首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Thirty isolates of Fusarium oxysporum from wilted Welsh onion plants were examined for their diversity in nucleotide sequences of the ribosomal DNA (rDNA) intergenic spacer (IGS) region and for pathogenicity with regard to five Welsh onion cultivars. Phylogenetic analysis based on the IGS sequences revealed polyphyletic origins of the isolates and a relationship between phylogeny and pathogenicity; low virulence isolates differed genetically from those with high and moderate virulence. Mating type analysis revealed that all F. oxysporum isolates were MAT1-1 idiomorphs, suggesting that the pathogens may be clonal in the fields examined.  相似文献   

2.
The aim of this research was to study levels of resistance to Fusarium basal rot in onion cultivars and related Allium species, by using genetically different Fusarium isolates. In order to select genetically different isolates for disease testing, a collection of 61 Fusarium isolates, 43 of them from onion (Allium cepa), was analysed using amplified fragment length polymorphism (AFLP) markers. Onion isolates were collected in The Netherlands (15 isolates) and Uruguay (9 isolates), and received from other countries and fungal collections (19 isolates). From these isolates, 29 were identified as F. oxysporum, 10 as F. proliferatum, whereas the remaining four isolates belonged to F. avenaceum and F. culmorum. The taxonomic status of the species was confirmed by morphological examination, by DNA sequencing of the elongation factor 1-α gene, and by the use of species-specific primers for Fusarium oxysporum, F. proliferatum, and F. culmorum. Within F. oxysporum, isolates clustered in two clades suggesting different origins of F. oxysporum forms pathogenic to onion. These clades were present in each sampled region. Onion and six related Allium species were screened for resistance to Fusarium basal rot using one F. oxysporum isolate from each clade, and one F. proliferatum isolate. High levels of resistance to each isolate were found in Allium fistulosum and A. schoenoprasum accessions, whereas A. pskemense, A. roylei and A. galanthum showed intermediate levels of resistance. Among five A. cepa cultivars, ‘Rossa Savonese’ was also intermediately resistant. Regarding the current feasibility for introgression, A. fistulosum, A. roylei and A. galanthum were identified as potential sources for the transfer of resistance to Fusarium into onion.  相似文献   

3.
Four-hundred-sixty-eightFusarium andFusarium-like isolates were obtained from crowns and subcrown internodes of winter wheat grown in Erzurum, Turkey. Of these isolates, 34.8% wereFusarium acuminatum, 32.3% wereF. equiseti, 16.9% wereF. oxysporum, 15.0% wereMicrodochium nivale (formerlyFusarium nivale), 0.6% wereF. tabacinum and 0.4% wereF. solani. In pathogenicity tests on wheat, the highest disease severity was caused by isolates ofM. nivale, whereas isolates ofF. acuminatum, F. equiseti, F. oxysporum andF. solani were slightly virulent; isolates ofF. tabacinum were nonpathogenic. This is the first report ofM. nivale andF. tabacinum from wheat in Turkey. http://www.phytoparasitica.org posting Jan. 29, 2003.  相似文献   

4.
Fusarium yellows, caused by the soil‐borne fungus Fusarium oxysporum f. sp. betae (Fob), can lead to significant yield losses in sugar beet. This fungus is variable in pathogenicity, morphology, host range and symptom production, and is not a well characterized pathogen on sugar beet. From 1998 to 2003, 86 isolates of F. oxysporum and 20 other Fusarium species from sugar beet, along with four F. oxysporum isolates from dry bean and five from spinach, were obtained from diseased plants and characterized for pathogenicity to sugar beet. A group of sugar beet Fusarium isolates from different geographic areas (including nonpathogenic and pathogenic F. oxysporum, F. solani, F. proliferatum and F. avenaceum), F. oxysporum from dry bean and spinach, and Fusarium DNA from Europe were chosen for phylogenetic analysis. Sequence data from β‐ tubulin, EF1α and ITS DNA were used to examine whether Fusarium diversity is related to geographic origin and pathogenicity. Parsimony and Bayesian MCMC analyses of individual and combined datasets revealed no clades based on geographic origin and a single clade consisting exclusively of pathogens. The presence of FOB and nonpathogenic isolates in clades predominately made up of Fusarium species from sugar beet and other hosts indicates that F. oxysporum f. sp. betae is not monophyletic.  相似文献   

