首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aberration in DNA methylation is believed to be one of the major causes of abnormal gene expression and inefficiency of somatic cell nuclear transfer (SCNT). RG108, a non‐nucleoside DNA methyltransferase (DNMT) inhibitor, has been reported to facilitate somatic nuclear reprogramming and improved blastocyst formation. The aim of this study was to investigate interaction effect of RG108 treatment time (24–72 hr) and concentrations (0.05–50 µM) on donor cells, and further to optimize the treatment for porcine SCNT. Our results showed that RG108 treatment resulted in time‐dependent decrease of genome‐wide DNA methylation on foetal fibroblasts, which only happened after 72‐hr treatment in our experiments, and no interaction effect between treatment time and concentration. Remarkable decrease of methylation in imprinted gene H19 and increased apoptosis was observed in 5 and 50 µM RG108‐treated cells. Furthermore, the blastocyst rates of SCNT embryos were increased as the fibroblasts treated with RG108 at 5 and 50 µM, and additional treatment during cultivation of SCNT embryos would not provide any advantage for blastocyst formation. In conclusion, the RG108 treatment of 72 hr and 5 μM would be optimized time and concentration for porcine foetal fibroblasts to improve the SCNT embryonic development. In addition, combined treatment of RG108 on donor cells and SCNT embryos would not be beneficial for embryonic development.  相似文献   

2.
3.
Spermatogonial stem cells (SSC) are promising resources for genetic preservation and restoration of male germ cells in humans and animals. However, no studies have used SSC as donor nuclei in pig somatic cell nuclear transfer (SCNT). This study investigated the potential for use of porcine SSC as a nuclei donor for SCNT and developmental competence of SSC‐derived cloned embryos. In addition, demecolcine was investigated to determine whether it could prevent rupture of SSC during SCNT. When the potential of SSC to support embryonic development after SCNT was compared with that of foetal fibroblasts (FF), SSC‐derived SCNT embryos showed a higher (p < .05) developmental competence to the blastocyst stage (47.8%) than FF‐derived embryos (25.6%). However, when SSC were used as donor nuclei in the SCNT process, cell fusion rates were lower (p < .05) than when FF were used (61.9% vs. 75.8%). Treatment of SSC with demecolcine significantly (p < .05) decreased rupture of SSC during the SCNT procedure (7.5% vs. 18.8%) and increased fusion of cell‐oocyte couplets compared with no treatment (74.6% vs. 61.6%). In addition, SSC‐derived SCNT embryos showed higher blastocyst formation (48.4%) than FF‐derived embryos without (28.4%) and with demecolcine treatment (17.4%), even after demecolcine treatment. Our results demonstrate that porcine SSC are a desirable donor cell type for production of SCNT pig embryos and that demecolcine increases production efficiency of cloned embryos by inhibiting rupture of nuclei donor SSC during SCNT.  相似文献   

4.
体细胞核移植(somatic cell nuclear transfer,SCNT)是一种能将已分化的体细胞重编程为全能胚胎的繁殖生物技术,在良种扩繁、濒危物种保护和治疗性克隆等方面有着广泛的应用前景,但极低的克隆效率、克隆动物胎盘异常、出生后胎儿畸形等严重限制了该技术的实际应用。造成克隆效率低和胚胎发育异常的主要原因是供体核表观遗传重编程错误或不完全。1958年,将非洲爪蟾(Xenopus laevis)幼体肠细胞核移入去核卵母细胞,获得了第1例SCNT动物个体;1986年,通过电融合1个卵裂球与去核卵母细胞成功获得了3只存活的羔羊;1997年,将成年母羊的乳腺上皮细胞与去核卵细胞电融合,获得首个SCNT哺乳动物"多利",开启了克隆时代,目前牛、小鼠、山羊、猪、欧洲盘羊、家兔、家猫、马、大鼠、骡子、狗、雪貂、狼、水牛、红鹿、单峰骆驼、食蟹猴等相继成功克隆,其中最引人瞩目的是2018年食蟹猴的成功克隆。作者通过将SCNT胚胎与受精胚胎的发育进行对比,阐述了SCNT过程中DNA甲基化、组蛋白修饰、基因组印迹、染色体状态等的重编程过程和缺陷,并从表观修饰剂、组蛋白去甲基化酶、抑制Xist表达、补充鱼精蛋白和精子RNA方面探讨单独或联合消除表观遗传重编程障碍对克隆效率的影响。随着低样本量测序技术的发展和完善,人们能够在SCNT胚胎中检测到更详细的全基因组表观遗传修饰图谱,进一步揭示SCNT胚胎表观遗传重编程中的缺陷,为提高克隆效率提供了线索。通过上述内容的阐述,希望为后续开发联合消除多种表观遗传障碍而提高克隆效率的策略和思路。  相似文献   

