首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
工厂化水产养殖溶解氧预测模型优化   总被引:4,自引:0,他引:4  
为准确预测溶解氧变化趋势,降低水产养殖风险,提出混沌变异的分布估计(CMEDA)算法优化最小二乘支持向量机模型(LSSVR),提高了溶解氧预测精度。并对粒子群算法和遗传算法分别优化的LSSVR模型(PSOLSSVR、GA-LSSVR)以及传统的LSSVR模型与CMEDA优化的LSSVR模型(CMEDA-LSSVR)进行了比较研究。利用该模型对江苏省扬中市红鲷鱼工厂化养殖鱼塘溶解氧含量进行了预测。实验结果表明,CMEDA-LSSVR的预测精度高于其他3种算法,CMEDA-LSSVR、PSO-LSSVR、GA-LSSVR、LSSVR 4种模型预测精度评价指标平均绝对百分比误差分别为0.32%、1.27%、1.98%和2.56%。实际应用结果表明该模型可以为鱼塘水质决策管理提供依据,具有一定的应用价值。  相似文献   

2.
水体溶解氧(Dissolved oxygen,DO)是养殖水产品健康生长的重要生态因子。池塘溶解氧易受多种因素的影响,会产生时间和空间上分布的差异,现有的溶解氧预测方法大多是针对单监测点的时间序列预测,无法描述池塘溶解氧的空间分布,因此,对池塘溶解氧进行时间和空间预测非常重要。本文提出一种基于自回归循环神经网络(Autoregressive recurrent neural network,DeepAR)和正则化极限学习机(Regularized extreme learning machine,RELM)的池塘溶解氧时空预测方法。首先采用样本熵(Sample entropy,SE)衡量各个监测点溶解氧序列的波动程度,采用最大互信息系数(Maximum mutual information coefficient,MIC)衡量监测点溶解氧序列之间的相关性,综合选取出溶解氧序列波动程度较小且与各个监测点相关性较大的监测点作为中心监测点,并以中心监测点为原点,建立池塘空间坐标系;其次采用DeepAR算法构建中心监测点的溶解氧时间序列预测模型,实现中心监测点溶解氧时间序列预测;最后采用RELM算法构建中心监测点与池塘各位置溶解氧之间的空间映射关系模型,结合中心监测点溶解氧时间序列预测值和池塘空间坐标,实现对未来时刻池塘溶解氧的空间预测。该方法在提高时间序列预测精度的同时,实现了对未来时刻池塘溶解氧空间状态的预测。在真实的数据集上进行测试,预测未来24h的池塘空间溶解氧值,均方根误差(RMSE)为1.2633mg/L、平均绝对误差(MAE)为0.9755mg/L、平均绝对百分比误差(MAPE)为14.8732%。并与标准极限学习机(Extreme learning machine,ELM)、径向基神经网络(Radial basis function neural network,RBFNN)、梯度提升回归树(Gradient boosting regression tree ,GBRT)和随机森林(Random forest,RF)4种预测方法进行对比,各评价指标的性能均有较大幅度提升,表明该方法有较好的预测精度和泛化能力,能够较准确地实现池塘溶解氧时空预测。  相似文献   

3.
水产养殖中溶解氧的检测与控制技术的研究   总被引:5,自引:0,他引:5  
针对工厂化水产养殖的现状,系统地研究了溶解氧的检测与控制以及水体温度、溶解氧的相互耦合与补偿关系;并设计出相应的检测与控制技术,建立了智能化水产养殖监控体系,使水产品生产在最适宜的环境下,达到增产、节能、减轻工人劳动强度,减少污染的效果.  相似文献   