5.
为明确引起甘肃省兰州百合主产区百合枯萎病的致病镰孢菌种类,对从百合主产区枯萎病罹病植株上分离纯化的4株镰孢菌株进行形态学鉴定、分子生物学鉴定以及致病性测定,同时利用电子显微镜对尖孢镰孢菌Fusarium oxysporum侵入百合鳞片后的细胞超微结构进行观察。结果表明:4株镰孢菌菌株经鉴定分别为尖孢镰孢菌、茄病镰孢菌F. solani、三线镰孢菌F. tricinctum和燕麦镰孢菌F. avenaceum。4株镰孢菌菌株的致病力由强到弱的顺序依次是尖孢镰孢菌、燕麦镰孢菌、茄病镰孢菌、三线镰孢菌;尖孢镰孢菌侵入后,鳞片细胞壁、细胞质膜和细胞核结构被破坏,细胞核附近出现大量线粒体,细胞中淀粉粒数量减少。表明尖孢镰孢菌是兰州百合枯萎病防治的重点防控对象。  相似文献   

6.
In recent years in Finland, Fusarium infections in onions have increased, both in the field and in storage, and Fusarium species have taken the place of Botrytis as the worst pathogens causing post‐harvest rot of onion. To study Fusarium occurrence, samples were taken from onion sets, harvested onions and also from other plants grown in the onion fields. Isolates of five Fusarium species found in the survey were tested for pathogenicity on onion. Fusarium oxysporum was frequently found in onions and other plants, and, of the isolates tested, 31% caused disease symptoms and 15% caused growth stunting in onion seedlings. Fusarium proliferatum, a species previously not reported in Finland, was also identified. Over 50% of the diseased onion crop samples were infected with F. proliferatum, and all the F. proliferatum isolates tested were pathogenic to onion. Thus, compared to F. oxysporum, F. proliferatum seems to be more aggressive on onion. Also some of the F. redolens isolates were highly virulent, killing onion seedlings. Comparison of the translation elongation factor 1α gene sequences revealed that the majority of the aggressive isolates of F. oxysporum f. sp. cepae group together and are distinct from the other isolates. Incidence and relative proportions of the different Fusarium species differed between the sets and the mature bulbs. More research is required to determine to what extent Fusarium infections spoiling onions originate from infected onion sets rather than the field soil.  相似文献   

7.
Three conifer species (European larch, Norway spruce, Scots pine) were investigated for their resistance to five damping-off pathogens (Rhizoctonia solani, Fusarium solani, F. oxysporum, F. culmorum, F. avenaceum). Inoculation of the primary roots of seedlings with these pathogens caused host cell death which did not prevent the invasive growth of these fungi; seedlings that had formed secondary and tertiary roots could overcome the infection to a significant degree. Infections with R. solani caused significant mortality to all the conifer species. In contrast, the tree species expressed different levels of resistance when challenged with the Fusarium isolates, with Norway spruce being the most resistant compared to uninoculated controls. Some of the Fusarium isolates were more pathogenic to certain hosts than others; F. oxysporum for European larch, F. avenaceum for Scots pine, F. solani for European larch; only F. culmorum was significantly pathogenic to Norway spruce. No significant differences in disease severity were observed at different soil pH (4.3–7.5). Disease progression was delayed at lower (10–15°C) rather than higher temperatures (20–25°C).  相似文献   

8.
The diversity of Fusarium populations in asparagus (Asparagus officinalis L.) decline fields in Japan was estimated by PCR-SSCP (single-stranded conformational polymorphism) analysis of the ITS2 regions of the nuclear rRNA genes. This method was used to rapidly and objectively identify pathogens associated with roots of plants showing symptoms of asparagus decline collected from fields in five regions across Japan. Over 651 fusarial isolates were obtained, and were easily differentiated into three principal species. Fusarium oxysporum f. sp. asparagi was most frequently isolated from the domestic five regions (68%), whereas Fusarium proliferatum (28.6%) was less frequent. Fusarium solani was found much rarely (2.5%). The frequency of isolation of Fusarium proliferatum increased gradually from the north to the south of Japan, though considerable differences were found between fields in each region, as well as regional differences among the Fusarium populations. Most of the fusarial isolates were highly pathogenic in vitro. These results reveal that Fusarium oxysporum f. sp. asparagi and Fusarium proliferatum are important biotic factors which lead to asparagus decline in Japan.  相似文献   

