首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 218 毫秒
1.
建立了黄瓜和土壤中啶氧菌酯残留量的检测分析方法,对啶氧菌酯在黄瓜和土壤中的消解动态及残留规律进行了研究。啶氧菌酯的最小检出量为3.5×10-11g;在黄瓜和土壤基质中的最低检出浓度均为0.005mg·kg-1。对黄瓜和土壤2种基质,设置了0.005、0.05、0.25 mg·kg-13个添加水平,每个添加水平设置5个重复,啶氧菌酯在黄瓜和土壤中的添加回收率为68.61%~122.4%,变异系数为1.06%~17.2%。田间试验结果表明:啶氧菌酯在天津地区黄瓜和土壤中的残留消解半衰期分别为5.71d和12.9 d,在山东地区黄瓜和土壤中的残留消解半衰期分别为2.70d和10.3 d,在江苏地区黄瓜和土壤中的残留消解半衰期分别为9.76d和14.9 d。距最后一次施药5d时,啶氧菌酯在黄瓜中的最高残留量为0.014mg·kg-1,远低于欧盟规定的黄瓜中啶氧菌酯最大残留限量0.05mg·kg-1。  相似文献   

2.
为了解苦参碱在黄瓜和土壤中的残留状况及消解动态,建立了苦参碱在黄瓜和土壤中的气相色谱分析方法,并在天津和安徽两地开展了为期两年的苦参碱在黄瓜和土壤中残留状况和消解动态规律田间试验研究。结果表明,采用无水乙醇超声提取黄瓜和土壤中的苦参碱,使用大孔吸附树脂净化,甲醇定容,气相色谱带氮磷检测器(NPD)进行测定,外标法定量,在0.25-1.0 mg·kg-1添加水平范围内,苦参碱在黄瓜和土壤中的平均回收率为78.32%-98.06%,变异系数为3.72%-7.44%;黄瓜和土壤中苦参碱的最小检出量均为1.36×10-12 g,最低检出浓度为0.004 mg·kg-1(黄瓜)、0.008 mg·kg-1(土壤)。田间试验结果表明,苦参碱在黄瓜和土壤中的残留消解动态符合方程Ct=C0e-kt;苦参碱在黄瓜和土壤中的降解半衰期分别为5.19-7.24 d和6.70-9.18 d。在黄瓜中施用0.3%苦参碱乳油,其制剂施药量为0.18-0.27 g·m-2,施药3-4次,两次施药间隔期为7 d,距收获期为1 d时,苦参碱在黄瓜中的残留量为0.125 6-1.207 1 mg·kg-1,土壤中的残留量为0.045 0-0.183 7 mg·kg-1。目前,国内外尚无苦参碱在黄瓜中最大残留限量标准,该试验研究成果为0.3%苦参碱乳油在黄瓜上的登记、安全使用规则  相似文献   

3.
研究和建立了氯虫苯甲酰胺在土壤和番茄中的液相色谱检测方法,并采用田间试验方法研究了氯虫苯甲酰胺在土壤和番茄中的残留消解动态规律。结果表明,采用甲醇溶液浸泡提取,减压浓缩后用二氯甲烷萃取,浓缩后用二氯甲烷定容,液相色谱仪带二极管阵列检测器(DAD)测定,外标法定量。在0.05~0.5mg·kg-1添加水平范围内,土壤和番茄中氯虫苯甲酰胺的添加平均回收率为91.43%~100.91%,变异系数为3.53%~9.71%;土壤和番茄中氯虫苯甲酰胺的最小检出量均为1.0×10-7g,最低检出质量分数为0.005mg·kg-1。田间残留试验表明,氯虫苯甲酰胺在土壤和番茄中残留消解动态规律符合方程Ct=C0e-kt;150g·L-1高效氯氟氰菊酯·氯虫苯甲酰胺微囊悬浮-悬浮剂在土壤和番茄中的消解半衰期分别为6.55~11.49d和3.82~10.70d。最终残留试验研究表明,在番茄上手动喷雾施药150g·L-1高效氯氟氰菊酯·氯虫苯甲酰胺微囊悬浮-悬浮剂,按推荐剂量和1.5倍推荐剂量施药,兑水喷雾处理2~3次,施药间隔为7d,最后一次施药距采收间隔7d时,氯虫苯甲酰胺在番茄中最高残留量均小于0.3mg·kg-1。参照欧盟等规定的氯虫苯甲酰胺在番茄中最大残留限量标准,按照推荐剂量和1.5倍推荐剂量施药2~3次,距最后一次施药7d时,氯虫苯甲酰胺在番茄上残留是安全的。  相似文献   

