absolute population density estimates were made at a fresh clear-cutting and an adjacent shelterwood (1 ha each). A grid of 100 pitfall traps was placed over each area, and population estimates were made using the mark–recapture technique. Pine weevil damage to seedlings was about twice as high in the clear-cutting, whereas pine weevil density was estimated to be higher in the shelterwood or about the same in the two treatments (~14?000 weevils ha?1). Existing differences in microclimate between the shelterwood and clear-cutting did not seem to be the cause of the differences in damage levels. Thus, the hypothesis that seedling damage is reduced in shelterwoods because of increased availability of alternative food remains a candidate for further testing.  相似文献   

5.
The effectiveness of a plastic collar designed to protect planted seedlings against damage caused by Hylobius abietis (L.) (Col., Curculionidae) was evaluated at 63 planting sites in southern Sweden during 1979 and 1980. Nearly 10 000 collar‐protected pine and spruce plants and 10 000 controls were carefully examined for Hylobius‐damage and other injuries. In addition, the impact of some microsite factors on weevil damage and collar performance was evaluated, and the height growth was measured. The protective effect of the collar for two seasons after planting was comparable to that of insecticides and was best at sites with sparse vegetation and high weevil pressure. Proper application of the collar was crucial for good control. Collars were not observed to affect plant growth. Soil scarification reduced mortality in both collared plants and controls.  相似文献   

6.

Pine weevils (Hylobius spp.) feeding on stem bark of young conifer seedlings pose a serious threat to forest regeneration-planting programmes in Nordic countries. This study was designed to determine the threshold diameter for planted, untreated containerized seedlings, above which pine weevils cause little or no damage. The effects of sublethal weevil damage on seedling growth were also assessed. In total, 5320 containerized spruce seedlings were planted on scarified and unscarified plots on three sites in southern Sweden. Seedlings in six size classes, which differed with regard to age (1.5-3.5 yrs) and cultivation density (28-446 seedlings m 2) were grown using the Combicell system. None of the seedlings was treated with insecticides, except for those in the smallest class, where both untreated and treated seedlings were used. Inspections were made periodically during the first 3 yrs and after both 5 and 7 yrs. A statistically significant relationship was found between seedling losses due to pine weevil attack and seedling stem-base diameter at the time of planting out, on both scarified and unscarified plots. For seedlings with a stem-base diameter of around 10 mm, mortality due to pine weevil attack on scarified plots was low enough to be considered negligible. This threshold diameter was several millimetres greater for seedlings planted on unscarified plots. An analysis of the relationship between the extent of weevil damage and seedling growth rate showed that among surviving seedlings, those that grew fast tended to show low levels of damage. On unscarified plots, the mortality rate amongst seedlings treated once with a permethrin insecticide was only one-third that of untreated seedlings. On scarified plots, the corresponding difference was somewhat smaller. Repeated insecticide treatment resulted in a pronounced reduction in seedling mortality on the unscarified plots, whereas the effect was weaker on scarified plots.  相似文献   

7.

It has been suggested that reduced damage by the pine weevil ( Hylobius abietis ) under shelter trees might result from more food being available under shelter trees than on clear-cuttings. The shelter trees provide an extra supply of bark on branches and roots. Moreover, shelter trees favour some species in the ground vegetation (e.g. bilberry, Vaccinium myrtillus ) that could be used as food by the weevil. Two similarly designed field experiments, studied whether the amount of pine weevil feeding on planted conifer seedlings was affected by the availability of other food sources. In the first experiment, fresh pine branches were placed weekly on the ground for 6 weeks on a fresh clear-cutting in southern Sweden. This significantly reduced the amount of feeding on seedlings in treated 20 2 20 m plots. In the second experiment, damage tended to increase after mechanical removal of field vegetation (mainly bilberry), but the effect was not statistically significant. In conclusion, extra food in the form of coniferous bark could relieve seedlings from pine weevil damage; however, any effect of this kind due to the presence of field-layer vegetation remains to be demonstrated. Finally, there may be long-term population effects because of the extra food that the shelter trees provide for the reproductive weevils.  相似文献   