4.
基于LM算法的溶解氧神经网络预测控制   总被引:1,自引:0,他引:1  
针对污水处理溶解氧时变、非线性以及设定值难以跟踪控制的问题,提出了一种基于Levenberg-Marquardt算法(LM算法)的溶解氧浓度神经网络预测控制器的设计方法。首先在国际水协会提出的活性污泥1号模型(ASM1)基础上,经过合理的假设和约束,得到简化的溶解氧浓度模型,经过BP神经网络系统辨识和模型预测设计了溶解氧神经网络预测控制器。并采用LM算法改进了BP神经网络,克服了容易陷入局部极小值、收敛速度慢的缺点,提高了神经网络预测精度。仿真结果表明,神经网络预测控制具有很好的自适应性和鲁棒性,提高了溶解氧跟踪控制性能。  相似文献   

5.
基于GA-BP神经网络的池塘养殖水温短期预测系统   总被引:1,自引:0,他引:1       下载免费PDF全文
为解决传统的水温小样本非实时预测方法预测精度低、鲁棒性差等问题,基于物联网实时数据,提出了遗传算法(GA)优化BP神经网络的池塘养殖水温短期预测方法,并在此基础上设计开发了池塘养殖水温预测系统,首先采用主成分分析法筛选出影响池塘水温的关键影响因子,减少输入元素;然后使用遗传算法对初始权重和阈值进行优化,获取最优参数并构建了基于BP神经网络的水温预测模型;最后采用Java语言开发了基于B/S体系结构的预测系统。该系统在江苏省宜兴市河蟹养殖池塘进行了预测验证。结果表明:该系统在短期的水温预测中具有准确的预测效果,与传统的BP神经网络算法相比,研究内容评价指标平均绝对误差(MAE)、平均绝对百分误差(MAPE)和误差均方根(MSE)分别为0.196 8、0.007 9和0.059 2,均优于单一BP神经网络预测,可满足实际的养殖池塘水温管理需要。  相似文献   

6.
农田虫害预测是促进农业发展和增加农民收入的关键部分。针对目前农田虫害预测算法准确性差和适应性不佳的问题,提出一种基于神经网络和证据理论的农田虫害预测算法。该方法首先分别采用BP神经网络、RBF神经网络和Elman神经网络进行虫害预测,然后利用证据理论中的组合决策思想,结合神经网络预测结果,进行权值提取和权值融合,最后通过融合后的权值实现农田虫害预测。试验结果表明,权值融合后具有更高的预测精度,相比神经网络传统预测方案,该方法的预测精度相比BP神经网络、RBF神经网络和Elman神经网络分别提升了约5倍、3倍和2倍,预测性能优于任何一种单一神经网络模型。  相似文献   

7.
采用RBF网络与BP网络的方法,利用MATLAB工具箱并结合气象资料中的相对湿度、平均气温和太阳日辐射量,建立了预测核桃作物需水量的神经网络预测模型.两种预测模型通过实例证实了预测的准确性,并且将这两种网络模型进行了比较分析.RBF神经网络预测作物需水量的绝对误差平均值为0.254 7 mm/d、相对误差平均值为5.47%,BP神经网络预测作物需水量的绝对误差平均值为0.320 6mm/d、相对误差平均值为6.97%,由此可见,RBF网络预测的精度比BP网络高.并且,通过程序记时显示RBF网络训练用时0.063 0 s,比BP网络训练所需的时间要短的多,因此RBF神经网络具有较好的实用价值,实现了精度与实用性的统一.  相似文献   