4.
采用高效液相色谱(HPLC)分析方法,研究了多菌灵在草莓与土壤中的消解动态和最终残留。分析结果表明,多菌灵最低检出浓度为0.05 mg.kg-1,添加浓度在0.05~2.0 mg.kg-1范围内,回收率为81.6%~102.6%,变异系数为1.44%~5.35%。田间试验结果表明,多菌灵推荐浓度和加倍浓度在草莓中的消解动态方程分别为C=3.212 2e-0.1354t、C=8.810 3e-0.1379t,土壤中的消解动态方程分别为C=2.941 1e-0.1011t、C=6.173 3e-0.1144t。多菌灵消解较快,草莓中的消解半衰期为4.2~6.7 d,土壤中的消解半衰期为5.4~7.3 d。加倍浓度和推荐浓度各施药2次,30 d后残留量均降至0.1 mg.kg-1以下,低于多菌灵在果蔬中最大允许残留量(MRL)0.5 mg.kg-1。  相似文献   

5.
采用模拟土壤生态系统的方法,研究了虱螨脲在土壤中的消解动态,应用高效液相色谱仪测定了虱螨脲在土壤中的残留量。结果表明,样品用甲醇提取,二氯甲烷萃取,用高效液相色谱检测,样品前处理简单有效,方法检出限和灵敏度均能达到要求。虱螨脲在土壤中消解较快:2007年试验半衰期为2.51 d,土壤原始附着量为0.180 mg.kg^-1;2008年试验半衰期为2.47 d,土壤原始附着量为0.209 mg.kg^-1。  相似文献   

6.
采用田间试验方法,研究了XDE-175及其代谢物N-demethyl-XDE-175-J和N-formyl-XDE-175-J在甘蓝和土壤中的残留动态。试样经溶剂浸泡捣碎振荡提取、净化、浓缩,用液相色谱法定量。本方法甘蓝中XDE-175及其代谢物N-demethyl-XDE-175-J和N-formyl-XDE-175-J平均回收率分别为86.53%-101.23%、85.41%~95.47%和77.71%~85.19%;土壤中XDE-175及其代谢物N-demethyl-XDE-175-J和N-formyl-XDE-175-J平均回收率分别为77.24%~80.23%、75.61%~80.09%和78.08%~84.46%。试验结果表明,XDE-175及其代谢物在甘蓝和土壤中消解速率较快,在天津和安徽两地甘蓝中其消解半衰期分别为3.39和2.83d,土壤中消解半衰期分别为2.98和1.80d。在甘蓝上使用5.87%XDE-175悬浮液,按照推荐剂量2.0倍(75.00ga·ihm^-2)最多施药4次,采收期距最后一次施药1d,甘蓝中XDE-175及其代谢物残留量均小于1.0mg·kg^-1。说明该药为低残留、易消解农药(t1/2〈30d),按推荐剂量在甘蓝上使用是安全的,该项结果的获得为制定XDE-175在甘蓝上的安全使用准则提供了重要的科学依据。  相似文献   

7.
采用固相萃取(SPE)为样品前处理方法,建立了超高效液相色谱-串联四极杆质谱联用(UPLC-MS/MS)检测土壤中咪唑乙烟酸的残留分析方法。土壤样品经0.1 mol.L-1的氯化铵与氨水缓冲液(pH=10)超声提取、C18SPE柱净化后,应用超高效液相色谱串联四级杆质谱仪多离子反应监测(MRM)定量检测,分别以碎片离子m/z 290〉176和m/z 290〉245进行外标法定量。结果表明,在0.01~0.5mg.kg-1添加水平范围内咪唑乙烟酸的平均添加回收率在83.47%~101.70%之间;相对标准偏差在4.15%~5.28%之间;咪唑乙烟酸的定量检出限(LOQ)为0.075μg.kg-1。该方法灵敏度高,操作简单,定量准确,可用于土壤中咪唑乙烟酸的残留分析。  相似文献   