8.
Abstract

Pine weevil (Hylobius abietis L.) damage to seedlings after overstorey removal was investigated in a survey study in six shelterwoods in the south–central part of Sweden. The shelterwoods predominantly consisted of Scots pine, except at one site where the shelter trees mainly consisted of Norway spruce. Before final cutting, 10 plots were laid out at each site and measurements of shelter trees and marked seedlings were taken. The seedlings were examined during the 2 years after final cutting. The study showed that removal of shelter trees increases the risk of severe damage by pine weevil and the variable that was most strongly correlated with the risk was the seedling root collar diameter. Both Scots pine and Norway spruce seedlings were severely damaged by pine weevil, and most of the feeding occurred during the first year after cutting. The amount of debarked area was significantly larger for Scots pine than for Norway spruce seedlings. Vitality (growth of the leading shoot before final cutting) of the seedlings also affected the probability of damage. Seedlings with high vitality were less damaged by pine weevil than seedlings with low vitality. For Scots pine the shelterwood density before final cutting was correlated to the intensity of pine weevil feeding after cutting. In conclusion, after the final cutting of a pine or spruce shelterwood, pine weevils will probably invade the area. To avoid serious damage, Norway spruce and Scots pine seedlings should have reached a diameter of at least 10–12 mm.  相似文献   

9.

Örlander, G.1 and Nilsson, U. (Swedish University of Agricultural Sciences, The Southern Swedish Forest Research Centre, Asa Forest Research Station, S-360 30 Lammhult, Sweden and Swedish University of Agricultural Sciences, The Southern Swedish Forest Research Centre, Box 49, S-230 53 Alnarp, Sweden). Effect of reforestation methods on pine weevil (Hylobius abietis) damage and seedling survival. Received Feb. 16, 1998. Accepted Sept. 15, 1998. Scand. J. For. Res. 00: 000-000, 199X. Damage to Norway spruce (Picea abies (L.) Karst.) seedlings by the large pine weevil, Hylobius abietis (L.) (Coleoptera: Curculionidae), was monitored in relation to clear - cutting age and silvicultural treatments in southern Sweden. New clear - cuttings were established on four sites during five consecutive years, and seedlings were planted on them from 1989 through 1993. In total, 31 774 seedlings were planted on 20 clear - cuttings. The measures evaluated were seedling insecticide treatment, application of herbicide to ground vegetation, scarification (mound) and planting late in the season. In addition, the effects of slash removal and seedling type were studied. The pine weevil was, by far, the dominant damaging agent. Planting without insecticide or soil treatment on fresh, one- or two - year - old clear - cuttings resulted in a mean level of weevil - caused mortality exceeding 60%. The results indicate that the risk of serious damage by pine weevils remains high until the clear - cuttings reach four or five years of age. Killing the vegetation with herbicide had no effect on pine weevil damage. Slash removal decreased damage on older clear - cuttings, but the effect was small. Scarification (mounding) strongly reduced damage. On fresh clear - cuttings the mean mortality caused by pine weevils in mounded plots was 13%, whereas it was 77% in the controls. The mounding effect varied between sites and clear - cuttings of different ages. Late planting (10 June instead of 1 May) reduced damage on two- and three - year - old clear - cuttings. Three - year - old, bare - rooted seedlings were not damaged as seriously as two - year - old, containerized ones, but the effect was probably due to the larger size of the bare - rooted seedlings. Non - lethal injury resulted in reduced seedling growth. Damage by pine weevils varied between years and within growing seasons. However, on fresh, one- and two - year - old clear - cuttings, damage was severe enough to cause high mortality during all studied years.  相似文献   

10.
Damage to conifer seedlings caused by the pine weevil, Hylobius abietis, was estimated within eighty-two forest sites in Northern Ireland. A wide range of environmental variables were compared with the variation in damage between study sites using multiple logistic regression. Although 45 explanatory variables were considered only four were identified as significant within the final model. The four variables were the size of the planted area, the age of the planting, whether the majority of seedlings were self-seeded or planted, and if the site had been previously planted or was a newly planted area. The identification of these four variables indicates that it is possible to build a model identifying areas at risk to weevil damage. Further, although three of the factors have been recognised as significant influences on weevil damage for some time, they still remain important variables within British Isles forestry, suggesting that there is further scope for more precise targeting of weevil control measures.  相似文献   

