首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 782 毫秒
1.
天津滨海几种人工植被的碳汇作用研究   总被引:7,自引:0,他引:7  
对天津开发区滨海几种人工植被的碳净贮量、平均积累速率及其分配格局作了初步研究:碳净贮量从大到小依次为乔-灌-草群落(12.93 t/hm2)>灌木群落(12.205 t/hm2)>草本群落(4.725 L/hm2)>灌-草群落(1.61 t/hm2)。平均碳净积累速率是灌木群落(4.07 t/hm2·a)>乔-灌-草群落(3.23 t/hm2·a)>草本群落(1.18 t/hm2·a)>灌-草群落(0.81 t/hm2·a)。以木本植物为主的群落中,主要依靠地上部分贮存碳,并且随着层次的增加,地上部分贮量所占百分比有上升的趋势。乔-灌-草群落中,乔木贮量占群落总净贮量的84.49%、灌木占14.81%、草本仅0.70%;灌-草群落中,灌木占91.95%,草本占8.05%。乔木种的各器官碳净贮量中,皮所占比例最小,根、枝、干三者比例较为接近,都在30%左右;灌木种则都是枝>根。  相似文献   

2.
利用标准样方法对19a生湿地松人工林生物量、碳素含量、贮量及其空间分布进行测定。结果表明,湿地松各器官的碳素含量在50.92%~54.38%波动,排列顺序为树叶>树枝>树根>树干>树皮,且各器官的碳素含量随树龄增长而提高。林冠上层与下层叶的碳素含量比中层叶的碳素含量低,但差别不大;下层枝条碳素含量明显比上、中层枝条高。灌木层、草本层、凋落物层的碳素含量依次为45.16%、42.28%、40.88%;土壤层碳素含量平均为0.43%,且随土壤深度的增加而明显递减。湿地松各器官碳贮量与其生物量成正比例关系,排列顺序为树干>树根>树皮>树枝>树叶。随着树高的增大,树干碳贮量在乔木层中所占比例逐渐下降,树皮碳贮量所占比例处于一个缓慢上升的状态,枝叶碳贮量所占比例在10~12m段出现最大值。湿地松林生态系统碳贮量(C)为121.94×103kg/hm2,其中乔木层为86.78×103kg/hm2,占整个生态系统总贮量的70.67%,下木层为0.6×103kg/hm2,占0.49%,凋落物层为8.86×103kg/hm2,占7.27%,林地土壤(0~60 cm)为26.3×103kg/hm2,占21.57%。根据以上数据,得出湿地松林年净生产力约为7.61×103kg/hm2.a,有机碳年净固定量(C)为4.54×103kg/hm2.a。  相似文献   

3.
利用标准样方法对19 a生湿地松人工林生物量、碳素含量、贮量及其空间分布进行测定.结果表明,湿地松各器官的碳素含量在50.92%~54.38%波动,排列顺序为树叶>树枝>树根>树干>树皮,且各器官的碳素含量随树龄增长而提高.林冠上层与下层叶的碳素含量比中层叶的碳素含量低,但差别不大;下层枝条碳素含量明显比上、中层枝条高.灌木层、草本层、凋落物层的碳素含量依次为45.16%、42.28%、40.88%;土壤层碳素含量平均为0.43%,且随土壤深度的增加而明显递减.湿地松各器官碳贮量与其生物量成正比例关系,排列顺序为树干>树根>树皮>树枝>树叶.随着树高的增大,树干碳贮量在乔木层中所占比例逐渐下降,树皮碳贮量所占比例处于一个缓慢上升的状态,枝叶碳贮量所占比例在10~12 m段出现最大值.湿地松林生态系统碳贮量(C)为121.94×103 kg/hm2,其中乔木层为86.78×103 kg/hm2,占整个生态系统总贮量的70.67%,下木层为0.6×103 kg/hm2,占0.49%,凋落物层为8.86×103 kg/hm2,占7.27%,林地土壤(0~60 cm)为26.3×103 kg/hm2,占21.57%.根据以上数据,得出湿地松林年净生产力约为7.61×103 kg/hm2·a,有机碳年净固定量(C)为4.54×103 kg/hm2·a.  相似文献   