9.
浙江省铁皮石斛根腐病病原真菌的鉴定   总被引:3,自引:0,他引:3  
为明确铁皮石斛根腐病病原真菌,于其主产地浙江省金华市武义县收集铁皮石斛根腐病病株,采用平板分离方法对病原真菌进行分离,使用镰刀菌种特异性引物并结合ITS和TEF序列分析及形态学鉴定确定该镰刀菌的分类地位。结果表明,共分离纯获得真菌117株,其中有105株镰刀菌;经分子生物学分析及形态学鉴定结果显示,分离出的镰刀菌为层出镰刀菌Fusarium prolife‐mum、茄病镰刀菌F. solani、尖孢镰刀菌F. oxysporum和厚垣镰刀菌F. chlamydosporum四个种,其中层出镰刀菌在数量上具有优势地位,占总镰刀菌数的44.8%;茄病镰刀菌、尖孢镰刀菌、厚垣镰刀菌分别占总镰刀菌数的21.0%、15.2%和19.0%。在致病性测定中发现层出镰刀菌和茄病镰刀菌并不具备致病性,尖孢镰刀菌的致病性明显弱于厚垣镰刀菌,表明厚垣镰刀菌为浙江省金华市武义县铁皮石斛根腐病的主要致病菌。  相似文献   

10.
Fusarium diseases of Liliaceae crops cause significant losses worldwide. Yet some Fusarium species are found in planta without causing disease or even in a symbiotic relationship with its host. In this study we identified and characterized the Fusarium species isolated from soil, and from healthy and diseased bulbs of Lilium longiflorum grown in New Jersey and Oregon in the United States. The predominant Fusarium species from the Oregon location were F. solani (74%) and F. oxysporum (20%), whereas F. concentricum (43%) and F. proliferatum (26%), both belonging to the Gibberella fujikuroi species complex (GFSC), were the most commonly isolated species from New Jersey. To our knowledge, this is the first report of F. concentricum associated with Liliaceae. All of the isolates were characterized with sequences of the internal transcribed spacer and translation elongation factor 1-alpha genes. The 24 GFSC isolates were further characterized with mating type, mating population, and mycotoxin analysis. Results showed that all GFSC isolates were MAT-2, suggesting that the populations may be asexually reproducing in the region examined. The majority of the GFSC isolates produced beauvericin. Enniatin A, B, B1 and fusaproliferin were produced by a few isolates. Enniatin A1 and fumonisins were not detected in any of the isolates. Although F. oxysporum and F. solani are well-known bulb pathogens, many isolates of F. oxysporum and F. solani, and all of the F. concentricum and F. proliferatum were isolated from asymptomatic bulbs, suggesting their endophytic association with lilies.  相似文献   

11.
Identifying the Fusarium species cause Fusarium head blight (FHB) and produces mycotoxins in wheat and other cereal is difficult and time consuming because of confusing phenotypic classification systems. In Japan, the F. graminearum complex, F. culmorum, F. avenaceum, and Microdochium nivale predominantly cause FHB. The internal transcribed spacer (ITS) and 5.8S of rDNA, a partial sequence of β-tubulin and mitochondrial cytochrome b (cytb) genes of the four species were PCR-amplified and analyzed. On the basis of the ITS, β-tubulin and cytb sequences, F. avenaceum and M. nivale are distinct from the F. graminearum complex and F. culmorum, whereas the F. graminearum complex is closely related to F. culmorum. Moreover, thiophanate–methyl-resistant isolates of the F. graminearum complex and F. culmorum did not have an amino acid substitution at amino acid codon 198 or 200 of β-tubulin. In contrast, very highly or highly thiophanate–methyl-resistant isolates of M. nivale had Glu (GAG) substituted with Ala (GCG) or Lys (AAG) at codon 198, respectively. The allele-specific PCR assay was used to identify the F. graminearum complex and F. culmorum, and these Fusarium species could be distinguished rapidly.  相似文献   

