首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Abstract

Cadmium (Cd) accumulation in rice grains is enhanced if ponded water is released from paddy fields during the reproductive stage (intermittent irrigation). The release of ponded water creates aerobic soil conditions under which Cd becomes soluble and iron (Fe) solubility decreases. We hypothesized that Fe shortage in rice induces Fe uptake and translocation and that Cd is also taken up and translocated throughout this process. Hydroponically cultured Fe-deficient rice absorbed more Cd than did Fe-sufficient rice, and the presence of Fe enhanced the translocation of Cd to the shoots. Yeast mutants expressing OsIRT1 and OsIRT2, which encode the rice Fe2+ transporter, became more sensitive to Cd, suggesting that Cd was absorbed by OsIRT1 and OsIRT2. We discuss the possibility that Cd accumulation in rice grains during the reproductive stage is mediated by the Fe transport system.  相似文献   

2.
Silicon (Si) can enhance the resistance of plants to many abiotic stresses. To explore whether Si ameliorates Fe2+ toxicity, a hydroponic experiment was performed to investigate whether and how Si detoxifies Fe2+ toxicity in rice (Oryza sativa L.) roots. Results indicated that rice cultivar Tianyou 998 (TY998) showed greater sensitivity to Fe2+ toxicity than rice cultivar Peizataifeng (PZTF). Treatment with 0.1 mmol L-1 Fe2+ inhibited TY998 root elongation and root biomass significantly. Reddish iron plaque was formed on root surface of both cultivars. TY998 had a higher amount of iron plaque than PZTF. Addition of Si to the solution of Fe treatment decreased the amount of iron plaque on root surface by 17.6% to 37.1% and iron uptake in rice roots by 37.0% to 40.3%, and subsequently restored root elongation triggered by Fe2+ toxicity by 13.5% in the TY998. Compared with Fe treatment, the addition of 1 mmol L-1 Si to the solution of Fe treatment increased xylem sap flow by 19.3% to 24.8% and root-shoot Fe transportation by 45.0% to 78.6%. Furthermore, Si addition to the solution of Fe treatment induced root cell wall to thicken. These results suggested that Si could detoxify Fe2+ toxicity and Si-mediated amelioration of Fe2+ toxicity in rice roots was associated with less iron plaque on root surface and more Fe transportation from roots to shoots.  相似文献   

3.
胡敏酸吸附解吸Fe3+反应特征研究   总被引:6,自引:3,他引:6       下载免费PDF全文
王强  魏世强 《土壤学报》2006,43(3):414-421
采用C-25葡聚糖凝胶层析方法研究了在不同酸度、离子强度、温度条件下胡敏酸(HA)吸附解吸Fe3^+特征.结果表明,在相同离子强度、反应温度条件下,随着pH的升高,HA对Fe(Ⅲ)最大吸附量Smax和吸附平衡常数k增加,标准摩尔自由能变△Gom绝对值减小.相同pH和温度下,离子强度从0.00到0.10mol L^-1,HA对Fe(Ⅲ)最大吸附量Smax和吸附亲和力常数k增加,自由能变△G^o m绝对值减小,但离子强度从0.10 mol L^-1继续上升到0.15 mol L^-1,则上述特征常数变化刚好相反.温度升高,胡敏酸吸附Fe3^+的最大吸附量、吸附平衡常数k、自由能变△G^o m绝对值均较大幅度降低,表明升高温度对吸附反应不利.吸附反应的焓变△H^o m和熵变△S^o m均小于零,为放热反应,反应向更有序状态进行;在相同条件下,pH越大,焓变△H^o m和熵变△rS^θ m绝对值越大,表明pH越大,越有利于吸附反应的进行.随着pH的升高,Fe3^+被还原的百分率η减小,用幂函数方程拟合,相关系数达到显著水平.随着pH的降低,胡敏酸铁Fe3^+解吸率增大;对解吸率曲线进行拟合,线形方程具有显著的相关系数.胡敏酸吸附Fe3^+的反应为包括胡敏酸内部和外部结合的“两相”反应.  相似文献   