4.
滨海沙地厚荚相思和木麻黄人工林凋落物碳归还规律   总被引:1,自引:0,他引:1  
通过对滨海沙地9年生厚荚相思和木麻黄人工林凋落物收集、养分测定和分析,研究它们的碳归还规律。结果表明:厚荚相思和木麻黄人工林年凋落物量分别为7 616 kg/hm2和8 218 kg/hm2;厚荚相思凋落物碳的年归还量为3 863kg/hm2,略高于木麻黄的3 825 kg/hm2;凋落叶是凋落物的主要成分;厚荚相思凋落物碳归还季相动态规律为夏季>春季>冬季>秋季,春季和冬季变化不明显;木麻黄人工林表现为夏季>春季>秋季>冬季。2个树种的春季凋落物碳归还量差异不明显,夏季明显高于其他3个季节。凋落叶碳归还是森林生态系统碳回归的主要途径。运用Duncan法检验,木麻黄凋落物碳的归还量在夏季和冬季与其他3季相比为差异显著(P<0.05),厚荚相思和木麻黄在相同季节凋落物碳的归还量差异不显著。研究结果能够为科学评价森林生态系统固碳效益提供依据。  相似文献   

5.
秦岭火地塘林区3种森林类型乔木层碳密度和碳储量研究   总被引:1,自引:0,他引:1  
以秦岭火地塘林区锐齿栎(Quercus aliena var.acuteserrata)、华山松(Pinus armandi)和油松(Pinus tabulaeformis)3种主要森林类型为研究对象,通过标准地调查和生物量回归模型计算其碳储量,并在此基础上估算了碳密度以及不同器官的碳储量。结果表明:不同森林类型碳密度具有显著差异,其中锐齿栎最高(118.724t/hm2),油松次之(106.062t/hm2),华山松最低(94.227t/hm2);3种森林类型的碳储量均随着林分径级的增大呈现出上升、下降和再上升的趋势,而大径级碳储量的上升主要取决于大径级单株林木的出现,具有明显的随机性;碳储量在不同树种各器官的分布表现为:干>枝>根>皮>叶(锐齿栎),干>枝>根>叶>皮(华山松),干>枝>叶>根>皮(油松),且不同树种同一器官及同一树种不同器官之间的碳储量所占比重差异显著。  相似文献   

6.
[目的]为探明群落演替过程中碳贮量分布格局。[方法]对苏北低山丘陵区典型群落进行样地调查,并对其生态系统碳贮量进行研究。[结果]土壤碳贮量随群落演替进程逐渐提高,乔木阶段(58.61 t/hm2)灌丛阶段(44.58 t/hm2)草本阶段(20.37 t/hm2);不同森林植被类型碳贮量的差别较大,其中凋落物和植被碳贮量的差异并不大,碳贮量差异较大的原因在于土壤碳贮量差异较大;碳贮量随群落演替进程逐渐增加,栓皮栎群落碳贮量(40.53 t/hm2)最高,白草群落碳贮量(1.24 t/hm2)最低;生态系统碳贮量随演替进程而增加,草本阶段(20.13t/hm2)灌木阶段(52.34 t/hm2)乔木阶段(92.98 t/hm2)。[结论]该研究可为苏北地区植被建设提供理论指导。  相似文献   