11.
Successful regeneration of conifer forests by planting is, in large parts of Europe, highly dependent on the effective suppression of damage caused by the pine weevil Hylobius abietis. We investigated the effectiveness of various combinations of control measures against pine weevil damage under boreal forest conditions in Sweden. In particular, we aimed to determine whether satisfactory regeneration could be obtained without the use of insecticides. The experimental study was established on ten new clear-cuts in each of three consecutive years. We studied the use of chemical and physical methods to protect seedlings directly, and investigated the influence of seedling type, age of clear-cut, and a number of soil factors as affected by preparation of the planting site, on the mortality and level of damage suffered by protected and unprotected seedlings. After two seasons, mortality due to pine weevil was 16% among unprotected seedlings, 6% for seedlings treated with the insecticides cypermethrin or imidacloprid, and less than 1% for those physically protected by a coating of Conniflex. However, the Conniflex, which consists of fine-grained sand embedded in a flexible acrylate matrix, was applied manually, and this may have enhanced its effectiveness compared to that achieved during large-scale, commercial application. Two types of containerized Norway spruce seedlings, which differed mainly in their stem diameter (average 2.6 mm and 3.5 mm), were used in the experiments. Among the unprotected seedlings, the narrower stemmed type was more frequently attacked (34% vs. 28%) and killed (19% vs. 12%) by pine weevil. Mortality caused by pine weevil among unprotected seedlings was higher on 1-year-old than on 2-year-old clear-cuts (20% vs. 12%). Soil preparation around unprotected seedlings had a substantial effect on the proportion attacked and killed by pine weevil as well as on the total mortality, with the highest level of feeding damage and mortality occurring on seedlings in undisturbed humus, and the lowest levels occurring on seedlings planted in pure mineral soil (26% vs. 7% for unprotected seedlings). This study demonstrates that acceptable levels of seedling survival can be achieved in regenerations of North European boreal forest without the use of insecticides. Mortality of unprotected seedlings can be reduced to acceptable levels if they are mostly planted in pure mineral soil. Damage can be further reduced by using seedlings with a somewhat larger stem diameter. Insecticides or a physical barrier of Conniflex alone appear to provide a sufficient level of protection.  相似文献   

12.
In northern Europe, there are high risks of severe pine weevil (Hylobius abietis) damage to newly planted conifer seedlings. Site preparation is one of the most important measures for reducing these risks and as several studies have shown the damage is highly dependent on the amount of pure mineral soil around the seedlings. We investigated effects of three site preparation techniques: (1) disc trenching with a conventional Bracke T26, (2) MidiFlex unit and (3) soil inversion with a Karl Oskar unit on characteristics of the planting spots, growth and pine weevil damage and survival rates of untreated and insecticide treated planted Norway spruce (Picea abies) seedlings. All three site preparation techniques reduced pine weevil damage in comparison with no site preparation, and the proportion of spots with pure mineral soil they created was inversely related to the rate of mortality caused by pine weevil. The results indicate that the quality of the planting spots depends on the technique used. In areas where pine weevil is the major threat to seedling survival, the amount of mineral soil in the planting spots is the most important factor in order to protect the seedling from damage. Without site preparation most planting spots consisted of undisturbed humus. Generally, the Karl-Oskar created the most spots with pure mineral soil, but on very stony soils the Bracke T26 created more mineral soil spots than other methods. Site preparation is a valuable tool in order to improve survival in regeneration areas and it is of great importance to make the right choice of technique depending on the particular circumstances on the actual site.  相似文献   