4.
采用 17年不同施肥处理 (无肥、化肥、秸秆、厩肥 )土耕层土样 ,在对土壤胡敏酸性质研究的基础上 ,着重研究不同施肥处理土壤胡敏酸与Fe2+的络合特征 ,揭示络合作用与胡敏酸性质以及环境条件的关系。结果表明 ,不同施肥处理土壤胡敏酸与Fe2+的络合能力不同。和无肥处理相比 ,化肥处理胡敏酸的络合能力加强 ,logk值 (络合稳定常数 )增大 ,有机肥处理则使胡敏酸的络合能力下降 ,logk值减小。logk值大小与胡敏酸的羧基、酚羟基以及总酸度有关。pH值、温度、离子强度是影响络合稳定常数大小的环境因素 ,pH值由 4到 7,各处理胡敏酸的logk值增大 ,络合配位数也有增加趋势。温度升高 ,离子强度增大 ,logk值降低。胡敏酸与Fe2+络合反应是一个自发的放热反应 ,络合后整个体系的有序性增强 ,熵值减小。  相似文献   

5.
Iron (Fe) nanoparticles (NPs), with 30–40 nm diameter, were stabilized on sand. The resulting synthesized Fe/SiO2 NPs, with different Fe contents (0–25 mg kg?1) were employed as fertilizers in probing the mean germination time (MGT), growth and dry matter of barley and maize and their comparison with common Fe/SiO2 in a completely randomized design (CRD) experiment. The results showed that our fertilizers had significant effects on MGT, with the lowest of 0.58 day for barley and 0.79 day for maize; at 15 and 5 mg kg?1 nano Fe/SiO2, respectively. Application of 15 mg kg?1 of nano Fe/SiO2 increased the shoot length: 8.25% and 20.8% for barley and maize, respectively. However, the concentration of 25 mg kg?1 had a negative impact on shoot length in barley. Increasing the concentrations of both nano and common Fe/SiO2 particles, increased the root lengths in both plants, however this increase was higher with the application of nano Fe/SiO2. Likewise, seedling length enlarged with the concentration increase of both Fe/SiO2 particles and was more pronounced with nano Fe/SiO2. The application of nano Fe/SiO2 was more effective compared with the common Fe/SiO2 in encouraging barley and maize growth. The positive impact was higher in maize than barley.  相似文献   

6.
采用酒精沉淀法对不同施肥处理胡敏酸进行分级 ,在研究胡敏酸级分组成变异以及各级分性质变化的基础上 ,研究了胡敏酸各级分与Fe2+的络合特征。结果表明 ,胡敏酸各级分随级分数的增大芳构化度逐渐降低 ,分子结构趋于简单。在所分离的 7个级分中 ,均以级分 3与Fe2+的络合能力最强。从级分 1到级分 3络合能力逐渐增强 ,级分 3到级分 7络合能力逐渐降低。胡敏酸A型级分的络合能力一般大于P型。但若A型级分芳构化度过高 ,也存在A型级分小于P型现象。Rp型级分的络合能力明显比A型、P型级分小。不同施肥处理胡敏酸原样与Fe2+络合能力差异与其级分组成变异以及各级分的络合能力有密切关系  相似文献   

7.
通过间歇式批实验和动力学实验研究了不同pH条件下磷酸盐在镁铝双氢氧化物(Mg-Al-LDH)、钠基膨润土(Na-Mt)及镁铁铝改性膨润土(Mg-Al-Mt、Fe-Mt和Fe-Al-Mt)的吸附特征。结果表明,在pH4.5~9.0范围内,随着pH的升高,Na-Mt,Fe-Mt和Fe-Al-Mt3种矿物对磷的吸附率相应减少,镁铝双氢氧化物对磷的吸附率有所增加;Mg-Al-LDH、Fe-Mt和Fe-Al-Mt的对磷吸附率约为95%,比Mg-Al-Mt高40%,比Na-Mt高80%。用Langmuir方程描述磷的等温吸附过程,最大吸附容量(Qm)大小顺序为Fe-Al-Mt〉Fe-Mt〉Mg-Al-LDH〉Mg-Al-Mt〉Na-Mt,b值大小依次为Mg-Al-LDH〉Fe-Mt〉Fe-Al-Mt〉Mg-Al-Mt〉Na-Mt,最大缓冲容量(Qmb)以Mg-Al-LDH的为最大,Na-Mt的为最小;Freundlich等温吸附方程参数KF代表相对吸附容量,以Mg-Al-LDH的KF值最高,依次是Fe-Mt、Fe-Al-Mt和Mg-Al-Mt,Na-Mt的KF值最小,这与Qmb的结果一致;决定系数(R2)表明,Langmuir等温吸附方程能更好地拟合铁改性蒙脱土和铁铝改性蒙脱土,而Freundlich方程对钠蒙脱土,双氢氧化物和镁铝改性蒙脱土的拟合效果要好。磷酸盐吸附过程分为快反应和慢反应,用动力学实验数据进行拟合,准二级动力学方程能够更好的拟合改性蒙脱土和Mg-Al-LDH对磷的动力学吸附数据,其决定系数为0.999;Elovich方程拟合改性蒙脱土磷酸盐的吸附数据也有很好的相关性(R2为0.89~0.94)。Na-Mt矿物磷酸盐的吸附用抛物线扩散方程描述最为合适,原因可能是磷酸盐镶嵌在矿物层间是一个扩散过程,不涉及化学吸附过程。  相似文献   