8.
溶解氧(DO)浓度是对虾养殖水质检测的核心指标。为提高对虾养殖溶解氧浓度的预测精度,本研究提出了一种基于经验模态分解、随机森林和长短时记忆神经网络(EMD-RF-LSTM)的对虾养殖溶解氧浓度组合预测模型。首先采用经验模态分解(EMD)对养殖水质溶解氧浓度时序数据进行多尺度特征提取,得到不同尺度下的固有模态分量(IMF);然后分别采用长短时记忆神经网络(LSTM)和随机森林(RF)对高、低频不同尺度IMF进行建模;最后结合各分量预测结果构建叠加模型,实现对溶解氧浓度时序数据的综合预测。本研究模型在广东省湛江市南三岛对虾养殖基地展开了试验及应用,在基于真实数据集的性能测试中,经验模态分解后EMD-ELM模型与极限学习机(ELM)模型对比,平均绝对误差(MAPE)、均方根误差(RMSE)和平均绝对误差(MAE)分别降低了30.11%、29.60%和32.95%。在经验模态分解基础上用RF和LSTM对不同特征尺度的本征模态分量分别预测后叠加求和,EMD-RF-LSTM模型预测的精度指标MAPERMSEMAE分别为0.0129、0.1156和0.0844,其中关键指标MAPE较EMD-ELM、EMD-RF和EMD-LSTM分别降低了84.07%、57.57%和49.81%,预测精度显著提高。结果表明,本研究针对经验模态分解后高、低频分量分别预测的策略可有效提升综合性能,表明本研究模型具有较高的预测精度,能够较准确地实现对虾养殖水体中溶解氧浓度预测。  相似文献   

9.
工厂化水产养殖检测与控制系统的研究   总被引:2,自引:1,他引:1  
通过对国内外工厂化水产养殖检测与控制系统进行了分析和研究,提出了一种基于数据采集卡和输出卡的工厂化水产养殖检测与控制系统.该系统能够对养殖池的温度、水位、pH值和溶解氧等多种水体参数进行检测和控制,能达到降低成本、增加产量、节约能源和降低污染的作用.该系统以其简单结构、低成本、高可靠性、易扩展性等优点有着广阔的应用前景.  相似文献   

10.
传统池塘河蟹养殖主要依靠渔民根据经验来估算投饵量,通过人工撑船投喂饵料,饵料利用率低且劳动强度大。由于河蟹具有领地意识且移动范围较小,池塘各处河蟹分布不均匀,因此河蟹养殖需要科学精准投饵。现有河蟹养殖投饵作业方式粗放,无法满足河蟹高效生态养殖需求。为了掌握河蟹生长规律,更加科学高效地投饵喂料,本文设计基于河蟹生长模型的精准投饵系统。利用灰色关联度分析法确定对河蟹生长发育影响最大的环境因子。在传统水产生物生长模型基础上,加入环境因子进行改进,从线性和指数两个角度对河蟹生长模型进行优化拟合。利用遗传算法(GA)-反向反馈神经网络(BP神经网络)(GA-BP神经网络)对精准投饵预测模型进行训练,通过输入水温、溶解氧含量、pH值等环境参数,推算出最佳环境影响因子数值。根据河蟹生长模型、养殖密度、养殖面积得出河蟹总质量,结合河蟹生长期存活率与投喂率便可得出总投饵量。根据池塘河蟹实际分布密度和水质参数,确定池塘各区域的饵料分配系数,将总投饵量科学地分配到池塘各个区域。通过仿真得出预测投饵量决定系数R2为0.990,预测模型具有较好的拟合效果。池塘投饵试验结果表明,基于河蟹生长...  相似文献   

11.
利用小波良好的去噪性能,选择了合适的参数对越野吉普车BJ2020S实验测量信号进行小波去噪。运用BA3F网络具有逼近任何非线性函数且具有自学习和自适应的能力,建立了汽车悬架系统的非线性模型。通过与BP网络的比较.辨识结果表明:BA3F神经网络辨识精度高,响应速度快,小波和BA3F神经网络相结合是一种有效的系统辨识方法。  相似文献   

12.
由于水轮发电机组受到水力、机械、电气等多方面因素的影响,导致其产生的故障非常复杂,且多种故障类型相互耦合,综合分析了减聚类、模糊 K-Prototypes算法以及改进的粒子群优化(PSO)算法,提出了改进的径向基函数(RBF)神经网络算法,构建了一种新的RBF神经网络模型,并将该模型应用于水轮发电机组的故障诊断中。仿真试验的结果表明,该模型的分类准确率更高,稳定性更好。  相似文献   