13.
Seedlings of different provenances of Scots pine (Pinus sylvestris L.), lodgepole pine (Pinus contorta Dougl., var. latifolia Engelm.) and Norway spruce (Picea abies (L.) Karst.) were planted in three Scots pine shelterwoods (125, 65 and 43 stems ha−1) and a clear-cut, all in northern Sweden. The sites were mounded and planting took place during 2 consecutive years (1988 and 1989). The solar radiation experienced by the individual seedlings was determined using a simulation model. Height development of the seedlings was examined during their first 6 years after planting. During the final 3 years of the study, height growth of Norway spruce was relatively poor, both in the shelterwoods and the clear-cut area. Height growth of lodgepole pine was significantly greater than that of Scots pine, both in the shelterwoods and the clear-cut. In contrast to Norway spruce, Scots pine and lodgepole pine displayed significantly greater height growth in the clear-cut than in the shelterwoods. For all three species in the shelterwoods, regression analyses showed that height growth was more strongly correlated with the distance to the nearest tree than with the amount of radiation reaching the ground, i.e. growth was reduced in the vicinity of shelter trees. Therefore, we conclude that the significant reduction in height growth of seedlings of Scots pine and lodgepole pine in Scots pine shelterwoods was partially caused by factors associated with the distance to the nearest shelter tree. Because the substrate was a nitrogen-poor sandy soil, we suggest that root competition for mineral nutrients, especially nitrogen, accounts for the reduction in height growth.  相似文献   

14.
Sahlén  Kenneth  Goulet  France 《New Forests》2002,24(3):175-182
This study was carried out in northern Sweden to determine the effects of frost heaving on the establishment of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) seedlings in relation to planting methods. For this purpose, one year old containerised seedlings were planted on two sites and on two dates: during the spring (early planting) and during the fall (late planting). In each case, two planting depths (normal and deep planting) and four planting sites (in mineral soil in the depressions, in the scalp/trench area, on the top of the mound and in the untreated humus layer) were used. On each site, 50 seedlings were planted for each treatment. Frost heaving was observed and measured during two years. The amount of heaving was highest in the hole and almost insignificant on the top of the mound and in the humus layer. Planting depth influenced the degree of heaving only for Scots pine planted in the hole and was not related to the planting time.  相似文献   

15.
Removal of logging residues causes significant nutrient losses from the harvesting site. Furthermore, collection of residues into piles could lead to small-scale differences in establishment conditions for seedlings. We studied the effects of stem-only (SOH) and aboveground whole-tree harvesting (WTH) on Norway spruce (Picea abies) seedling growth and pine weevil (Hylobius abietis) damage at two sites (SE and W Norway). We also compared two planting environments within the WTH plots (WTH-0: areas with no residues, WTH-1: areas where residue piles had been placed and removed before planting). In practice, one-third of the residues were left on site after WTH. After three growing seasons there were no differences for height or diameter increment between SOH and WTH (WTH-1 and WTH-0 combined) treatments. However, relative diameter increment was largest for WTH-1 seedlings and lowest for WTH-0 seedlings. Few seedlings sustained pine weevil attacks at the W Norway site, with no differences among treatments. At the SE Norway site, the percent of seedlings damaged by pine weevils and average debarked area were significantly higher after WTH (82% and 3.3?cm2) compared to SOH (62% and 1.7?cm2). We conclude that WTH may lead to spatial differences in establishment conditions.  相似文献   

16.

The Gremmeniella abietina outbreak in Sweden in 2001-2003 forced forest owners to sanitary clear-cut large areas of middle-aged Pinus sylvestris stands. There is, however, little knowledge of effective reforestation of P. sylvestris on G. abietina-infected sites. Gremmeniella abietina disease incidence on P. sylvestris seedlings planted in 2003 was studied with and without (control) removal of infected P. sylvestris slash. Removed slash was piled in stacks around the regeneration plots. The seedlings were planted within 1 year after sanitation felling on three sites in northern Sweden. One year after planting, G. abietina pycnidia were found on 32% of the control seedlings and total infection, including stem cankers, reached 44%. Total and G. abietina-induced mortality was 15 and 10%, respectively. The method of removing and piling the infected slash reduced the number of infected seedlings by 50% and seedling mortality by 27% 1 year after planting, compared with control. Consequently, even if there is a clear sanitation effect of removing infected slash to the sides of the regeneration area, it does not eradicate the infection source from the stands. Postponed planting, slash burning or complete removal of the infected slash is needed to minimize the infection risk. The positive correlation found between slash coverage and infection rate indicates that clear-cuts with large amounts of infected slash should be given priority for slash treatment.  相似文献   

