首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Glutamate is the major excitatory amino acid transmitter in vertebrate retinae. Glutamate transporters therefore play an important role in the precise control of glutamate concentration in the synaptic cleft by regulating extracellular glutamate concentration. In the present study, we performed an analysis of the expressions of three glutamate transporters in gerbil retina using immunohistochemistry. In the gerbil retina, excitatory amino acid carrier 1 and glutamate transporter 1 immunoreactivity was predominant in the ganglion cells but not amacrine or bipolar cells. Glutamate/aspartate transporter (GLAST) immunoreactivity was observed in the radial gliocytes of which the dense network of fine processes was localized in the inner and outer plexiform layers. GLAST immunoreactivity was also detected in astrocytes in the nerve fibre layer. These results demonstrate that three glutamate transporters show specific distributions in the gerbil retina and suggest that the glutamate re-uptake system in the gerbil retina may be different from that of the rat.  相似文献   

2.
Excitatory amino acid transporters (EAATs) are important for terminating glutamatergic neurotransmission and protect central nervous system (CNS) neurons from glutamatergic excitotoxicity. We selected these genes as targets that may relate to canine behavioral traits. After screening four EAAT genes (glutamate transporter-1; GLT-1, excitatory amino acid transporter 4; EAAT4, excitatory amino acid carrier; EAAC1, glutamate/aspartate transporter; GLAST) for single nucleotide polymorphisms (SNPs), we identified two silent SNPs (C129T and T471C) in the GLT-1 gene. We genotyped 193 dogs of 5 breeds and found significant variation among breeds in these two SNPs in GLT-1. The C129T polymorphism was not observed in Malteses and Miniature Schnauzers. These results suggest that polymorphisms in the GLT-1 gene may be useful markers for examining how the genetic background relates to the behavioral traits of dogs.  相似文献   

3.
4.
5.
Glutamate is a central metabolite for whole-animal energy and N metabolism. This study tested the hypothesis that ileal epithelium, liver, and kidney content of system X-(AG) glutamate transporters EAAC1 and GLT-1 would be up-regulated to support growth of wethers (30 +/- 1.2 kg) fed a forage-based diet for at least 14 d to gain (2.0 x NEm; n = 9) vs. maintain (1.2 x NEm; n = 9) BW. We have previously demonstrated that two high-affinity glutamate transporters (EAAC1, GLT-1) are expressed by these extensive glutamate metabolizing epithelial tissues. Wethers fed at 2.0 x NEm gained (P < 0.001; 0.26 kg/d) BW, whereas those fed 1.2 x NEm did not. Although plasma concentrations (microM) of glucose and L- or D-glutamate did not differ, plasma glutamine (precursor of glutamate) and alanine concentrations (transamination product of glutamate) were 28% (P < 0.007) and 22% (P < 0.072) greater for growing lambs than nongrowing lambs. In tissues, the concentration of L-glutamate in ileum epithelia and D-glutamate of liver was 49% (P < 0.015) and 181% (P < 0.042) greater, respectively, in growing vs. nongrowing animals, whereas concentrations of glutamate isoforms did not differ in kidney. Paralleling these increased amino acid concentrations, ileal epithelium contained 313% more (P < 0.038) EAAC1 protein and liver contained 240% more (P < 0.001) GLT-1 protein, whereas kidney transporter content did not differ between growing and nongrowing wethers. In contrast to increased EAAC1 and GLT-1 protein content in ileal and liver tissue of growing lambs, messenger RNA levels did not differ. These results indicate that the increased capacity for high-affinity glutamate uptake in growing vs. nongrowing lambs is achieved through increased expression of EAAC1 by ileal epithelium and GLT1 by liver, which parallel increased tissue concentrations of glutamate and plasma concentrations of two major interorgan N carriers, glutamine and alanine.  相似文献   