13.
基于物联网的浮标水质监测系统与溶解氧浓度预测模型   总被引:2,自引:0,他引:2  
为促进近海养殖业信息化发展,更好地实现对近海养殖环境的监控,设计了基于浮标平台的环境监测系统。利用STM32L475微控制器定时采集光照、温度、pH值、溶解氧浓度等信息,通过物联网技术将数据传输至云监测平台,实现了多区域环境信息远程监测和多终端访问。提出了改进遗传算法BP神经网络的溶解氧浓度预测模型,实现对近海养殖环境的预测;根据所采集的数据,利用改进遗传算法对初始权重和阈值进行优化得到最优参数,在此基础上构建BP神经网络溶解氧浓度预测模型。通过试验验证了该系统海洋环境信息采集的准确性与可靠性,以及溶解氧浓度预测模型的有效性;与传统遗传算法BP神经网络预测模型相比,平均误差由0.0778mg/L降至0.0178mg/L,能够满足近海养殖的实际需求。  相似文献   

14.
基于随机配置网络的海水养殖氨氮浓度软测量模型   总被引:1,自引:0,他引:1  
王魏  郭戈 《农业机械学报》2020,51(1):214-220
氨氮浓度是水产养殖过程的重要监控指标,水中氨氮浓度过高,会产生较强的神经毒素,导致水生物大面积死亡,因此,需实时准确监测水产养殖过程中水的氨氮浓度。然而,由于影响海水水质因素较多,各因素之间关系复杂、相互影响,目前未能实现海水氨氮浓度的实时监测。通过分析海水养殖水体中氨氮的生成和硝化过程,选取水体中与氨氮浓度相关且易测的水质参数(温度、电导率、p H值、溶解氧质量浓度)为辅助变量,采用收敛速度快且泛化能力较强的随机配置网络建立了氨氮浓度软测量模型。为验证方法的有效性,设计了实验室海水养殖循环水系统,通过试验系统的实测数据,将该方法与其他几种神经网络建模方法进行了比较。结果表明,氨氮浓度随机配置网络模型具有更高的精度和更快的运行速度。基于模型设计了水产养殖水质监控系统,并将此方法嵌入上位机Win CC软件,实现了氨氮浓度的在线监测。  相似文献   

15.
总结了BP网络和RBF网络在离心泵能量性能预测中的应用现状,介绍了这两种网络的结构及特点。分别采用BP网络和RBF网络建立了离心泵能量性能预测模型。用57组数据对这两个预测模型进行了训练,并用6组数据对两种网络结构的性能预测模型进行了仿真。研究结果表面:两种网络结果的预测模型预测精度比较接近且预测结果的趋势也相同,BP网络预测精度略高于RBF网络;BP网络扬程平均预测误差为3.85%,效率平均预测误差为1.39%,RBF网络扬程平均预测误差为4.79%,效率平均预测误差为3.43%;RBF网络预测所需时间仅为BP网络预测所需时间的一半。  相似文献   

16.
鱼类行为识别对于生态学、水产养殖、渔业资源管理等方面具有重要意义,可以通过其行为模式判断其生长发育状况和活动水平,并间接评估环境因素对其影响,以减少鱼类生长应激反应,提高资源利用效率,为水产养殖的智能化发展奠定基础。近年来,基于人工智能技术的鱼类行为识别方法受到广泛关注,其具有无损性、低成本等优势。本文综述了近5年基于卷积神经网络、循环神经网络、双流卷积神经网络等人工智能方法的鱼类行为识别技术,对鱼类行为识别方法及数据集进行了归纳与分析,在此基础上,对未来的研究进行讨论与展望。  相似文献   

17.
路面激励是汽车平顺性和操纵稳定性研究中的重要因素。提出了一种基于径向基函数(RBF)神经网络识别路面功率谱密度的仿真研究方法。建立了4自由度汽车振动模型,利用Matlab软件仿真得到汽车车身质心垂直加速度功率谱密度和俯仰角加速度功率谱密度。应用RBF神经网络建立了汽车车身质心垂直加速度功率谱密度、俯仰角加速度功率谱密度和路面功率谱密度之间的非线性映射模型。仿真结果表明:该方法思路明确,抗噪声能力比较强,识别的精确度高。  相似文献   

