首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 157 毫秒
1.
2.
3.
4.
5.
6.
Tree lines form a transition ecotone from forest to tundra both at high elevation and high latitude and occur in a number of different forms. Nitrogen (N) deficiency is considered to be a factor involved in tree line formation, and also N dynamics are considered to differ between the trees and the ericaceous vegetation of the tundra. In the Austrian Alps at the tree line, N availability and N mineralization in soils of different vegetation types (Picea abies, Pinus mugo and Rhododendron ferrugineum) as well as total phenols were determined. Soil from under P. abies was taken from two different tree line forms, an island type and a diffuse type, as well as from P. abies growing at a lower elevation. N mineralization was measured in situ using a covered PVC tube incubation method and in a laboratory incubation under controlled conditions. Ion exchange resin capsules were installed at the interface of humus and mineral soil for estimating N in the soil solution. Net N mineralization showed a similar pattern for the vegetation types for both the in situ and laboratory incubation. The soil humus layer had the highest levels of N mineralization compared to the other soil layers. N mineralization rates were similar in P. abies and P. mugo at the tree line regardless of tree line form. Rates of N mineralization were lower under R. ferrugineum than the tree species, but this lower rate was not related to the occurrence of high levels of total phenols in the soil. Nitrogen deficiency was not evident in the island-type tree line, but was evident in the diffuse tree line type.  相似文献   

7.
8.
Measurements of gross NH 4 + and NO 3 ? production in forest soils were conducted using the 15N pool dilution method. Mineral topsoils (0?C10?cm depth) were collected from four forests from northern to southern Japan with a natural climate gradient to elucidate the mechanisms regulating gross nitrification rates in forest soils. Additionally, we attempted to evaluate the relative importance of heterotrophic nitrification in gross total nitrification using acetylene as a specific inhibitor of autotrophic nitrification. Distinct differences were found among sites in the gross rates of NH 4 + production (3.1?C11.4?mg?N?kg?1?day?1) and gross total nitrification (0.0?C6.1?mg?N?kg?1?day?1). The rates of gross heterotrophic nitrification were low in this study, indicating that heterotrophic nitrification is of minor importance in most forest mineral topsoils in Japan. Significant relations were found between gross autotrophic nitrification and gross NH 4 + production, soil N, and soil C concentrations, but none was found between gross autotrophic nitrification and soil pH. We determined the critical value of the gross NH 4 + production rates for gross autotrophic nitrification under which no gross autotrophic nitrification occurred, as well as the critical soil C/N ratio above which gross autotrophic nitrification ceased. Results show that tight coupling of production and consumption of NH 4 + prevents autotrophic nitrifiers from utilizing NH 4 + as long as NH 4 + availability is low.  相似文献   

9.
10.
Soil N transformation was investigated using15N dilution method along a slope on a conifer plantation forest. Although there was no significant difference in the net N mineralization rates by laboratory incubation, net nitrification rates increased downslope. Gross N transformation by15N dilution method showed a distinct difference not only on the rates, but also on the main process between the lower and the upper of the slope. Half of minelarized N was immobilized and the other half was left in NH 4 + pool at the upper part of the slope, while all of mineralized N was used for immobilization or nitrification and NH 4 + pool decreased at the lower of the slope. Soil N transformations were classified into two groups: one was shown below 773 m and the other was shown above 782 m. The incubation with nitrification inhibitor showed that nitrification was mainly conducted by autotrophs irrespective of the position of the slope. Microbial biomass and microbial C/N were similar among the sites. However, the gross mineralization rate was higher below 773 m than above 782 m under similar respiration rates. This suggests that the substrate quality may be one of the controlling factors for soil N transformation. Extractable organic C/N was similar to microbial C/N at the lower of the slope. It indicated that the substrate was more decomposable below 773 m. It is considered that soil N transformation is affected by topographical gradient of moisture and nutrient which makes plant growth and decomposition rate different.  相似文献   