5.
Until now, the efficiency of animal cloning by somatic cell nuclear transfer (SCNT) has remained low. Efforts to improve cloning efficiency have demonstrated a positive role of trichostatin A (TSA), an inhibitor of deacetylases, on the development of nuclear transfer (NT) embryos in many species. Here, we report the effects of TSA on pre‐implantation development of porcine NT embryos. Our results showed that treatment of reconstructed porcine embryos with 50 nmol/L TSA for 24 h after activation significantly improved the production of blastocysts (P < 0.05), while treating donor cells with the same solution resulted in increases in cleavage rates and blastomere numbers (P < 0.05). However, TSA treatment of both donor cells and SCNT embryos did not improve blastocyst production, nor did it increase blastomere numbers. Using indirect immunofluorescence, we found that TSA treatment of NT embryos could improve the reprogramming of histone acetylation at lysine 9 of histone 3 (H3K9) and affect nuclear swelling of transferred nuclei. However, no apparent effect of TSA treatment on H3K9 dimethylation (H3K9me2) was observed. These findings suggest a positive effect of TSA treatment (either treating NT embryos or donor cells) on the development of porcine NT embryos, which is achieved by improving epigenetic reprogramming.  相似文献   

6.
The relationship between donor cell cycle and the developmental ability of somatic cell nuclear transfer (SCNT) embryos has not fully been elucidated. Donor cells that are usually prepared by serum starvation or confluent-cell culture for SCNT represent a heterogeneous population that includes mainly G0 phase cells, other cells in different phases of the cell cycle and apoptotic cells. In this study, we compared the developmental ability of porcine SCNT embryos reconstructed from G0 phase cells (G0-SCNT embryos) and strictly synchronized-G1 phase cells (G1-SCNT embryos), and examined the developmental rates and timing of first DNA synthesis. The G0 phase cells were synchronized by confluent culture, and the G1 phase cells were prepared from actively dividing M phase cells. The G1-SCNT embryos showed a significantly higher (P<0.05) developmental rate to the blastocyst stage per cleaved embryo (59%) than the G0-SCNT embryos (43%). Moreover, initiation of first DNA synthesis and cleavage occurred significantly earlier in the G1-SCNT embryos than in the G0-SCNT embryos. Delay of initiation of first DNA synthesis in the SCNT embryos by aphidicolin resulted in decreased developmental rates to the blastocyst stage without any effect on cleavage rates. Our data demonstrates that synchronized-G1 phase cells can be used as donor cells for SCNT embryos and that earlier initiation of first DNA synthesis may be important for subsequent development of SCNT embryos. The SCNT system using G1-synchronized cells, in terms of their highly uniform and viable cell states, can be useful for studying the reprogramming processes and embryonic development of SCNT embryos.  相似文献   

7.
The study was aimed to investigate the role of porcine oocyte nuclear factors during reprogramming. Somatic cell nuclei was introduced into intact MⅡ oocytes to establish tetraploid somatic cell nuclear transfer (SCNT) embryos containing both somatic nuclei and oocyte nuclei. And then the influence of the oocyte nucleus on tetraploid SCNT embryo development was examined by assessing characteristics including cleavage rate and blastocyst rate. The results showed that the cleavage rate of tetraploid SCNT embryos,diploid parthenogenetic embryos and haploid parthenogenetic embryos was extremely significantly higher than that of standard diploid SCNT embryos (P<0.01). The blastocyst rate and the total number of cells in tetraploid SCNT embryos were extremely significantly higher than that of standard diploid SCNT embryos (P<0.01).Overall,tetraploid SCNT embryos had a higher developmental competence than standard diploid SCNT embryos. In conclusion, the embryonic model was established in which a fetal fibroblast nucleus and an oocyte M Ⅱ plate coexist. Tetraploid SCNT represented a new research platform that was potentially useful for examining interactions between donor nuclei and oocyte nuclei. This platform should facilitate further understanding of the roles played by nuclear factors during reprogramming.  相似文献   