8.
Scanning and transmission electron microscopic examination of drain precipitates revealed the presence of a slime/organic layer and fungi, bacteria (including filamentous and Fe bacteria), and possibly actinomycetes. Most of the filamentous structures were encrusted with Fe and Mn compounds. Treating the samples with acidified NH2OH.HCl and leucoberbelin blue revealed some structures similar to Hyphomicrobium and Pedomicrobium spp., yeast cells, cocci, fungal spores, and relics of diatoms and amoebae. Both, scanning and transmission electron microscope-energy-dispersive analysis of X-rays showed a clear association of microbial structures with Fe and Mn oxides. It was suggested that Fe and Mn were being precipitated in the drains. However, the precipitates were not stable under natural conditions, and therefore we concluded that these precipitated oxides were also undergoing reductive dissolution. It thus appeared that precipitation of Fe and Mn, particularly Mn, had been mediated microbiologically in the drains.  相似文献   

9.
土壤中钙键和铁/铝键结合的有机碳差异的比较   总被引:5,自引:0,他引:5  
为研究矿质元素在有机碳矿化中所起的作用,以棕壤、黄棕壤、红壤为供试土壤,比较了不同利用方式和施肥处理土壤中钙键、铁/铝键结合的有机碳的差异。结果表明,从北至南的地带性土壤(棕壤、黄棕壤和红壤)系列中,全钙及与有机碳结合的钙依次降低,钙键结合的有机碳占有机碳总量的比值依次升高;铁/铝键结合的有机碳及其占全碳的比值依次升高。与自然土壤相比,耕作土壤在不施肥条件下,钙键有机碳、铁/铝键有机碳占有机碳总量的比值增加,且铁/铝键有机碳占有机碳总量比值的增加率始终比钙键有机碳占有机碳总量比值的增加率要高;覆膜比不覆膜时铁/铝键有机碳占有机碳总量比值的增加率比钙键有机碳占有机碳总量比值的增加率高得多。这表明,与全土有机碳相比,有机碳矿化稳定性由高到低依次是铁/铝键有机碳、钙键有机碳、全土有机碳。  相似文献   

10.
Abstract

We evaluated the validity of Tessier’s method as applied to the extraction of manganese (Mn) and iron (Fe) oxides in Japanese Andisols and other soil types in Japan. Using the original Tessier’s extractant mixture, 0.04 mol L?1 hydroxylamine hydrochloride in 25% acetic acid (0.04 mol L–1 NH2OH-HCl in 25% HOAc), we found that substantial amounts of short-range-ordered Fe oxides were not extracted from allophanic Andisol samples and that considerable amounts of total Fe oxides were not extracted from all soil types. Relatively high extraction pH and large amounts of short-range-ordered Fe oxides in the Andisol samples might be responsible for incomplete extraction. Stoichiometric calculation indicated that the concentration of NH2OH-HCl might be insufficient for complete extraction of Fe oxides. The extracted amounts of Mn and Fe increased with increasing concentration of NH2OH-HCl in the extractant, and most of the Mn and Fe oxides in the soil samples, including samples with as much as 5.6% Fe, were extracted with 0.6 mol L–1 NH2OH–HCl in 25% HOAc. As judged from the simultaneous dissolution of aluminum (Al) and silicon (Si) minerals, extraction selectivity of Fe oxides with 0.6 mol L–1 NH2OH-HCl in 25% HOAc was comparable to that of the original Tessier’s method and better than that of a modified Community Bureau of Reference (BCR) sequential extraction procedure or a method using an extractant consisting of a mixture of oxalate and ascorbate, especially for Andisol samples.  相似文献   