6.
Intracerebral microdialysis combined with electroencephalographic recordings was performed on 4 dogs of a familial idiopathic epileptic Shetland sheepdog colony to identify the kinds of neurotransmitters responsible for seizure activity. Immunohistochemistry using glutamate (Glu), glutamate transporter (GLT-1 and GLAST), and glutamine synthetase (GS) antibodies was also carried out on the cerebrum of four familial dogs that died of status epilepticus (SE). High values for extracellular levels of Glu and aspartate (ASP) were detected in association with an increased number of spikes and sharp waves during hyperventilation in 3 of 4 the familial epileptic dogs. The values of other amino acids analyzed were not altered in any of the familial epileptic dogs. Immunohistochemically, Glu-positive granules were occasionally found in the perineuronal spaces of the cerebral cortex in 3 of the familial epileptic dogs that died of SE. Immunostains for GLT-1 antibody predominantly decreased in the cerebral cortex and lateral nucleus of the thalamus in all the dogs that died of SE, whereas there were no differences detected in immunolabellings for GLAST and GS antibodies between familial epileptic dogs and controls. These results suggest that an extracellular release of both Glu and Asp may play an important role in the occurrence of seizure activity in this epileptic colony, and that a decreased expression of astrocytic GLT-1 may be related to development of SE.  相似文献   

7.
Previous studies have demonstrated that a loss of parvalbumin-immunoreactive (PV-ir) neurones is observed in the hippocampus after transient cerebral ischaemia. However, whether the loss of parvalbumin (PV) immunoreactivity is related to the over-production of nitric oxide (NO) during cerebral ischaemia has not been evaluated. This study was designed to test the effect of 7-nitroindazole pre-treatment (7-NI, 50 mg/kg), a selective neuronal NO synthase inhibitor, on PV immunoreactivity and its cellular activity following forebrain ischaemia. PV-ir neurones in the hippocampus of the control group were widely distributed in the pyramidal cell layer and stratum oriens of CA1 and CA3, and the granular cell layer of dentate gyrus. 7-NI pre-treatment completely suppressed the reduction of PV immunoreactivity in CA1 that was observed in the ischaemia-induced group. Subsequently, 7-NI pre-treatment also protected against the structural loss of microtubule-associated protein 2 (MAP2) immunoreactivity in CA1 after ischaemic insult. In addition, the Fos-defined neuronal activity of PV-ir neurones was slightly increased by the 7-NI pre-treatment 3 h after ischaemia. Based on these data, we conclude that the neuronal toxicity of NO may be involved in the loss of PV-ir neurones after cerebral ischaemia.  相似文献   

8.
为了研究重组人促红细胞生成素(rhEPO)对缺糖缺氧(OGD)培养大鼠星形胶质细胞GLT-1和GLAST表达的影响,将缺糖缺氧培养星形胶质细胞分成不同浓度rhEPO处理组:0、20、100U/mL,不同浓度rhEPO与星形胶质细胞在缺氧缺糖条件下培养6h,用RT-PCR测定GLT-1和GLAST的mRNA表达变化,免疫印迹技术测定GLT-1和GLAST蛋白的表达变化。20、100U/mL rhEPO星形胶质细胞GLT-1的mRNA和蛋白质水平较OGD对照组明显升高(P0.05),GLAST的mRNA和蛋白质水平变化不明显(P0.05)。GLT-1水平可能与rhEPO对缺糖缺氧培养大鼠星形胶质细胞的保护作用有关。  相似文献   

9.
Hippocalcin participates in the maintenance of neuronal calcium homeostasis. In the present study, we examined the time-course changes of neuronal degeneration and hippocalcin protein level in the mouse hippocampus following pilocarpine-induced status epilepticus (SE). Marked neuronal degeneration was observed in the hippocampus after SE in a time-dependent manner, although neuronal degeneration differed according to the hippocampal subregions. Almost no hippocalcin immunoreactivity was detected in the pyramidal neurons of the cornu ammonis 1 (CA1) region from 6 h after SE. However, many pyramidal neurons in the CA2 region showed hippocalcin immunoreactivity until 24 h after SE. In the CA3 region, only a few hippocalcin immunoreactive cells were observed at 12 h after SE, and almost no hippocalcin immunoreactivity was observed in the pyramidal neurons from 24 h after SE. Hippocalcin immunoreactivity in the polymorphic cells of the dentate gyrus was markedly decreased from 6 h after SE. In addition, hippocalcin protein level in the hippocampus began to decrease from 6 h after SE, and was significantly decreased at 24 h and 48 h after pilocarpine-induced SE. These results indicate that marked reduction of hippocalcin level may be closely related to neuronal degeneration in the hippocampus following pilocarpine-induced SE.  相似文献   