12.
Yellowing disease is one of the most important diseases of black pepper (Piper nigrum L.). To characterize the pathogen(s) responsible for yellowing disease of black pepper in Malaysia, 53 isolates of Fusarium were collected from the roots of diseased black pepper plants and from rhizosphere soils from major growing areas in Sarawak and Johor. A total of 34 isolates of F. solani and 19 isolates of F. proliferatum were obtained and identified based on morphological characteristics and molecular techniques. DNA sequencing of the internal transcribed spacers (ITS1 and ITS2) and 5.8S ribosomal DNA regions was conducted to identify Fusarium species. Nucleotide sequence analysis of the ITS regions revealed that this molecular technique enabled identification of Fusarium at the species level as F. solani and F. proliferatum. In a pathogenicity test on 3-month-old black pepper plants, F. solani was pathogenic, but F. proliferatum was not. On the basis of morphology, DNA sequences and pathogenicity of the fungal isolates from the diseased plants, we showed that yellowing disease on black pepper is caused by F. solani  相似文献   

13.
Twenty-seven seed samples belonging to the lettuce cultivars most frequently grown in Lombardy (northwestern Italy), in an area severely affected by Fusarium wilt of lettuce, were assayed for the presence ofFusarium oxysporum on a Fusarium-selective medium. Isolations were carried out on subsamples of seeds (500 to 1500) belonging to the same seed lots used for sowing, and either unwashed or disinfected in 1% sodium hypochloride. The pathogenicity of the isolates ofF. oxysporum obtained was tested in four trials carried out on lettuce cultivars of the butterhead type, very susceptible to Fusarium wilt. Nine of the 27 samples of seeds obtained from commercial seed lots used for sowing in fields affected by Fusarium wilt were contaminated byF. oxysporum. Among the 16 isolates ofF. oxysporum obtained, only one was isolated from disinfected seeds. Three of the isolates were pathogenic on the tested cultivars of lettuce, exhibiting a level of pathogenicity similar to that of the isolates ofF. oxysporum f.sp.lactucae obtained from infected wilted plants in Italy, USA and Taiwan, used as comparison. The results obtained indicate that lettuce seeds are a potential source of inoculum for Fusarium wilt of lettuce. The possibility of isolatingF. oxysporum f.sp.lactucae, although from a low percent of seeds, supports the hypothesis that the rapid spread of Fusarium wilt of lettuce observed recently in Italy is due to the use of infected propagation material. Measures for prevention and control of the disease are discussed. http://www.phytoparasitica.org posting Dec. 16, 2003.  相似文献   

14.
Root and stem rot (RSR) is a very detrimental disease of vanilla worldwide. Fusarium oxysporum is frequently associated with the disease but other Fusarium species are also reported. In this international study, 52 vanilla plots were surveyed in three of the most important vanilla producing countries (Madagascar, Reunion Island and French Polynesia) in order to determine the aetiology of RSR disease. Subsets from the 377 single‐spored Fusarium isolates recovered from rotten roots and stems in the surveys were characterized by molecular genotyping (EF1α and IGS gene sequences) and pathogenicity assays on Vanilla planifolia and V. ×tahitensis, the two commercially grown vanilla species. Fusarium oxysporum was shown to be the principal species responsible for the disease, representing 79% of the isolates recovered from the RSR tissues, 40% of which induced severe symptoms on inoculated plantlets. Fusarium oxysporum isolates were highly polyphyletic regardless of geographic origin or pathogenicity. Fusarium solani, found in 15% of the samples and inducing only mild symptoms on plantlets, was considered a secondary pathogen of vanilla. Three additional Fusarium species were occasionally isolated in the study (F. proliferatum, F. concentricum and F. mangiferae) but were nonpathogenic. Histopathological preparations observed in wide field and multiphoton microscopy showed that F. oxysporum penetrated the root hair region of roots, then invaded the cortical cells where it induced necrosis in both V. planifolia and V. ×tahitensis. The hyphae never invaded the root vascular system up to 9 days post‐inoculation. As a whole, the data demonstrated that RSR of vanilla is present worldwide and that its causal agent should be named F. oxysporum f. sp. radicis‐vanillae.  相似文献   