11.
Hydroponically grown barley plants ( Hordeum vulgare L. cv. Minorimugi) under iron-deficient (–Fe) and high phosphorus (P) conditions (500 µmol L−1) showed Fe chlorosis and lower growth compared with plants grown in –Fe and low P conditions (50, 5 and 0.5 µmol L−1). To understand the physiological role of P in regulating the growth of plants in –Fe medium, we carried out an Fe feeding experiment using four P levels (500, 50, 5 and 0.5 µmol L−1) and phytosiderophores (PS), mugineic acid. Our results suggest that plants grown in a high P medium had higher absorption activity of 59Fe compared with plants grown in low P media, irrespective of the presence or absence of added PS. Translocation of 59Fe from roots to shoots was not affected by the P level. The relative translocation rate of 59Fe increased with decreasing levels of P in the medium. In general, the addition of PS enhanced the absorption of 59Fe and its translocation. Taken together these results suggest that the lower relative translocation rate of Fe in high P plants may be induced by the physiological inactivation of Fe in the roots, and the higher absorption activity of Fe in high P conditions possibly results from the response of barley plants to Fe deficiency.  相似文献   

12.
Chemical reactions and fate of the toxins of Bacillus thuringiensis(Bt) in the soil environment are causing increasing concerns due to the large-scale cultivation of transgenic Bt plants.In this study,the effect of ionic strength(0-1 000 mmol kg 1) adjusted by NaCl or CaCl 2 on adsorption of Bt toxin by a lateritic red soil,a paddy soil and these soils after chemical removal of organic-bound or free Fe and Al oxides,as well as by pure minerals(goethite,hematite and gibbsite) which are widespread in these soils,were studied.The results indicated that when the supporting electrolyte was NaCl,the adsorption of Bt toxin by the lateritic red soil and paddy soil increased rapidly until the ionic strength reached 250 mmol kg 1 and then gradually slowed down with the increase of ionic strength;while in case the supporting electrolyte was CaCl 2,the adsorption of Bt toxin enhanced significantly at low ionic strength(< 10 mmol kg 1) and then decreased as the ionic strength increased.The adsorption of Bt toxin by the tested minerals and soils after the removal of organic-bound or free Fe and Al oxides also increased with increasing ionic strength controlled by NaCl.Removing organic-bound Fe and Al oxides obviously increased the adsorption of Bt toxin in the tested soils.Differently,removing free Fe and Al oxides increased the Bt adsorption by the paddy soil,but decreased the adsorption by the lateritic red soil.The study indicated that the varieties of ionic strength and the presence of Fe and Al oxides affected the adsorption of Bt toxin by the soils,which would contribute to the further understanding of the fate of Bt toxin in the soil environment and provide references for the ecological risk assessment of transgenic Bt plants.  相似文献   

13.
The availability of O2 is one of the most important factors controlling the chemical and biological reactions in soils. In this study, the effects of different aeration conditions on the dynamics of the emission of trace gases (CO2, N2O, CH4) and the leachate composition (NO3, DOC, Mn, Fe) were determined. The experiment was conducted with naturally structured soil columns (silty clay, Vertisol) from a well aerated forest site. The soil monoliths were incubated in a microcosm system at different O2 concentrations (0, 0.001, 0.005, 0.01, 0.05, and 0.205 m3 m‐3 in the air flow through the headspace of the microcosms) for 85 days. Reduced O2 availability resulted in a decreased CO2 release but in increased N2O emission rates. The greatest cumulative N2O emissions (= 1.6 g N2O‐N m‐2) were observed at intermediate O2 concentrations (0.005 and 0.01 m3 m‐3) when both nitrification and denitrification occurred simultaneously in the soil. Cumulative N2O emissions were smallest (= 0.05 g N2O‐N m‐2) for the aeration with ambient air (O2 concentration: 0.205 m3 m‐3), although nitrate availability was greatest in this treatment. The emission of CH4 and leaching of Mn and Fe were restricted to the soil columns incubated under completely anoxic conditions. The sequence of the reduction processes under completely anoxic conditions complied with the thermodynamic theory: soil nitrate was reduced first, followed by the reduction of Mn(IV) and Fe(III) and finally CO2 was reduced to CH4. The re‐aeration of the soil columns after 85 days of anoxic incubation terminated the production of CH4 and dissolved Fe and Mn in the soil but strongly increased the emission rates of CO2 and N2O and the leaching of NO3 probably because of the accumulation of DOC and NH4+ during the previous anoxic period.  相似文献   