7.
采用样方收获法,利用实测数据,研究了湖南桃江血水草的生物量、碳含量、碳贮量及其分配特征。结果表明,血水草生物量为1744.70 kg/hm2,其中以地下根系生物量最高,为1278.63 kg/hm2,占血水草生物量的73.9%,且地下根系部分生物量与地上叶、茎部分生物量比值为2.74。血水草各器官平均碳含量为450.54 g/kg,从高到低排序为叶>茎>根。土壤层有机碳含量为6.63-38.50 g/kg,各层次碳含量分布不均,表层(0-15cm)土壤碳含量较高,并随土壤深度的增加而逐渐下降。生态系统碳贮量为101.19 t/hm2,碳库的分布格局为土壤层>植被层>枯落物层。植被层的碳贮量为0.79 t/hm2,占整个生态系统总碳贮量的0.78%;在植被层中,地下根系碳贮量为0.57 t/hm2,占植被层总碳贮量的72.2%,是植被层的主要碳库。枯落物层碳贮量较少,为0.22 t/hm2,仅占整个生态系统的0.22%,它是维系植物体地上碳库与土壤碳库形成循环的主要通道。血水草生态系统中的碳贮量绝大部分集中在土壤中,土壤层碳贮量可观,为100.18 t/hm2,占系统总碳贮量的99.0%,是血水草生态系统中的主要碳库。研究结果,可为深入研究亚热带地区草本植物的生态功能提供参考。  相似文献   

8.
厚荚相思人工幼林生态系统碳贮量及其分布研究   总被引:2,自引:0,他引:2  
对1.5、2.5和3.5年生的厚荚相思人工林生态系统的碳素含量、贮量及其空间分布特征进行了研究。结果表明:厚荚相思不同器官碳素含量的变化范围为457.6~525.1 g/kg,厚荚相思各器官碳素含量高低排列次序基本一致,表现为树叶>树枝>树干>树根>树皮;土壤碳素含量随土层深度增加而减少。3个林龄厚荚相思人工林生态系统碳素贮存量分别为73.04、86.14和96.34 t/hm2,其分布序列为土壤(0~60 cm)>植被层>凋落物层。碳贮量在林木不同器官中的分配基本上与各器官生物量成正比,3个林龄厚荚相思人工林年净固碳量分别为3.89、8.26和9.23 t/(hm2.a)。  相似文献   

9.
尾叶桉与马占相思人工复层林碳储量及分布特征研究   总被引:1,自引:0,他引:1  
应用相对生长法和样方收获法研究3年生尾叶桉与马占相思不同混交比例人工林的碳素含量、碳储量以及空间分配特征.结果表明:林分各器官、草本层、灌木层、枯落物层的碳素含量分别介于433.6~491.5 g/kg,412.9~437.3 g/kg,430.6~437.3 g/kg,458.6~465.3 g/kg.在相同混交比例下,乔木层碳储量随林分密度的增加而上升,灌木层、草本层和枯落物层碳储量随林分密度的增加而下降,土壤层在不同处理下碳储量无明显变化.当尾叶桉与马占相思混交比例为1: 1时,林分密度为1 050株/hm2和1 320株/hm2的生态系统碳储量分别为55.247 t/hm2,67.396 t/hm2;当尾叶桉与马占相思混交比例为2: 1时,林分密度810株/hm2和1 170株/hm2的生态系统碳储量分别为69.106 t/hm2,83.446 t/hm2;当林分密度同为1 727株/hm2时,尾叶桉纯林、尾叶桉与马占相思以1: 1.6比例混交林的生态系统碳储量分别为76.356 t/hm2,95.502 t/hm2.在相同混交比例下,灌木层、草本层、枯枝落叶层碳储量随林分密度的增加而下降;在相同密度下,尾叶桉纯林灌木层、草本层、枯枝落叶层碳储量均比混交林高.在6个林分更新处理中,当尾叶桉与马占相思混交比例为1: 1.6时,混交林的成层性最明显,林分总碳储量最高,且与其他各处理间的差异达到极显著水平,是固碳能力较佳的一种混交比例.  相似文献   

10.
桉树林取代马尾松林对森林生态系统碳贮量的影响   总被引:2,自引:0,他引:2  
以广西钦州市钦南区巨尾桉人工林(10a)和马尾松天然林(15~20a)为研究对象,采用平均木法和样方收获法测定林分生物量,分别样地采集植物和土壤样品,采用重铬酸钾-水合加热法测定碳含量,探讨桉树林取代马尾松林对森林生态系统碳含量、碳贮量及其分配规律的影响.结果表明:巨尾桉植株的碳含量(经各器官生物量加权)平均为47.32%,比马尾松(50.17%)的低5.7%.巨尾桉人工林生态系统总碳贮量为123.086t/hm2,是马尾松天然林(88.238t/hm2)的1.40倍;其植被(含凋落物)生物量和碳贮量分别为115.082t/hm2和53.712t/hm2,依次是马尾松天然林(生物量40.686t/hm2和碳贮量19.421t/hm2)的2.83倍和2.77倍,差异极显著(p<0.01).两种森林植被碳贮量的差异与其生物量的差异相一致,表明桉树人工林取代马尾松天然林可以提高森林植被生产力及其固碳能力.  相似文献   