8.
研究旨在探讨猪卵母细胞核因子在重编程过程中发挥的作用。将体细胞引入未去核的MⅡ期卵母细胞中,构建体细胞核与卵母细胞核共存的核移植四倍体胚胎。通过分析核移植四倍体胚胎的早期发育情况探讨卵母细胞核因子对核移植四倍体胚胎早期发育的影响。结果显示,核移植四倍体胚胎、孤雌二倍体胚胎及孤雌单倍体胚胎这3组胚胎的卵裂率极显著高于核移植二倍体胚胎(P<0.01),且核移植四倍体囊胚率及总细胞数也极显著高于核移植二倍体囊胚(P<0.01)。与通过标准核移植程序构建的核移植二倍体胚胎相比,核移植四倍体胚胎具有更强的发育能力。本研究建立了一个体细胞核与完整卵母细胞核因子物质共存的四倍体胚胎模型,有助于研究供体核与卵母细胞核之间的联系,为研究核因子在重编程过程中发挥的作用提供了平台。  相似文献   

9.
Low efficiency of somatic cell nuclear transfer (SCNT) embryos is largely attributable to imperfect reprogramming of the donor nucleus. The differences in epigenetic reprogramming between female and male buffalo cloned embryos remain unclear. We explored the effects of donor cell sex differences on the development of SCNT embryos. We and then compared the expression of DNA methylation (5‐methylcytosine‐5mC and 5‐hydroxymethylcytosine‐5hmC) and the expression level of relevant genes, and histone methylation (H3K9me2 and H3K9me3) level in SCNT‐♀ and SCNT‐♂ preimplantation embryos with in vitro fertilization (IVF) counterparts. In the study, we showed that developmental potential of SCNT‐♀ embryos was greater than that of SCNT‐♂ embryos (< 0.05). 5mC was mainly expressed in SCNT‐♀ embryos, whereas 5hmC was majorly expressed in SCNT‐♂ embryos (< 0.05). The levels of DNA methylation (5mC and 5hmC), Dnmt3b, TET1 and TET3 in the SCNT‐♂ embryos were higher than those of SCNT‐♀ embryos (< 0.05). In addition, there were no significant differences in the expression of H3K9me2 at eight‐stage of the IVF, SCNT‐♀ and SCNT‐♂embryos (< 0.05). However, H3K9me3 was upregulated in SCNT‐♂ embryos at the eight‐cell stage (< 0.05). Thus, KDM4B ectopic expression decreased the level of H3K9me3 and significantly improved the developmental rate of two‐cell, eight‐cell and blastocysts of SCNT‐♂ embryos (< 0.05). Overall, the lower levels of DNA methylation (5mC and 5hmC) and H3K9me3 may introduce the greater developmental potential in buffalo SCNT‐♀ embryos than that of SCNT‐♂ embryos.  相似文献   

10.
Bovine somatic cell nuclear transfer (SCNT) embryos can develop to the blastocyst stage at a rate similar to that of embryos produced by in vitro fertilization. However, the full‐term developmental rate of SCNT embryos is very low, owing to the high embryonic and fetal losses after embryo transfer. In addition, increased birth weight and postnatal mortality are observed at high rates in cloned calves. The low efficiency of SCNT is probably attributed to incomplete reprogramming of the donor nucleus and most of the developmental problems of clones are thought to be caused by epigenetic defects. Applications of SCNT will depend on improvement in the efficiency of production of healthy cloned calves. In this review, we discuss problems and recent progress in bovine SCNT.  相似文献   

11.
The efficiency of cloning by somatic cell nuclear transfer (SCNT) has remained low. In most cloned embryos, epigenetic reprogramming is incomplete, and usually the genome is hypermethylated. The DNA methylation inhibitor 5-aza-2’-deoxycytidine (5-aza-dC) could improve the developmental competence of cow, pig, cat and human SCNT embryos in previous studies. However, the parameters of 5-aza-dC treatment among species are different, and whether 5-aza-dC could enhance the developmental competence of porcine cloned embryos has still not been well studied. Therefore, in this study, we treated porcine fetal fibroblasts (PFF) that then were used as donor nuclei for nuclear transfer or fibroblast-derived reconstructed embryos with 5-aza-dC, and the concentration- and time-dependent effects of 5-aza-dC on porcine cloned embryos were investigated by assessing pseudo-pronucleus formation, developmental potential and pluripotent gene expression of these reconstructed embryos. Our results showed that 5-aza-dC significantly reduced the DNA methylation level in PFF (0 nM vs. 10 nM vs. 25 nM vs. 50 nM, 58.70% vs. 37.37% vs. 45.43% vs. 39.53%, P<0.05), but did not improve the blastocyst rate of cloned embryos derived from these cells. Treating cloned embryos with 25 nM 5-aza-dC for 24 h significantly enhanced the blastocyst rate compared with that of the untreated group. Furthermore, treating cloned embryos, but not donor cells, significantly promoted pseudo-pronucleus formation at 4 h post activation (51% for cloned embryos treated, 34% for donor cells treated and 36% for control, respectively, P<0.05) and enhanced the expression levels of pluripotent genes (Oct4, Nanog and Sox2) up to those of in vitro fertilized embryos during embryo development. In conclusion, treating cloned embryos, but not donor cells, with 5-aza-dC enhanced the developmental competence of porcine cloned embryos by promotion of pseudo-pronucleus formation and improvement of pluripotent gene expression.  相似文献   