8.
通过对嘧菌环胺·异菌脲可湿性粉剂在葡萄和土壤中开展两年两地的残留消解和最终残留试验,旨在为该农药在生产上的使用及有效控制提供合理数据。本文依据《农药残留试验准则》设计田间试验方案并实施,利用气相色谱-三重四极杆串联质谱(GC-QqQ-MS/MS)对葡萄和土壤样品中的嘧菌环胺和异菌脲进行检测,对残留量用农药风险商和危险商公式计算。结果显示,嘧菌环胺在葡萄和土壤中的消解半衰期是6.6~11.2 d,异菌脲在葡萄和土壤的半衰期是1.7~18.7 d。结果表明,当采收间隔期7 d时,嘧菌环胺和异菌脲的残留量均低于我国规定的最大残留限量值,其风险商和危险商均小于100%,在可控风险范围之内。因此,嘧菌环胺·异菌脲可湿性粉剂在葡萄的生产中使用是安全的。  相似文献   

9.
代森环在黄瓜上残留动态研究   总被引:2,自引:0,他引:2  
朱鲁生  邵泽启 《农业环境保护》1995,14(4):172-174,166
本文对代森环及其有毒代谢物乙撑硫脲在黄瓜及土壤中残留规律进行了研究。结果表明,代森环在黄瓜上的残留半衰期为2-6d,在土壤中的残留半衰期为3-10d,黄瓜及土壤样品中均未检测到乙撑硫脲残留,水洗后黄瓜中代森环残留平均去除率达88.46%,结瓜期喷施70%代森环可湿性粉剂500倍液3-5次,间隔3d后,黄瓜中代森环残留量不会超过3mg/kg的残留标准。  相似文献   

10.
为明确噻菌茂在烟草上使用后的环境安全性,建立了烟叶和土壤中噻菌茂残留的检测方法,并在山东和湖南两地开展了为期两年的噻菌茂在烟叶及其土壤中的消解动态和最终残留研究。结果表明,采用甲醇/水(70:30,V:V)提取,石油醚、二氯甲烷萃取,弗罗里硅土净化,高效液相色谱(HPLC-UV)测定,在0.01~5.0mg.kg-1添加水平下,噻菌茂在鲜烟叶、干烟叶和土壤中的平均回收率分别为90.50%~93.84%、88.19%~91.90%和88.34%~93.04%,相对标准偏差(RSD)分别为1.72%~2.79%、1.83%~4.13%、2.00%~2.71%。噻菌茂的最小检出量为1.4×10-12g,最低检出浓度分别为:鲜烟叶0.01mg.L-1,干烟叶0.01mg.L-1,土壤0.005mg.L-1。田间试验结果表明,噻菌茂在烟叶和土壤中消解较快,半衰期分别为2.85~3.44d和2.77~3.26d。噻菌茂可湿性粉剂按有效成分250g.hm-2(推荐高剂量)和375g.hm-(21.5倍推荐高剂量)于烟草旺长期-成熟期兑水施药3~4次,烟叶中噻菌茂最终残留量随采收间隔时间的延长而呈递减趋势,距末次施药后间隔7d采收的烟叶中噻菌茂的残留量为1.102~4.230mg.kg-1,21d残留量降为0.082~1.813mg.kg-1;而土壤中噻菌茂最终残留量均未检出(≤0.005mg.kg-1)。  相似文献   

11.
采用分散固相萃取(QuEChERS)为样品前处理方法,建立了超高效液相色谱-串联四极杆质谱快速检测玉米及土壤中莠去津残留分析方法。玉米及土壤样品经乙腈提取、乙二胺-N-丙基硅烷(PSA)分散固相(DSPE)净化后,应用超高效液相色谱/电喷雾串联四极杆质谱仪多离子反应监测(MRM)定量检测,分别以碎片离子m/z216〉146和m/z216〉174定性,以m/z216〉96进行外标法定量。结果表明,在0.005~0.5mg·kg^-1添加水平范围内莠去津的平均添加回收率在77.01%~112.62%之间,相对标准偏差在2.23%~8.43%之间,对莠去津的检出限(LOD)为0.39~0.91μg·kg^-1,定量检出限(LOQ)为1.33~3.02μg·kg^-1。该方法灵敏度高,操作简单,定量准确,测定浓度范围宽,可用于莠去津的残留分析。  相似文献   