15.
Fusarium is one of the most destructive fungal genera whose members cause many diseases on plants, animals, and humans. Moreover, many Fusarium species secrete mycotoxins (e.g. trichothecenes and fumonisins) that are toxic to humans and animals. Fusarium isolates from date palm trees showing disease symptoms, e.g. chlorosis, necrosis and whitening, were collected from seven regions across Saudi Arabia. After single-sporing, the fungal strains were morphologically characterized. To confirm the identity of morphologically characterized Fusarium strains, three nuclear loci, two partial genes of translation elongation factor 1 α (tef1α) and β-tubulin (tub2), and the rDNA-ITS region, were amplified and sequenced. Of the 70 Fusarium strains, 70 % were identified as F. proliferatum that were recovered from six regions across Saudi Arabia. Fusarium solani (13 %), as well as one strain each of the following species: F. brachygibbosum, F. oxysporum, and F. verticillioides were also recovered. In addition, five Fusarium-like strains were recognized as Sarocladium kiliense by DNA-based data. The preliminary in vitro pathogenicity results showed that F. proliferatum had the highest colonization abilities on date palm leaflets, followed by F. solani. Although F. oxysporum f. sp. albedinis is the most serious date palm pathogen, F. proliferatum and F. solani are becoming serious pathogens and efforts should be made to restrict and control them. In addition, the potential toxin risks of strains belonging to F. proliferatum should be evaluated.  相似文献   

16.
Selective media without pentachloronitrobenzene were developed for quantitative assays of Fusarium oxysporum in soils. Media Fo-G1 and Fo-G2 were effective for naturally infested soils, Fo-W1 and Fo-W2 for wild-type isolates in soils containing a nitrate-nonutilizing (nit) mutant, and Fo-N1 and Fo-N2 for nit mutants. Selective media were made using ammonium citrate dibasic, l-sorbose, econazole nitrate, 25% iminoctadine triacetate solution and 50% tolclofos-methyl wettable powder for soil dilutions of 100-fold or more (Fo-G1, FoW1 and Fo-N1) and 10-fold (Fo-G2, Fo-W2 and Fo-N2). Potassium chlorate was added to Fo-N1 and Fo-N2. The efficacy for selectively isolating F. oxysporum was confirmed using six soils naturally infested with one of six formae speciales of F. oxysporum and with soil dilutions containing conidia of wild-type strains or nit mutants from the six formae speciales. On Fo-G1 and Fo-G2, most colonies of F. oxysporum were compact and round with purplish or reddish pigment in the reverse. Cylindrocarpon sp. formed colonies as large as those of F. oxysporum but were distinguishable by their colony morphology. Other contaminants such as F. solani, F. moniliforme, and Trichoderma were suppressed by medium ingredients and colonies of F. oxysporum. On Fo-W1 and Fo-W2, colony morphology of F. oxysporum and contaminants corresponded to that on Fo-G1 and Fo-G2, although F. oxysporum failed to produce the pigment. On Fo-N1 and Fo-N2, nit mutants formed clear colonies from 100- and 10-fold soil dilutions, respectively, and contaminants seldom formed large colonies.  相似文献   

17.
Different sets of wheat genotypes were tested under field conditions by spraying inocula of isolates of seven Fusarium spp. and Microdochium nivale (formerly F. nivale) in the period 1998–2002. The severity of Fusarium head blight (FHB), Fusarium-damaged kernels (FDK), the yield reduction and the deoxynivalenol (DON) contamination were also measured to describe the nature of the resistance. The degrees of FHB severity of genotypes to F. graminearum, F. culmorum, F. avenaceum, F. sporotrichioides, F. poae, F.␣verticillioides, F. sambucinum and M. nivale were very similar, indicating that the resistance to F.␣graminearum was similar to that for other Fusarium spp. listed. This is an important message to breeders as the resistance relates not only to any particular isolate of F. graminearum, but similarly to isolates of other Fusarium spp. This holds true for all the parameters measured. The DON contamination refers only to DON-producers F. graminearum and F. culmorum. Highly significant correlations were found between FHB, FDK, yield loss and DON contamination. Resistance components such as resistance to kernel infection, resistance to DON and tolerance were identified in the more susceptible genotypes. As compared with western European genotypes which produced up to 700 mg kg−1 DON, the Hungarian genotypes produced only 100 mg kg−1 at a similar FDK level. This research demonstrates the importance of measuring both FDK and DON in the breeding and selection of resistant germplasm and cultivars.  相似文献   