12.
13.
14.
Cloning of cattle, sheep, and mice by somatic cell nuclear transfer (SCNT) can result in apparently healthy offspring, but the probability of a successful and complete pregnancy is less than 5%. Failures of SCNT pregnancy are associated with placental abnormalities, such as placentomegaly, reduced vascularisation, hypoplasia of trophoblastic epithelium, and altered basement membrane. The pathogenesis of these changes is poorly understood, but current evidence implicates aberrant reprogramming of donor nuclei by the recipient oocyte cytoplast, resulting in epigenetic modifications of key regulatory genes essential for normal placental development. The purpose of this review is to provide an overview of the anatomic pathology of abnormal placentae of SCNT clones and to summarize current knowledge concerning underlying pathogenetic mechanisms.  相似文献   

15.
Melatonin (MLT) is an endogenous hormone with roles in animal germ cell development. However, the effect of MLT on porcine oocyte maturation and its underlying mechanisms remain largely unknown. Here, we investigated the effects of exogenous MLT on oocyte maturation, histone acetylation, autophagy and subsequent embryonic development. We found that 1 nmol/L MLT supplemented in maturation medium was the optimal concentration to promote porcine oocyte maturation and subsequent developmental competence and quality of parthenogenetic embryos. Interestingly, the beneficial effects of 1 nmol/L MLT treatment on porcine oocyte maturation and embryo development were mainly attributed to the first half period of in vitro maturation. Simultaneously, MLT treatment could also improve maturation of small follicle‐derived oocytes, morphologically poor (cumulus cell layer ≤1) and even artificially denuded oocytes and their subsequent embryo development. Furthermore, MLT treatment not only could decrease the levels of H3K27ac and H4K16ac in metaphase II (MII) oocytes, but also could increase the expression abundances of genes associated with cumulus cell expansion, meiotic maturation, histone acetylation and autophagy in cumulus cells or MII oocytes. These results indicate that MLT treatment can facilitate porcine oocyte maturation and subsequent embryonic development probably, through improvements in histone acetylation and autophagy in oocytes.  相似文献   

16.
Suppressor of variegation 3–9 homolog (Suv39h)1 and 2, Histone H3 lysine 9 trimethylation (H3K9me3)-specific methyltransferases, are mainly involved in regulating the dynamic changes of H3K9me3. Regulating Suv39h expression influences the early development of mice somatic cell nuclear transfer (SCNT) embryos, there are few reports concerning their features in domestic animals. The aim of the present study was to characterize the Suv39h function in early development of Debao porcine SCNT embryos. The global level of H3K9me3 and the expression profiles of Suv39h1/2 in porcine early embryos were analysed by immunohistochemistry and qRT-PCR methods, respectively. Their roles in cell proliferation and histone modification of Debao porcine foetal fibroblast cells (PFFs), and developmental competence of porcine SCNT embryos were investigated by shRNA technology. The methylation levels of H3K9me3 and the expression patterns of Suv39h1 and Suv39h2 were similar (p < .05), and both of them displayed higher levels in Debao porcine SCNT embryos compared with that in PA embryos. The global levels of H3K9me3 and the expressions of G9a, HDAC1 and DNMT1 were decreased by combined inhibition of Suv39h1 and Suv39h2 (p < .05), while the expression of HAT1 was increased (p < .05). Downregulation of Suv39h1/2 also promoted cell proliferation and resulted in a significant increase in the expression of CyclinA2, CyclinB and PCNA in PFFs (p < .05). Furthermore, the use of donor somatic nuclei which depleted H3K9me3 by inhibiting Suv39h1/2 expression markedly increased the cleavage rate, the blastocyst rate and the total cell number of blastocysts of Debao porcine SCNT embryos (p < .05). Altogether, the above results indicate that H3K9me3 levels and Suv39h1/2 expressions display similar patterns in porcine early embryo, and low levels of them are critical to cell proliferation of PFFs and early development of SCNT embryos.  相似文献   