11.
Acacia melanoxylon, a N2-fixing timber tree occurring naturally in eastern Australia, is now promoted as a component of silvopastoral systems; but the interaction of the tree with pasture and soils has not been adequately studied. This study investigated the effects of Acacia melanoxylon on soil nitrogen (N) levels, N availability, soil pH, bulk density, organic carbon, C:N ratios and soil moisture in three separate silvopastoral sites with contrasting soil types in the North Island of New Zealand. At each site four tree stocking rates were studied (0, 500, 800, and 1700 stems ha–1). The trees were nine years old at the time of the study. Soil samples from each study site were taken once at three depths (0 to 75 mm, 75 to 150 mm, and 150 to 300 mm), with three replicates per tree stocking rate. Soil analyses showed that although there were differences between soil types, few statistically significant differences occurred due to tree stocking rate. A greenhouse pot trial growing ryegrass (Lolium multiflorum L. cv. Concord) in soil from the A horizon of each soil type from under the trees and the open pasture found that ryegrass yield, N uptake and N supply increased with increasing tree stocking rate. Increased N supply under the trees, coupled with greater soil moisture compared to the open pasture may have accounted for the higher pasture yield under Acacia melanoxylon compared to non dinitrogen fixing tree species. This study suggested that Acacia melanoxylon in a silvopastoral system had the potential to increase soil N availability.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

12.
We compared different potential indicators of nitrogen (N) availability across 50 beech forests growing on a wide range of soils in northeastern France. Among the 50 sites measured, high elevation acidic soils had the highest potential net N mineralization in the A horizon (PNM0–5 cm), while low elevation neutral and calcareous soils had the lowest (PNM0–5 cm). We found that (PNM0–5 cm) was negatively correlated with soil pH (R2 = 0.47***) and positively correlated with microbial C/N (R2 = 0.34***). However, when high elevation sites were excluded from analyses, the relationship between PNM0–5 cm and soil pH as well as microbial C/N became weaker (R2 = 0.23*** for both variables). We found no relationship between PNM0–5 cm and organic N concentration, soil C/N, or vegetation-based indices for N availability (Ellenberg N and Ecoplant C/N). Bivariate linear regression analyses showed that 69% of the variability in percent nitrification (%Nitrif) was explained by both soil pH (0–5 cm) and soil C/N. Percent nitrification was strongly correlated with vegetation-based indices for N availability. The Ellenberg N and R (pH index) values together explained 74% of the variation in %Nitrif. No relationship was found between %Nitrif and soil δ15N (natural abundance in 15N). Of the 76 plant species evaluated, the probability of presence of 61 plant species was significantly correlated with %Nitrif while the probability of presence of 27 plant species only was correlated with PNM0–5 cm. From these results, we believe that the use of plant community composition or the combination of soil pH and C/N are robust indicators of N availability.  相似文献   

13.
At present, our understanding of the dynamics of microbial biomass and soil N in silvopastoral systems is very limited. In this paper, the effects of understorey management on soil microbial C and N, net N mineralization, and net nitrification were studied in two seven-year-old radiata pine (Pinus radiata D. Don) – pasture systems, consisting of plots with and without ryegrass (Lolium perenne) as an understorey. Mini-plots (1 × 1 m) with animals excluded and herbage repeatedly clipped and removed were used for soil sampling. Three mini-plots formed a transect at each of two positions: 0.9 and 3.5 m north of the tree rows. Measurements were taken from July 1997 to June 1998 about once every 40 days. One composite sample was collected from each of two sampling depths (0–10 and 10–20 cm) at each transect position on each sampling date. Temporal and spatial variability of N mineralization rates and microbial biomass C and N was large. Net mineralization and nitrification rates were higher in the bare ground than in the ryegrass plots for a major part of the year, particularly from late spring to early fall. Net N mineralization and nitrification rates were higher in the 0–10 than in the 10–20 cm soil layers in both the ryegrass and bare ground treatments; however, the depth effect on microbial biomass C and N was only significant in the ryegrass treatment. In the surface soil layer, microbial biomass C and N were substantially greater in the ryegrass than in the bare ground plots. Soil microbial properties and activities were closely linked to pasture root activities, soil depth, and site biophysical conditions. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
Soil temperature is one of the most important factors governing biological activity in the soil. This study was conducted to investigate how forest clear-cutting changes soil temperature. Soil temperatures at 0.5, 1.0, 2.0, and 3.0m depths were measured in two neighboring forest watersheds (35°12N, 140°06E) in Chiba Prefecture, Japan, from 1994 to 2000. One watershed was clear-cut 5 years after the observations began. After clear-cutting, the annual mean soil temperature at 0.5, 1.0, 2.0, and 3.0m depths rose by about 2.2, 2.0, 1.7, and 1.4°C, respectively. The maximum respective soil temperatures rose by about 3.2, 3.0, 2.2, and 1.8°C. The minimum soil temperature rose slightly (1°C). The range of temperatures increased by 3.0, 2.4, 1.6, and 1.4°C, respectively. In our study, forest clear-cutting raised maximum and average soil temperatures but hardly changed minimum soil temperature. This is probably because solar radiation dominated in the summer season and increased soil temperature; on the other hand, net long-wave radiation, and releases of latent and sensible heat from the soil surface, were predominant in the cool season.  相似文献   