11.
以松山自然保护区次生林为主要研究对象,采用2007年松山自然保护区国家重点生态公益林的17个标准地的调查数据,就其中7种主要乔木(DBH〉14cm)的地上碳储量及其伴随径级的分布特征进行了研究。结果显示:①地上碳储量大小排列为蒙古栎(35714.7158kg/hm2)〉油松(30008.8550kg/hm2)〉山杨(24376.7789kg/hm2)〉桦树(17620.6612kg/hm2)〉五角枫(7985.4425kg/hm2)〉椴树(5284.8026kg/hm2)〉核桃楸(3448.3767kg/hm2);②在地上碳储量径阶分布方面,蒙古栎、山杨、油松、桦树区别于其他3种阔叶树,碳储量变化剧烈。  相似文献   

12.
地下滴灌对杨树速生丰产林碳储量的影响   总被引:2,自引:0,他引:2  
研究了北京潮白河沿河沙地6年生I 214杨树速生丰产林地下滴灌(SDI)和常规灌溉(NI)条件下的林地碳储量,同时对10年生中林46杨树地下滴灌速生丰产示范林碳汇能力进行了评价。结果表明:1)与常规灌溉相比,地下滴灌能大大增加林地碳储量。2002年(栽植第6年),SDI区乔木层、枯落物层和土壤碳储量分别为25.81、3.53和42.00 t/hm2,是NI区的1.27、2.02和1.32 倍;SDI区的林地总碳储量76.50 t/hm2,比NI区49.61 t/hm2增加了54.2%;年净碳增量9.49 t/(hm2•a),是NI区5.01 t/(hm2•a)的近2倍。2)2010年(栽植第10年),地下滴灌示范林达到了较高固碳水平,乔木层、草本层、枯落物层和土壤碳储量分别为34.71、8.60、8.45和56.20 t/hm2,林地总碳储量为107.19 t/hm2,年净碳增量达到了8.84 t/(hm2•a),比对照区625 t/(hm2•a)增加了41.4%。建议在干旱半干旱及存在季节性干旱的地区结合当地经济条件推广基于地下滴灌的优化水肥管理技术,大幅度提高杨树速生丰产林林地生产力和碳汇能力,为减缓全球增暖趋势发挥一定的作用。   相似文献   

13.
[目的]对红枫湖流域退耕还林项目的碳汇效应进行分析,为贵州省退耕还林的碳汇潜力提供参考依据。[方法]通过对2000~2006年红枫湖流域内退耕还林工程实施情况的调查,对林区内主要树种杉木(Cunninghamia lanceolata)、柳杉(Crypto-meria fortunei)、桃(Amygdalus persica)、李(Prunus salicina)、杏(Armeniaca vulgaris)、喜树(Camptotheca acuminata)和楸树(Catalpa bungei)7种林木的碳汇量及碳汇效应进行计算。在此基础上,估算了红枫湖流域2015年的森林碳汇总量。[结果]2000~2006年,随着时间的变化,森林的中、幼龄林生物蓄积量和碳汇量有上升的趋势,2006年达到1.05×107kg,将发挥越来越大的固碳潜力。在所研究的7种树种中,杉木是研究区内碳汇功能强的树种,预测到2015年,其单位面积碳汇量可以达到106.51t/hm2,其次为柳杉,单位面积碳汇量为99.42t/hm2,杏的碳汇功能最弱,单位面积碳汇量为13.03t/hm2;7种树种的森林碳汇总量为2.35×107kg,平均单位面积碳汇量为26.17t/hm2(c);按305.0元/t的价格计算,可产生7.17×106元的经济效益,按254.1元/t(c)的价格计算,可产生5.91×106元的经济效益。[结论]红枫湖流域退耕还林碳汇效应的经济效益巨大,具有较大的增值空间。  相似文献   