12.
采用室内培养方法,从吴江市郊长期被多环芳烃污染的土壤中富集到以菲为唯一碳源和能源的菲降解复合微生物菌群,复合菌群在7d内对无机盐液体中菲(含量100mg·L^-1)的降解率达到99%。从复合菌群中分离纯化获得两株菲高效降解菌B1和L2,经过菌体形态特征、生理生化特征和16SrDNA序列分析,鉴定菌株B1为百日咳博行特氏菌(Bordetella petrii),菌株L2为墨西哥假黄单胞菌(Pseudoxanthomonas mexicana)。这两株菌在菲含量为100mg·L^-1的无机盐培养液中,7d内对菲(含量100mg·L^-1)的降解率大约为80%,9d内的降解率可达到99%。将复合菌群和菲污染土壤混合,在光照培养箱中进行培养修复。结果表明,修复88d后,接种复合菌群的低污染浓度(8.22mg·kg^-1)处理和高污染浓度(39.65mg·kg^-1)处理的菲去除率分别达到95.74%和98.06%。  相似文献   

13.
作物的磷素需求和投入的差异导致土壤磷素积累对环境的影响不同。通过分析京郊平谷区果树、蔬菜和粮食作物的磷素投入数量和农田土壤有效磷含量,比较研究不同作物体系中土壤磷素积累对环境的影响。结果表明,粮田、菜地和果园平均年际磷投入量分别为76、575kgP2O5·hm^-2和693kgP2O5·hm^-2,其中菜地和果园的磷素投入以有机肥为主,年际磷盈余分别达到498kgP2O5·hm^-2和468kgP2O5·hm^-2,远大于粮田的磷素盈余(38kgP2O5·hm^-2)。这种状况造成粮田、菜地和果园土壤Olsen—P含量差异很大,分别为18.4(n=260)、44.3(n=108)mg·kg^-1和40.4mg·kg^-1(n=548)。分析钙质土壤Olsen—P与CaCl2浸提P的相关性发现,钙质土壤存在着Olsen—P与CaCl2-P突变拐点即磷的淋溶拐点,在拐点之后土壤CaCl2-P随土壤Olsen—P的增加而显著增加,且土壤磷淋溶拐点明显受土壤类型及质地的影响。按质地分类,砂壤、轻壤和重壤拐点分别是23.1、40.1mg·kg^-1和51.5mg·kg^-1,土壤质地由轻至重拐点Olsen—P值随之逐渐增加。根据质地模拟,7.7%的粮田、44.0%的菜田、33.6%的果园土壤磷淋失风险较高。因此,合理的磷素投入在果树、蔬菜作物的可持续生产中具有重要的意义。  相似文献   

14.
为同时检测复杂基质中(由猪粪和蘑菇渣混合而成的堆肥原料)3种四环素类抗生素(四环素TC、土霉素OTC和金霉素CTC)及其代谢产物,建立了超高效液相色谱串联质谱检测方法(UPLC—MS/MS)。该方法同时采用pH值=4的Na2EDTA-Mellvaine缓冲溶液和乙腈为提取溶液,经过固相萃取净化后,以乙腈和0.1%的甲酸水溶液为流动相,采用超高效液相色谱柱进行分离,在电喷雾正离子模式下,用四极杆串联质谱仪进行定性和定量分析。3种四环素类抗生素及其代谢产物均在7min内完成分离,总共分析时间为12min。在0-6mg·kg^-1DW(Dryweight)浓度范围内,3种四环素类抗生素及其代谢产物的标准曲线线性良好,线性相关系数R2均大于0.9960,重现l生也较好(n=11,相对标准偏差均小于15%)。在3个加标水平0.2mg·kg^-1DW、1mg·kg^-1DW和4mg·kg^-1DW下,TC、OTC、CTC的回收率分别为71%-89%、66%~94%和66%~84%;去甲基金霉素(DMCTC)的回收率为52%-64%;差向异构产物的回收率在32%~51%之间;脱水产物以及差向脱水产物的回收率均低于30%。3种四环素类抗生素及其代谢产物的检出限和定量限分别在1.668~17.270μg·kg^-1和5.561—45.918μg·kg^-1范围内,表明该方法具有较高的灵敏度。对北京市某露天堆肥场中的样品进行测定发现,TC、OTC、CTC的浓度分别为0.4、1.6、2.9mg·kg^-1,检测到的代谢产物主要为相应的差向异构体,其中差向金霉素(ECTC)的浓度最高,达到2.7mg·kg^-1,和母体的含量水平比较接近,其他代谢产物也有不同程度的检出。  相似文献   