15.
The Southeastern United States has a robust broiler industry that generates substantial quantities of poultry litter as waste. It has historically been applied to pastures close to poultry production facilities, but pollution of watersheds with litter-derived phosphorus and to a lesser extent nitrogen have led to voluntary and in some areas regulatory restrictions on application rates to pastures. Loblolly pine (Pinus taeda L.) forests are often located in close proximity to broiler production facilities, and these forests often benefit from improved nutrition. Accordingly, loblolly pine forests may serve as alternative land for litter application. However, information on the influence of repeated litter applications on loblolly pine forest N and P dynamics is lacking. Results from three individual ongoing studies were summarized to understand the effects of repeated litter applications, litter application rates, and land use types (loblolly pine forest and pasture) on N and P dynamics in soil and soil water. Each individual study was established at one of three locations in the Western Gulf Coastal Plain region. Annual applications of poultry litter increased soil test P accumulation of surface soils in all three studies, and the magnitude of increase was positively and linearly correlated with application rates and frequencies. In one study that was established at a site with relatively high soil test P concentrations prior to poultry litter application, five annual litter applications of 5 Mg ha−1 and 20 Mg ha−1 also increased soil test P accumulation in subsurface soils to a depth of up to 45 cm. Soil test P accumulations were greater in surface soils of loblolly pine stands than in pastures when both land use types received similar rates of litter application. In one study which monitored N dynamics, lower soil organic N, potential net N mineralization, potential net nitrification, and soil water N was found in loblolly pine stands than pastures after two annual litter applications. However, increases in potential net N mineralization, net nitrification, and soil water N with litter application were more pronounced in loblolly pine than in pasture soils. Loblolly pine plantations can be a viable land use alternative to pastures for poultry litter application, but litter application rate and frequency as well as differences in nutrient cycling dynamics between pine plantations and pastures are important considerations for environmentally sound nutrient management decisions.  相似文献   

16.
To investigate the effect of tree species on soil N dynamics in temperate forest ecosystems, total N (Nt), microbial N (Nmic), net N mineralization, net nitrification, and other soil chemical properties were comparatively examined in beech (64–68 years old) and Norway spruce (53–55 years old) on sites 1 and 2, and beech and Scots pine (45 years old) on site 3. The initial soil conditions of the two corresponding stands at each site were similar; soil types were dystric Planosol (site 1), stagnic Gleysols (site 2), and Podzols (site 3). In organic layers (LOf1, Of2, Oh), Nmic and Nmic/Nt, averaged over three sampling times (Aug., Nov., Apr.), were higher under the beech stands than under the corresponding coniferous ones. However, the Nmic in the organic layers under beech had a greater temporal variation. Incubation (10 weeks, 22 °C, samples from November) results showed that the net N mineralization rates in organic layers were relatively high with values of 8.1 to 24.8 mg N kg–1 d–1. Between the two corresponding stands, the differences in net N mineralization rates in most of the organic layers were very small. In contrast, initial net nitrification rates (0.2–17.1 mg N kg–1 day–1) were considerably lower in most of the organic layers under the conifer than under the beech. In the mineral soil (0–10 cm), Nmic values ranged from 4.1–72.7 mg kg–1, following a clear sequence: August>November>April. Nmic values under the beech stands were significantly higher than those under the corresponding coniferous stands for samples from August and April, but not from November. The net N mineralization rates were very low in all the mineral soils studied (0.05–0.33 mg N kg–1 day–1), and no significant difference appeared between the two contrasting tree species.  相似文献   