14.
An investigation was conducted using Typic Haplustept, sandy loam soil, to investigate the interactive effects of phosphorus (P) and manganese (Mn) fertilization on native iron (Fe) pools in soil and their availability to wheat (cv. PBW-343) crop. Phosphorus fertilization moved Fe from residual mineral fraction of Fe to manganese oxides (MnOX), organic matter (OM), amorphous (AMPOX), and crystalline (CRYOX) Fe and Al oxide fractions. However, Mn application decreased specifically adsorbed (SAD)–Fe and CRYOX–Fe but increased OM–Fe and mineral fraction of Fe. Available Fe in soil decreased as Olsen P and P:Mn ratio increased in the soil. Higher Olsen P (>60 mg P kg?1soil) reduced mean Fe uptake by shoot. P content and P:Mn ratio in soil as well as in root and shoot were inversely related to Fe concentration in both the plant parts. The role of soil Fe associated with oxides and organic matter was found most notable in Fe nutrition of wheat.  相似文献   

15.
  【目的】  石灰性土壤高pH和高重碳酸盐含量严重影响土壤中有效铁含量,导致作物缺铁黄化、减产,铁高效玉米品种的推广应用是实现石灰性土壤玉米高产稳产的重要途径。 本研究探讨不同铁效率玉米品种适应低铁胁迫的根系特征与铁积累差异,旨在为铁高效玉米品种的推广应用提供科学依据。  【方法】  试验以铁高效玉米品种正红2号 (ZH2)、正大619 (ZD619) 和铁低效玉米品种川单418 (CD418)、先玉508 (XY508) 为材料,设置极低铁处理 (Fe0,Fe浓度为0 μmol/L)、低铁处理 (Fe10,Fe浓度为10 μmol/L) 和正常供铁 (Fe100,Fe浓度为100 μmol/L) 3个处理,通过砂培试验,研究不同铁效率玉米品种适应低铁胁迫的根系形态特征、干物质重、铁积累及铁吸收利用差异。  【结果】  低铁胁迫下,玉米幼苗的根干重、单株干重、铁积累量、根系相对铁吸收效率均显著降低,而根冠比与铁素生理效率均显著升高,且随胁迫程度的增加变幅加大;总根长、根表面积、根体积和根直径则表现出明显的品种差异,与正常铁处理 (Fe100)相比,低铁处理下铁低效品种的总根长、根表面积和根体积显著降低,根直径显著增加,而铁高效品种的总根长和根表面积差异不显著,根体积显著增加,根直径在极低铁处理(Fe0)下显著降低,低铁处理 (Fe10)下差异不显著;铁高效品种总根长、根表面积、根体积、根干重、单株干物重、铁积累量和根系铁吸收效率的降幅及根冠比的增幅均明显低于铁低效品种,而铁生理效率的增幅高于铁低效品种。相关性分析结果表明,玉米幼苗铁积累量与总根长、根表面积、根体积和根干重均呈显著正相关,而与根冠比呈负相关,其中与总根长 (R2 = 0.8546) 和根表面积 (R2 = 0.8983) 相关性最强。  【结论】  与铁低效玉米品种相比,铁高效玉米品种低铁胁迫下具有较优的总根长、根表面积及较高的根系铁吸收效率与铁生理效率,促进了其对铁的高效吸收与利用,提高了其对低铁环境的适应能力。  相似文献   

16.
Two sorghum (Sorghum bicolor L. Moench) hybrids CSH‐10 and ‐ 11 and their parent cultivars 296‐A, SB‐1055 and MR‐715 were examined for their tolerance to Fe‐deficiency stress, and also Fe uptake. It was observed that there was greater reduction of pH of the nutrient media and more rapid recovery from chlorosis only in the female parent 296‐A, and to some degree in the hybrids, but not in the male parents. The results indicated that Fe uptake‐translocation were inversely related to their Fe stress tolerance.  相似文献   