15.
选择山东花生主产区58个田块进行土壤样品和花生样品的随机采集,测定并分析了土壤镉含量、土壤交换性钙含量、花生镉含量及其相互关系,在此基础上进行了健康风险评价。结果表明:土壤样品中镉的含量为0.03~0.18mg·kg^-1,平均为0.069mg·kg^-1;所有样品均未超过农业部绿色食品产地土壤环境的质量标准;交换性钙的含量平均为4368mg·kg^-1;花生样品中镉的含量为0.019~0.46mg·kg^-1,平均为0.14mg·kg^-1,按照FAO/WHO规定的无公害食品镉含量标准0.1mg·kg^-1,有60.3%的花生样品镉超标;全钙的含量平均为0.528mg·g-1,并且随着土壤中交换性钙含量的升高,花生镉含量有降低的趋势,但相关性较低。花生样品中有12个超出%AD(I100),占取样总数的20.7%,即食用镉含量超过0.2mg·kg^-1的花生会对人体膳食健康有一定的风险,并且镉含量越高风险性越大。  相似文献   

16.
采用液质联用仪比较分析了3个不同种植区域(江苏南京、广西南宁和湖南长沙)露地和大棚两种种植条件下黄瓜和土壤中甲基硫菌灵及其代谢物多菌灵的残留动态,同时对黄瓜中的最终残留量进行了比较分析。施药后,甲基硫菌灵在黄瓜和土壤中均能很快转化为多菌灵[施药后1 d甲基硫菌灵未检出(〈0.01 mg·kg-1)],多菌灵在露地黄瓜和土壤中的原始沉积量均低于大棚。3个试验点露地黄瓜中的半衰期分别为2.3、1.4 d和1.4 d,在大棚黄瓜中的半衰期分别为2.6、1.7 d和2.0 d。在3个试验点露地土壤中的半衰期分别为1.6、1.7 d和2.3 d,在大棚土壤中的半衰期分别为2.3、2.0 d和2.3 d。最终残留试验在最后一次施药后1 d采样时,大棚、露地黄瓜中的甲基硫菌灵均未检出(〈0.01 mg·kg-1),多菌灵在3个试验点露地黄瓜中的最终残留量为0.014~0.162 mg·kg-1,而在3个试验点大棚黄瓜中的最终残留量为0.121~0.561 mg·kg-1。参照我国所制定的黄瓜中多菌灵的MRL(0.5 mg·kg-1),露地种植方式下所有处理黄瓜中甲基硫菌灵代谢物多菌灵的最终残留量均符合国家标准的规定,但大棚种植方式下其残留量有超标的风险。  相似文献   

17.
苯系物是有机化学品泄漏事故中导致土壤污染的主要污染物之一,但我国目前还没建立土壤中苯系物的标准监测方法。采用顶空气相色谱-质谱联用法(GC-MS)研究了模拟污染土壤中苯系物的测定方法,优化了顶空作为土壤中苯系物预处理方法的参数,分析了顶空GC-MS测定的精密度、回收率、检出限和定量限等质量控制参数。结果表明,基质修正液加入量2 mL、顶空平衡温度70 ℃和顶空平衡时间10 min为最佳的顶空方法参数;在11-550 μg·kg-1 的质量浓度范围内,苯系物各组分的浓度与选择离子峰面积线性相关系数均大于0.99。采用该方法测定土壤中苯系物的平均加标回收率为89.77%-98.64%,相对标准偏差为0.72%-4.64%(n=5);苯系物的检出限(S/N=3)为0.01-0.21 μg·kg-1,定量限(S/N=10)为0.03-0.71 μg·kg-1。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号