18.
为了探究适合全射流喷头多因素下射程的预测模型,通过改变喷头工作压力、安装高度、喷嘴直径、喷头仰角共4个参数,对射程进行测量.基于BP神经网络和广义径向基(RBF)神经网络的基本原理和算法,建立了全射流喷头射程预测的BP和RBF神经网络模型,并分析BP和RBF神经网络的预测性能.结果表明射程与工作压力、喷嘴直径呈非线性关系;当喷头在1.2 m安装高度、27°仰角、4~10 mm喷嘴直径时,压力增大到0.4 MPa,射程趋于极限,并且安装高度与射程呈正相关关系.BP与RBF神经网络均能较好地表达全射流喷头射程与主控因素之间的非线性关系.在训练时间方面,RBF网络比BP网络慢8.05 s;预测过程中,BP网络在每次运行程序时的预测结果不一定相同,而RBF网络则不会出现此问题,且RBF网络预测值与实测值之间的平均绝对误差比BP网络的小3.55%.从网络预测总体效果观察,RBF神经网络预测喷头射程具有更好的推广能力.  相似文献   

19.
为了保证养殖水体溶解氧充足,水产养殖普遍采用全天大功率开启增氧机的生产方式,这造成了很大的能源消耗。针对上述问题,本文提出了一种基于建模预测与关系规则库的溶解氧调控方法,首先构建了一种自适应增强的粒子群优化极限学习机预测模型(AdaBoost-PSO-ELM),实现溶解氧含量的准确预测;然后进行增氧预实验,采用曲面拟合方法对溶解氧初始含量、曝气流量和增氧机开启时间之间的作用关系进行精确量化,构建关系规则库;最后专家系统基于溶解氧含量预测值,调用已建立的关系规则库,合理控制增氧机的开启功率与时间。与其它常规的预测模型相比,AdaBoost-PSO-ELM模型的MSE、MAE和RMSE均为最优,分别为0.0055mg2/L2、0.0531mg/L、0.0745mg/L,可以实现溶解氧的准确预测。增氧实验结果表明,基于三次多项式的先验方程能够对〖JP2〗溶解氧初始含量、曝气流量和增氧机开启时间之间非线性关系进行准确量化,拟合R2均在0.99以上。由此可知,基于量化结果所构建的规则库与预测模型相结合能够合理控制增氧机的开启功率与时间,节省电能和提高养殖效率。  相似文献   

20.
为了保证养殖水体溶解氧充足,水产养殖普遍采用全天大功率开启增氧机的生产方式,这造成了很大的能源消耗。针对上述问题,本文提出了一种基于建模预测与关系规则库的溶解氧调控方法,首先构建了一种自适应增强的粒子群优化极限学习机预测模型(AdaBoost-PSO-ELM),实现溶解氧含量的准确预测;然后进行增氧预实验,采用曲面拟合方法对溶解氧初始含量、曝气流量和增氧机开启时间之间的作用关系进行精确量化,构建关系规则库;最后专家系统基于溶解氧含量预测值,调用已建立的关系规则库,合理控制增氧机的开启功率与时间。与其它常规的预测模型相比,AdaBoost-PSO-ELM模型的MSE、MAE和RMSE均为最优,分别为0.005 5 mg2/L2、0.053 1 mg/L、0.074 5 mg/L,可以实现溶解氧的准确预测。增氧实验结果表明,基于三次多项式的先验方程能够对溶解氧初始含量、曝气流量和增氧机开启时间之间非线性关系进行准确量化,拟合R2均在0.99以上。由此可知,基于量化结果所构建的规则库与预测模型相结合能够合理控制增氧机的开启功率...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号