14.
蒋林  林宁  莫德祥  卓宇 《安徽农业科学》2012,(18):9728-9730,9861
[目的]对南亚热带低山区柳杉人工林碳汇进行研究。[方法]研究广西国营六万林场低山区的31年生柳杉人工林生态系统碳素含量、碳储量及其空间分配特征。[结果](1)柳杉人工林不同器官平均碳素含量变化在498.5~530.3 g/kg,其含量排列为:叶子枯枝树干根蔸枝条细根干皮中根粗根;碳素含量随土壤深度的增加而逐渐减少。(2)低山区柳杉人工林的生态系统碳储量为393.651 t/hm2,其中植被层碳储量占生态系统碳储量的29.22%,而0~100 cm土壤层占70.78%。31年生柳杉人工林年净固碳量估算为3.709 t/(hm2.a),其中乔木层的年净固碳量为3.537 t/(hm2.a)。(3)0~20 cm土壤表层碳储量为132.418 t/hm2,比植被层的碳储量还高。[结论]加强低山区的植被保护,减少表层土壤的水土流失,可有效保持南亚热带低山区土壤对碳的长期吸存和维持。  相似文献   

15.
基于相容性生物量模型的樟子松林碳密度与碳储量研究   总被引:6,自引:3,他引:3  
基于不同林龄樟子松人工林生物量调查数据,建立了樟子松林生物量相容性模型,探讨了不同林龄樟子松人工林中乔木层、林下植被层、死地被物层碳密度和碳储量的变化规律。结果表明:樟子松人工林各器官碳密度值的排序为:树叶树枝树干树根;各器官碳密度均随着林龄的增大而增加,27、30、32、36、40和44年生樟子松各器官的平均碳密度分别为449.5、460.2、470.8、485.1、489.2和513.6 g/kg,林下植被与死地被物的碳密度随林龄的变化规律不明显。27~44年期间樟子松人工林群落碳储量都随林龄的增大而增加,从27年生的37.14 t/hm2增加到44年生的168.46 t/hm2,其顺序为:乔木层死地被物层林下植被层,分别占群落总碳储量的90.97%、1.13%和7.90%,乔木层碳储量占主导地位。不同林龄樟子松乔木层、林下植被层和死地被物层年固碳量分别为2.043、0.025 和0.182 t/hm2。研究认为,樟子松人工林群落碳密度及碳储量随林龄的增加变化显著,碳汇作用明显。   相似文献   

16.
京北山区刺槐林主要养分元素积累与分配的研究   总被引:3,自引:0,他引:3  
对北京北部山区刺槐林主要养分元素的积累与分配进行了研究 .结果表明 ,刺槐林生态系统的总生物量 (包括乔木层、灌木层、草本层和枯落物层 )为 2 1 81 5~ 2 92 85kg hm2 .刺槐林不同器官中各养分元素的含量差异较大 ,在叶、枝和干中各养分元素的含量顺序相同 ,根系中的养分元素除Ca随着根系直径的增加呈升高的趋势外 ,其余的养分元素的含量随着根系直径的增加而降低 .刺槐林生态系统 5种养分元素的贮存量为 4 0 7 35~ 5 91 82kg hm2 ,其中乔木层中的养分贮存量占总贮存量的 83 4 2 %~ 89 83% .若以各养分元素在生态系统生物层中的贮存量来计 ,则Ca的贮存量最大 ,P的最小 ,不同养分元素贮存量的顺序为Ca >N >K >Mg >P .刺槐林生态系统乔木层对N元素的富集能力最强 ,不同元素的富集系数排序为N >P >Ca >K >Mg ,刺槐林每积累 1t干物质需N、P、K、Ca和Mg等养分元素共计约 1 4kg .  相似文献   