18.
Fusarium proliferatum can occur on a wide range of economically important vegetable plants but its role in disease is not always well established. In 2000 and 2001, from forty-one field samples of wilting onion and garlic plants in Serbia, F. proliferatum as the predominant fungal species was isolated from root and bulbs. Seventy isolates were firstly characterized for their sexual fertility and were shown to be mostly members of Gibberella intermedia (sixty-seven of seventy isolates, the remaining three isolates were unfertile), the sexual stage of F. proliferatum (syn. mating population D of G. fujikuroi complex). A selected set of eleven F. proliferatum isolates from both hosts were also tested for their pathogenicity and toxigenicity. Although onion and garlic plants were susceptible to all isolates, onion plants showed a significantly higher disease severity index. Six of the eleven isolates of F. proliferatum produced fumonisin B1 from 25 to 3000 μg g−1, and beauvericin from 400 to 550 μg g−1; ten isolates produced fusaric acid from 80 to 950 μg g−1 and moniliformin from 50 to 520 μg g−1. Finally, all isolates produced fusaproliferin up to 400 μg g−1. These results confirm F. proliferatum as an important pathogen of garlic and onion in Europe and that there is a potential mycotoxin accumulation risk in contaminated plants of both garlic and onion.  相似文献   

19.
为开发可用于拟轮枝镰孢菌Fusarium verticillioides及其近缘种遗传多样性分析的SSR引物,利用生物信息学方法和PCR技术,通过对从NCBI下载的87 086条拟轮枝镰孢菌的EST序列信息进行分析,设计EST-SSR引物,检测其在拟轮枝镰孢菌及其近缘种中的扩增情况,并用筛选出的多态性引物对15株拟轮枝镰孢菌进行SSR遗传多样性分析。结果表明,在EST序列中,共查找到11 952个SSR位点,592种重复基元,SSR出现频率为1.09%,重复基元出现数量最多的为三核苷酸(54.00%),其中(CAA/TTG)n基元出现频率最高。设计的25对EST-SSR引物在拟轮枝镰孢菌种内的有效扩增率和多态率分别为80.00%与32.00%,对5种近缘镰孢菌种的通用率和多态率分别为40.00%和8.00%。遗传多样性分析结果表明,在相似系数为0.664水平下,供试菌株可划分为4个SSR类群,但类群的划分与菌株的地理来源无关;不同菌株间存在明显的遗传分化。表明基于拟轮枝镰孢菌EST序列开发的SSR引物可用于拟轮枝镰孢菌及其近缘种的遗传多样性分析。  相似文献   

20.
The pathogen Fusarium oxysporum f. sp. cepae inducing the Fusarium basal rot mainly spreads in warmer cultivation regions due to its adaptibility to high temperature. Meanwhile the pathogen occurs in Germany as well, especially in years with relatively high average temperature during the growing season. Phytopathological investigations of 300 symptomless onion bulbs showed a contamination rate of approximately 10% with regard to Fusarium spp, with F.?oxysporum proving to be the predominant species. Onion sets planted in these fields were latently infected with F.?oxysporum at rates of 19?C98%. Unexpectedly, the contaminated sets did not indispensably lead to a high occurrence of plants exhibiting characteristic symptoms of Fusarium basal rot such as wet and dry rot. Presumably, the development of symptoms is particularly affected by given climatic conditions. The results of pathogenicity tests of isolated Fusarium spp. isolates under controlled conditions support this assumption. The inoculation of the substrate with selected Fusarium spp. isolates resulted in a reduction of emergence by up to 70% under controlled conditions, which are suboptimal with regard to the cultivation of onions. The emergence of plants was not affected by Fusarium spp. under optimal cultivation of onions. However, under optimal cultivation conditions a reduction of plant growth occurred in a subsequent growth stage. Beside F.?oxysporum, F.?proliferatum could be detected in onion bulbs as well as seeds. The proportion of contaminated seeds accounted to 62%. Both species F.?oxysporum and F.?proliferatum proved to be pathogenic in onion although their isolates varied much in their virulence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号