10.
Distribution of ASCT1, a neutral amino acid transporter, in non-neuronal peripheral tissues of adult and developing mice was examined by immunohistochemistry and immunoelectron microscopy. Immunoreactivity for ASCT1 in the digestive system was localized in basal cells of stratified squamous epithelia from oral parietes to nonglandular region of the stomach, chief cells of the glandular stomach, acinar cells of the salivary gland and exocrine pancreas, and Paneth's cells of the small intestine, in all of which the basolateral membrane was selectively immuno-labeled. In the liver of adult mice, ASCT1 immunoreactivity was detected on the plasma membrane of hepatocytes surrounding central veins, and a temporal expansion of immunoreactive hepatocytes was observed in the embryonic and CCl4-treated adult livers. ASCT1 was also localized on the plasma membranes of proximal uriniferous tubule epithelial cells in the kidney of adult mice, and those of supporting cells in the medulla of adrenal gland. These results suggest that ASCT1 is expressed in various non-neuronal peripheral tissues in mice, and it contributes to the amino acid transport throughout non-neuronal tissues.  相似文献   

11.
Our previous study showed localization of glutamate receptor 1 (GluR1) mRNA in neurons of the pigeon spinal cord, suggesting glutamatergic input from intrinsic and extrinsic origins. The present study examined localization of vesicular glutamate transporter 2 (VGLUT2) mRNA to confirm an extrinsic origin of glutamatergic neurons in the dorsal root ganglion (DRG). GluR1 and GluR2 mRNAs were examined in DRG and spinal cord to seek projection regions from VGLUT2 mRNA‐expressing neurons. VGLUT2 mRNA was expressed in most DRG neurons and labelling intensity varied from weakly to intensely. Intense VGLUT2 mRNA expression was mainly seen in medium to large neurons. GluR1 and GluR2 mRNAs were expressed in the dorsal horn and GluR2 mRNA signal was also seen in the marginal nucleus. The results suggest that the pigeon DRG has an extrinsic glutamatergic origin that project to the dorsal horn and marginal nucleus of the spinal cord.  相似文献   

12.
Information on the localization and the roles of glutamate in the nervous system is becoming valuable because the axon terminals of the olfactory sensory neurons and the synapses of the mitral and tufted output cells appear to be glutamatergic. In this study, we have analysed the distribution of glutamate immunoreactivity in the main olfactory bulb (MOB) of the Mongolian gerbil using an antiserum directed against glutamate. Glutamate immunoreactivity in the MOB was present in the olfactory nerve layer (Onl), glomerular layer (GL), external plexiform layer (EPL) and mitral cell layer (ML), but not in the granule cell layer (GCL). Glutamate immunoreactivity detected in the Onl was thought to be terminal ramifications of glomeruli. Some neurons in the periglomerular region showed glutamate immunoreactivity. In the EPL, glutamate immunoreactivity was found in some neuronal somata (tufted cells) and processes. In addition, mitral cells in the ML were labelled by the glutamate antibody. The pattern of glutamate immunoreactivity in the mitral cells was similar to that in the tufted cells. In brief, glutamate in the gerbil MOB is the neurotransmitter used by primary afferents and output neurons.  相似文献   