17.
寿县水稻“3414”完全肥料效应田间试验   总被引:2,自引:0,他引:2  
[目的]获得水稻主产区水稻生产中的土壤供肥力、最佳配方施肥量。[方法]以杂交中籼深两优5814为水稻供试品种,在安徽寿县三觉镇陈岗村进行了"3414"试验,共设14个处理,研究氮、磷、钾肥对水稻产量及经济性状的影响,并通过肥料效应函数分析了氮、磷、钾肥施用量与水稻产量之间的关系。[结果]氮肥180 kg/hm~2、磷肥60 kg/hm~2、钾肥120 kg/hm~2处理的产量最高,达11 455.5kg/hm~2,该处理的纯收入也最高,达23 324.10元/hm~2,其次为氮肥180 kg/hm~2、磷肥60 kg/hm~2、钾肥0 kg/hm~2处理,纯收入为20 837.85元/hm~2。获得肥料效数应函方程Y=338.401+15.085X_1+108.066X_2-8.747X_3+0.182X_12~+2.100X_2~2-6.420X32-1.00X_1X_2-11.402X_1X_3-0.779X_2X_3,由该数学模型得出理论氮、磷、钾最佳施肥量分别为154.50、51.00、34.50 kg/hm~2。[结论]各处理中以氮肥180kg/hm~2、磷肥60 kg/hm~2、钾肥120 kg/hm~2处理的产量和纯收入最高,结合生产实际,推荐氮、磷、钾施用量分别为172.50、75.00、135.00kg/hm~2。  相似文献   

18.
杉木观光木混交林C库与C吸存   总被引:16,自引:0,他引:16  
对福建三明 2 7年生杉木观光木混交林和杉木纯林C库和C吸存的研究结果表明 ,混交林C库总量为2 2 2 5 0 8t hm2 ,比纯林增加了 2 1 85 %,其中活植物体部分和土壤碳库分别为 139 75 5t hm2 和 80 2 81t hm2 ,分别占C库总量的 6 2 81%和 36 0 8%.混交林和纯林杉木乔木层有机碳年均积累量 6~ 11年最大 ,分别达 7 35t hm2 和 5 79t hm2 .混交林乔木层 2 7~ 2 8年C净固定量为 7 970t hm2 ,折算成CO2 为 2 9 2 2 3t hm2 ,是纯林的 1 19倍 ,其中凋落物和死细根C年归还量分别为 2 5 2 8t hm2 和 0 871t hm2 ,分别是纯林的 1 0 5倍和 1 17倍 ;混交林和纯林中叶和枝C年归还量分别占凋落物C年归还量的 6 6 5 7%、2 3 81%和 6 1 0 3%、2 5 2 0 %;而 <0 5mm的枯死细根C年归还量分别占枯死细根C年归还量 6 0 %和 5 9%.凋落物中叶和枝及 <0 5mm的死细根是该森林生态系统有机碳归还的主体 .  相似文献   

19.
延边地区天然赤松林生物量的研究   总被引:3,自引:0,他引:3  
对平均年龄为40a的天然赤松林进行了生物量的研究。结果表明:当密度为1500-2000株/hm^2时,赤松林总生物量为127.389t/hm^2,接近最大值。 木层为127.043t/hm^2,灌木层为0.178t/hm^2;草本层为0.168t/hm^2。此时,乔木层净生产量为17.117t/(hm^2.a)。随着密度梯度的变化,乔木层、灌木怪、草本层生物量以及乔木层净生产量均发生有规律的变化,  相似文献   

20.
莲藕施钾量对产量和品质的效应试验   总被引:2,自引:1,他引:1  
为探讨莲藕科学施肥方法,2007年进行了钾肥不同用量施肥试验。结果表明:潴育性杂沙泥肉田种植莲藕,施K2O 75~225kg/hm2,增产2 134~17 433kg/hm2,净增收益8 286~68 982元/hm2;潴育性沙泥肉田种植莲藕,施K2O 75~225kg/hm2,增产2 925~17 194kg/hm2,净增收益11 450~68 026元/hm2,可明显增强莲藕抗病性和显著改善品质。但施K2O超过225kg/hm2,莲藕产量和淀粉含量则明显下降。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号