17.
以缺铁的石灰性紫色土为供试土壤进行盆栽实验,选用三株慢生型花生根瘤菌Spr3 5、Spr3 7、Spr4 5及gusA和celB标记的菌株gusA3 5、gusA3 7、gusA4 5、celB3 5、celB3 7、celB4 5接种天府9号花生。通过标记根瘤菌形成的根瘤能与检测试剂产生颜色反应的特征,检测施铁肥及施不同浓度的铁肥对花生 根瘤菌有效性和竞争性的影响。结果发现:缺铁的石灰性紫色土上单施铁肥、单接种根瘤菌、接种根瘤菌配施铁肥均能促进花生与根瘤菌的共生固氮效应和竞争结瘤能力,但接种根瘤菌配施铁肥的效果最好,单接种根瘤菌的效果次之,单施铁肥的效果差。喷施0 .2 %硫酸亚铁溶液的效果比0 .3%的好。植株全氮含量和叶绿素含量都是指示共生固氮效应的重要指标,与花生产量间存在极显著的相关性,相关系数分别为0 .76 3和0 .795。gusA和celB两种标记方法检测的结果基本一致,两种标记根瘤菌的平均占瘤率分别为79.6 4 %、75 .6 2 %、74 .4 1%。供试菌株中Spr4 5的有效性和竞争性最强,Spr3 7次之,Spr3 5最差  相似文献   

18.
《Journal of plant nutrition》2013,36(10-11):2043-2056
Abstract

Iron chelators are the most effective Fe fertilizers known to date. However, due to their negative charge they are easily leached out of the root zone. Besides the risk of groundwater contamination with organic compounds and metals, repeated applications of expensive Fe chelates are often required. With the aim to reduce leaching, desferrioxamine B (DFOB) and ethylenediaminedihydroxyphenylacetic acid (EDDHA) were immobilized on Sepharose and tested as Fe sources to plants. Two cultivars of cucumber (Dlila and Kfir) grown in hydroponic cultures at pH 7.3, efficiently utilized Fe from immobilized FeDFOB, and immobilized FeEDDHA. In general, plant response to the immobilized fertilizers became comparable to that of soluble chelates within a period of 17 to 26 days. The kinetics of alleviating Fe induced chlorosis in plants treated with the immobilized chelates was slower than that obtained with soluble chelates. Moreover, the Fe3+ reduction rates obtained for immobilized FeDFOB were slower than those measured for soluble FeDFOB. Our observations suggest that immobilized FeDFOB can serve as a slow release Fe fertilizer. The slow kinetics of reduction and uptake from the immobilized as compared to the soluble chelates can be attributed to the lower accessibility to the plant's roots.  相似文献   

19.
试验研究不同供Fe水平对玉米幼苗Fe营养的影响结果表明 ,0~ 0 .10 μmol/LFe浓度内随Fe浓度的增加而玉米茎叶鲜物质量渐降 ,不服从矿质营养的报酬递减律 ;而 0 .10~ 10 0 μmol/LFe浓度内随Fe浓度的增加而玉米茎叶鲜物质量渐增 ;玉米根则以 0 .0 1μmol/LFe浓度处理生长量最小。 0~ 1μmol/LFe浓度内随Fe浓度的增加而玉米茎叶Fe含量渐降 ,叶片黄化渐重和叶绿素含量降低 ,尤以 1μmol/LFe浓度处理叶片黄化最重 ;1~ 10 0μmol/LFe浓度内随Fe浓度的增加而玉米叶片Fe含量渐增 ,且叶绿素含量亦增高。根内Fe含量的变化呈相同趋势 ,但致根Fe含量最低的营养液Fe浓度低于致茎叶Fe含量最低的营养液Fe浓度。而低量供Fe对玉米体内可溶性糖、氨基酸和NO-3 N含量及总Fe吸收量均比完全不供Fe处理的危害更重  相似文献   

20.
林娜  宋昕  郭亮  殷鹏华  胡志豪 《土壤》2017,49(1):118-128
目前汞污染地下水修复面临很大的技术和成本挑战,亟需发展修复效果好、经济效益性高的汞污染地下水修复技术和修复材料。通过批量实验和光谱分析探究了天然磁铁矿和商用Fe_3O_4对Hg(Ⅱ)的去除效率和去除机制,并分析了两种材料对模拟地下水中Hg(Ⅱ)的吸附和脱附行为。结果表明,天然磁铁矿和商用Fe_3O_4对Hg(Ⅱ)的去除受pH、Hg(Ⅱ)初始浓度、Cl-等因素的影响;二者对Hg(Ⅱ)的去除均符合准二级动力学模型和Freundlich模型;天然磁铁矿对Hg(Ⅱ)的去除机制主要是羟基络合与物理吸附,而商用Fe_3O_4对Hg(Ⅱ)的去除主要是化学还原与物理吸附。二者对模拟地下水中Hg(Ⅱ)的去除率分别达90%和95%,具有修复Hg(Ⅱ)污染地下水的应用潜力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号