17.
Effects of enhanced nitrogen deposition on nutrient foliar concentrations and net photosynthesis of sugar maple (Acer saccharum Marsh.), American beech (Fagus grandifolia Ehrh) and red spruce (Picea rubens Sarg.) were evaluated at the Bear Brook Watershed in Maine (BBWM). The BBWM is a paired-watershed forest ecosystem study with one watershed treated since 1989 with bimonthly dry ammonium sulfate ((NH4)2SO4) additions at a rate of 25.2 kg N ha−1 year−1, while the other watershed serves as a reference. The (NH4)2SO4 treatment resulted in significant increases in foliar N concentrations for all three species and significant reductions in foliar Ca, Mg and Zn concentrations for American beech and red spruce. Treatment effects on foliar concentrations of other nutrients were not significant in any species. Despite higher N concentrations in all species, only treated sugar maple showed significantly higher photosynthetic rates. The non-response in net photosynthesis to higher foliar N in American beech and red spruce might be attributed to their low foliar Ca and/or Mg concentrations. Higher net photosynthetic rates in sugar maple might be explained by the higher foliar N and by the ability of this species to maintain an adequate Ca and Mg supply. Results suggested that nutrient imbalances due to inadequate supply of Ca and Mg might have counteracted a potential increase in net photosynthesis induced by higher N concentrations in American beech and red spruce.  相似文献   

18.
Tree occurrence in silvopastoral systems of Central America has been under pressure for various reasons including attempts to improve grassland productivity and the need for wood. However, scattered isolated trees are also recognized to provide ecosystem services like shade, fodder and fruits that are important to cattle in the dry season. In addition, trees may enhance the climate change mitigation potential of silvopastoral systems through increased carbon (C) uptake and subsequent soil carbon sequestration. Through differences in plant traits like nutrient uptake, canopy structure and litter quality, tree species may have an effect on C and nutrient cycling. Due to a prevailing north-easterly wind in the study area, three distinct areas associated with the impact of tree litter deposition were identified: (1) open pasture—no tree litter deposition; (2) tree canopy—above and belowground tree litter; and (3) leaf litter cone—aboveground tree litter deposition. Furthermore, the effect of tree species, Guazuma ulmifolia and Crescentia alata, were considered. The presence of trees, as compared to pasture, caused larger topsoil C, N and P contents. In the subsoil, C content was also larger due to tree presence. Soil fractionation showed that tree-induced larger litter input subsequently increased free and occluded OM fractions and ultimately increased stabilized SOM fractions. Therefore, trees were found to enhance soil C sequestration in these silvopastoral systems. This is also supported by the soil respiration data. Although the respiration rates in the pasture subplots were lower than in the leaf litter subplots, the difference was not significant, which suggests that part of the extra C input to the leaf litter subplots stayed in the soil. Nutrient cycling was also enhanced by tree presence, but with a clear differentiation between species. C. alata (Jícaro) enhanced available and stabilized forms of organic N, while G. ulmifolia (Guácimo) enhanced available soil P and stabilized organic P.  相似文献   

19.
20.
Changes in soil N mineralization pathways occurring along a full rotation cycle have received little attention to date, while tree uptake for N may change during forest ageing. The aims of this study were (i) to characterize changes in potential net N mineralization and potential net nitrification within organic layers and the topsoil (organo-mineral horizon) along a 100-year chronosequence for a temperate oak–hornbeam forest and (ii) to reveal covariances between potential net N mineralization pathways and the properties of the humic epipedon (defined as the sum of organic layers and topsoil). For that purpose, a space-for-time substitution procedure and aerobic laboratory incubation method for 28 days at 28 °C in the dark were used. In addition, acetylene and captan were used to discriminate between autotrophic and heterotrophic (bacterial and/or fungal) nitrification. Several humic epipedon properties were determined, e.g. pH, exchangeable cation concentrations, effective cation exchange capacity, total C and N, dissolved organic C and N, fungal and microbial biomass N. Potential net N mineralization and nitrification pathways changed greatly along the mixed forest chronosequence. Potential net N mineralization in the organic layers increased with stand maturation whereas potential net nitrification in the topsoil decreased significantly. Selective inhibitors revealed changes in nitrification pathways along the chronosequence, i.e. potential net nitrification was autotrophic in the topsoil while it was mainly heterotrophic within the organic layers. In the organic layer, potential net nitrification was autotrophic at the onset of the chronosequence while it appeared heterotrophic during the aggradation phase and finally fungal in mature stands. A Co-Inertia Analysis was used to reveal covariances between N mineralization pathways and humic epipedon properties. The analysis showed two functional temporal shifts within N cycling along the chronosequence, one probably controlled by organic matter quality and high competition for available N resulting in the autotrophic versus heterotrophic nitrification shift in the organic layers and one mainly controlled by (i) fine organic matter abundance, allowing high N mineralization in the organic layers and (ii) acidity inhibited autotrophic nitrification in the topsoil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号