13.
Calbindin D-28k (CB), a calcium-binding protein, containing neurons in the hippocampus plays an important role in hippocampal excitability in epilepsy. In the present study, we investigated changes of CB immunoreactivity after adrenalectomy (ADX) in the hippocampus and dentate gyrus of the seizure sensitive gerbil, which is susceptible to seizure to identify roles of CB in epileptogenesis. The changes of the CB immunoreactivity after ADX were significant in the hippocampal CA1 region. By 24 h after ADX, CB-immunoreactive CA1 pyramidal cells and CB immunoreactivity increased. At this time, well-stained dendrites projected to the stratum radiatum. Thereafter, the CB immunoreactivity decreased time dependently by 96 h after ADX. In the dentate gyrus, the changes of CB-immunoreactive neurons were mainly observed in the granule cell layer. The number and immunoreactivity of CB-immunoreactive neurons was high at 24 h after ADX, thereafter, those decreased by 96 h after ADX. These results suggest that glucocorticoid has an important role in modulating the seizure activity and CB serves an inhibitory function, which regulates the seizure activity and output signals from the hippocampus.  相似文献   

14.
The mechanisms of ischemic neuronal death have been focused on glutamate receptor activation and subsequent elevation of intracellular Ca2+ concentration. The purpose of this study was to evaluate the effects of dizocilpine, an NMDA receptor antagonist, pretreatment on Fos expression and parvalbumin (PV, calcium binding protein) immunoreactivity in the hippocampus of the mongolian gerbil after global ischemic insults. The number of PV-immunoreactive (PV-ir) neurons in CA1 were significantly decreased from 1 day after cerebral ischemia, while dizocilpine pretreatment completely suppressed the loss of PV-ir neurons in CA1. Dizocilpine pretreatment also protected the structural loss of microtubule-associated protein 2 immunoreactivity in CA1 after ischemic insults. In addition, dizocilpine pretreatment increased Fos expression in both hippocampal CA3 and CA4 after 3 hr ischemic reperfusion as compared to that of the saline pretreated group. Subsequently, the Fos-defined cellular activity of PV-ir neurons was slightly increased by dizocilpine pretreatment in the hippocampal area. This study demonstrated that NMDA receptor mediated calcium influx was associated with the loss of PV-ir neurons in CA1 hippocampal region, and that dizocilpine pretreatment increased Fos expression and the neuronal activity of PV-ir neurons in the non-vulnerable region of hippocampus after cerebral ischemia. Based on this data, we conclude that the protective effect of dizocilpine may be induced by the regulation of calcium overload, or by the upregulation of a neuroregenerative initiator such as Fos protein.  相似文献   

15.
This study was carried out to investigate the motor neurone degeneration in the ventral horn following transient spinal cord ischaemia at normothermic conditions in rabbits. Transient spinal cord ischaemia was induced by occlusion of the abdominal aorta underneath the left renal artery for 15 min at normothermia (38.7 degrees C). Sections at the level of L7 were examined using histochemical and electron microscopic methods. Cresyl violet-positive motor neurones began to reduce in number at 3 h after ischaemia reperfusion, and were not detectable at 48 h after ischaemia reperfusion. Acid fuchsin-positive motor neurones were detected at 1 h after ischaemia reperfusion, significantly increased up to 6 h after the ischaemia reperfusion, and eventually disappeared by 48 h after ischaemia reperfusion. In electron microscopic findings, the disintegration of cytoplasmic membranes, and the disruption of mitochondria and endoplasmic reticulum were observed in motor neurones at 30 min after ischaemia reperfusion. Motor neurones showed necrotic findings with pyknotic degeneration at 1 h after ischaemia reperfusion. The necrotic degeneration became severer time dependently after ischaemia reperfusion. At 48 h after ischaemia reperfusion, cellular components were not detectable in motor neurones. In conclusion, we suggest that the degeneration pattern of motor neurones of the ischaemic spinal cord was necrotic after ischaemia reperfusion under normothermic conditions.  相似文献   