17.
18.
As a natural plant‐derived antitoxin, resveratrol possesses several pharmacological activities. This study aimed to evaluate the effects of resveratrol addition on nuclear maturation, oocyte quality during in vitro maturation (IVM) of porcine oocytes and subsequent early embryonic development following somatic cell nuclear transfer (SCNT). Our experiments showed that the treatment of porcine oocytes with 5 µM resveratrol during IVM resulted in the highest rate of the first polar body extrusion. Treatment of oocytes with resveratrol had no influence on cytoskeletal dynamics, whereas it significantly increased glucose uptake ability compared to the control oocytes. Oocytes matured with 5 μM resveratrol displayed significantly lower intracellular reactive oxygen species (ROS) levels and higher relative mRNA expression levels of the genes encoding such antioxidant enzymes as catalase (CAT) and superoxide dismutase 1 (SOD1). In addition, resveratrol also prevented onset and progression of programmed cell death in porcine oocytes, which was confirmed by significant upregulation of the anti‐apoptotic B‐cell lymphoma 2 (BCL‐2) gene and significant downregulation of the pro‐apoptotic BCL2‐associated X (BAX) gene. Furthermore, the blastocyst rates and the blastocyst cell numbers in cloned embryos derived from the oocytes that had matured in the presence of 5 μM resveratrol were significantly increased. In conclusion, supplementation of IVM medium with 5 μM resveratrol improves the quality of porcine oocytes by protecting them from oxidative damage and apoptosis, which leads to the production of meiotically matured oocytes exhibiting enhanced developmental potential following SCNT.  相似文献   

19.
Obtaining sufficient transgenic cells via selective cultivation of genetically manipulated somatic cells is difficult due to the limited number of cell divisions. Additionally, if irreversible mutations in a cell's chromosomes occur during selective cultivation and the cell is used as the nuclear donor, somatic cell nuclear transfer (SCNT) embryos often exhibit abnormal development. On the other hand, a SCNT method in which fetal cells derived from SCNT embryos are used as the nuclear donor (recloning method) is an effective technique for obtaining large quantities of transgenic cells. In this study, we compared the in vivo development rate of SCNT embryos produced from porcine alpha1-3 galactosyltransferase gene knockout (GTKO) cells by a recloning method with that of SCNT embryos produced without recloning from porcine GTKO cells (direct method). In the direct method, 557 and 462 cloned embryos were produced using two types of activation methods, the two-step activation (TA) method and the delayed activation (DA) method, and then transferred into 6 and 4 recipients, respectively, but no piglets were born from these recipients. In the recloning method, 956 and 1038 cloned embryos were produced using the TA and DA methods, respectively, and then transferred to 8 and 7 recipients, respectively. Two piglets were born from one recipient in the TA group and 6 piglets were born from 3 recipients in the DA group. This report indicates that the recloning method improved the developmental capacity of SCNT embryos reconstructed with gene-targeted somatic cells.  相似文献   

20.
Monomeric Plum (Plum), a far-red fluorescent protein with photostability and photopermeability, is potentially suitable for in vivo imaging and detection of fluorescence in body tissues. The aim of this study was to generate transgenic cloned pigs exhibiting systemic expression of Plum using somatic cell nuclear transfer (SCNT) technology. Nuclear donor cells for SCNT were obtained by introducing a Plum-expression vector driven by a combination of the cytomegalovirus early enhancer and chicken beta-actin promoter into porcine fetal fibroblasts (PFFs). The cleavage and blastocyst formation rates of reconstructed SCNT embryos were 81.0% (34/42) and 78.6% (33/42), respectively. At 36–37 days of gestation, three fetuses systemically expressing Plum were obtained from one recipient to which 103 SCNT embryos were transferred (3/103, 2.9%). For generation of offspring expressing Plum, rejuvenated PFFs were established from one cloned fetus and used as nuclear donor cells. Four cloned offspring and one stillborn cloned offspring were produced from one recipient to which 117 SCNT embryos were transferred (5/117, 4.3%). All offspring exhibited high levels of Plum fluorescence in blood cells, such as lymphocytes, monocytes and granulocytes. In addition, the skin, heart, kidney, pancreas, liver and spleen also exhibited Plum expression. These observations demonstrated that transfer of the Plum gene did not interfere with the development of porcine SCNT embryos and resulted in the successful generation of transgenic cloned pigs that systemically expressed Plum. This is the first report of the generation and characterization of transgenic cloned pigs expressing the far-red fluorescent protein Plum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号