17.
Abstract

The pine weevil Hylobius abietis L. is major threat to forest regeneration in the Nordic countries. The persistence of the deltamethrin insecticide used against pine weevil on Norway spruce seedlings was studied after the seedlings were dipped or sprayed. Insecticide application was timed to occur either before or after frozen storage. Bioassays with the stems of Norway spruce seedlings were used to determine the effect of the insecticide against feeding by the pine weevil. The measures of the control effect were reduction in area of gnawed bark and the state of health of the pine weevils. The concentration of deltamethrin decreased rapidly in seedlings, especially after spraying treatment, which did not efficiently protect seedlings against the pine weevil 6 weeks after planting. There were no signs of degradation of deltamethrin or of an effect on seedling height after frozen storage. In bioassay, the amount of deltamethrin that efficiently prevented feeding by the pine weevil was 5.5 µg g?1 fresh weight. After one growing season in the field, about 1.76–2.24 µg g?1 (13–15% of the initial level) of dipped deltamethrin remained in the seedlings. In seedlings treated by spraying, 0.93–0.98 µg g?1 (7–8% of the initial level) of the deltamethrin remained. According to bioassays, these amounts were no longer sufficient to protect seedlings from feeding by the pine weevil. Therefore, in the first summer, dipping was a significantly more efficient method of application for control of pine weevils.  相似文献   

18.
The effectiveness of feeding barriers to protect seedlings against damage caused by pine weevil (Hylobius abietis) was evaluated in experiments established from 1995 to 1999 in southern Sweden. For this purpose the damage done to containerized seedlings protected by various types of barrier was evaluated, and compared with damage to untreated and insecticide (permethrin)-treated seedlings. Three types of feeding barrier that gave significant protection during the first 3 yrs were recognized: coating on the stem bark, shields with a collar at the top, and shields without a collar. The mean accumulated mortality caused by pine weevil for coatings (47%) and shields without a collar (59%) was significantly higher than the corresponding figure for permethrin treatment (13%), whereas shields with a collar (26%) did not differ significantly from the permethrin treatment in this respect. The highest mortality was found for untreated controls (87%).  相似文献   

19.
The pine weevil (Hylobius abietis L.) is considered one of the most damaging pests in reforestation areas in Scandinavia. The purpose of this study was to ascertain the within- and between-stand distribution of pine weevil attacks. Between-stand distribution was examined by assessing the frequency of attacks in all newly planted coniferous stands in relation to stands clear-cut at two state forest districts in North Zealand, Denmark. Within-stand distribution was examined by investigating the position and damage to individual seedlings in relation to the position of breeding material. The stand-level attack frequency did not seem to be higher for stands in areas with more clear-cuts. The within-stand distribution of attacks was not influenced by the position of breeding material.  相似文献   

20.
Alternative methods of protection are required against feeding by the large pine weevil (Hylobius abietis) on the bark of conifer seedlings. Silicon (Si) has been shown to enhance the resistance of plants to insect herbivores. This study investigated the effects of low doses of Si-rich soil amendments on growth, mortality and bark feeding damage of Sitka spruce (Picea sitchensis) seedlings. Two-year old seedlings were grown, individually, in soil taken from a tree nursery treated with coal ash, peat ash, rice husk ash, slag, sodium metasilicate or a commercially available Si fertiliser (Pro-Tekt) and planted out on two reforestation sites in Ireland. Seedlings grew well (about 20% growth in terms of height, 66% in root collar diameter, after two growing seasons), and Si-rich amendments did not have a significant effect on growth or mortality. Bark feeding damage on Si-treated seedlings did not vary significantly from control seedlings. Bark Si concentrations were not significantly larger in treated seedlings than in control seedlings, but control seedlings already had comparatively high bark Si concentrations (560?mg?kg?1 dry tissue). In conclusion, Sitka spruce seedlings grown in the presence of Si-rich soil amendments prior to planting did not show greater resistance to weevil feeding under the present conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号