16.
17.
Glutamate (Glu), the major excitatory neurotransmitter in vertebrate central nervous system, is actively taken up and stored in synaptic vesicles. On the arrival of an action potential to the pre‐synaptic membrane and the subsequent opening of the voltage‐gated calcium channels and movement of Ca2+ into the neuron, these small vesicles fuse with the pre‐synaptic membrane to release the neurotransmitter content into the synaptic cleft. Because it has previously been shown that intracerebroventricular (ICV) glutamate plays a role in feed intake in broilers, the manipulation of its vesicular concentration could affect feeding behaviour. On the contrary, research on vesicular glutamate transporters has, so far, been carried out on mammalian species. In the present study, we aim to examine the effect of Chicago sky blue 6B (CSB6B), a glutamate vesicular uptake inhibitor, on feed intake and latency to start feeding in a commercial strain of meat type chickens. To do this, four experiments have been designed to investigate the effect of ICV injection of saline, glutamate, as a general agonist for glutamate receptors, CSB6B and the combination of Glu and CSB6B. The findings indicate that CSB6B increases feed intake and decreases the latency to start feeding in 24‐h‐feed‐deprived Ross 208 broilers.  相似文献   

18.
Recent in vitro and in vivo studies have shown that glucocorticoids have a profound influence on the survival of hippocampal neurones, and that the depletion of glucocorticoids as a result of adrenalectomy (ADX) reduces nerve growth factor levels in the hippocampus. It is also believed that ADX is associated with the seizure susceptibility of the Mongolian gerbil. In the present study, the choronological changes of c-jun immunoreactivity were investigated after ADX in the hippocampal formations in the seizure-prone gerbil model. In the sham hippocampus, c-jun immunoreactivity was not observed in the neurones of the hippocampus proper and dentate gyrus. C-jun immunoreactive neurones appeared 3 h after ADX in the neurones of the CA1 area and dentate gyrus, and these immunoreactivities peaked 24 h after ADX and then gradually decreased. These results suggest that, in the adrenalectomized gerbil, c-jun may be expressed in the neurones of the hippocampus in compensation for glucocorticoid deficit. The result of enhanced c-jun expression of the hippocampal formation provides anatomical support for the hypothesis that c-jun may play a role in the reduction of seizure activity.  相似文献   

19.
Glutamate is the principal excitatory neurotransmitter in the brain. Knowledge of the glutamatergic synapse has advanced enormously over the last 10 years, primarily through application of cellular electrophysiological and molecular biological techniques to the study of glutamate receptors and transporters. There are three families of ionotropic glutamate receptors with intrinsic cation permeable channels. There are also three groups of metabotropic, G-protein-coupled glutamate receptors that can modify neuronal excitability. There are also two glial glutamate transporters and three neuronal transporters in the brain. Endogenous glutamate may contribute to the brain damage occurring acutely after traumatic brain injury as well as having a role in the excitatory imbalance present in epileptic conditions and contributing to the pathophysiology of hepatic encephalopathy in animals. Understanding the role of glutamate in these neurological diseases may highlight treatment potentials of antagonists to glutamatergic transmission. This paper presents a review of the literature of glutamate and its role in neurological function and disease.  相似文献   

20.
Glucose, fatty acids, and l-carnitine are important substrates that support mammary epithelial cell metabolism, biosynthetic capacity, and milk yield and composition. Our study investigated the effects of LPS-induced inflammation on the expression of several glucose, fatty acid, and l-carnitine transporters in the lactating rat mammary gland at different lactation stages. Day 4, 11, and 18 lactating rats (n = 3/treatment) were administered LPS (1 mg/kg) or saline by intraperitoneal (IP) injection. Fold differences in the mRNA expression of glucose transporters Glut1, Glut8 and Sglt1, fatty acid transporters Fatp1, Fatp4 and Fabp3, and l-carnitine transporters Octn1, Octn2, and Octn3 were determined using the Comparative CT method. The mRNA expression levels of all transporters evaluated, except Fatp4 and Octn2 were markedly higher in mammary gland at lactation day 11 compared to lactation day 4. LPS caused a marked decrease in transporter mRNA expression at each lactation stage except for Octn3 and Fatp1, which were markedly increased with LPS administration at lactation day 4, and Sglt1, which was slightly increased at day 11 of lactation. Our results suggest LPS-induced inflammation generally downregulates glucose, fatty acid, and l-carnitine transporter expression. Whether such changes lead to reductions in transporter substrate availability to the lactating mammary epithelial cell requires investigation since decreases in the availability of these nutrients may significantly impact mammary epithelial function and milk quality and yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号