首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 486 毫秒
1.
Uncertainty in recovery times of tropical forests can lead to mismanagement, such as in setting inappropriate harvesting rates or failing to achieving conservation targets. We use long-term plot data (17 y) to estimate recovery times of separate forest compartments, which experienced different levels of timber extraction within Kibale National Park, Uganda. We estimate that structural recovery (basal area) of heavily logged and moderately logged compartments will take respectively 112 and 95 y, when compared to adjacent mature forest. Our data suggests that recovery in terms of species composition will take significantly longer. Our estimates of structural recovery are derived from rates of change of diameter at breast height and basal area measurements which have been used traditionally as indicators of forest growth and productivity. Our results suggest that the severity of the logging has an impact on the rate of recovery, with current recovery rates estimated at 0.32 m2 ha−1 y−1 in a moderately logged compartment and 0.25 m2 ha−1 y−1 in heavily logged areas, highlighting the possible benefits of reduced impact harvesting in increasing long-term yields. We investigate how some representatives of the wildlife community were affected by differential recovery times and find that recovery times of frugivorous primate's forest habitats were 2.5 times slower when compared with folivorous primates.  相似文献   

2.
Quantification of forest parameters in different successional stages is required because of its importance as a source of global emissions and ecosystem changes. This study focuses on a successional tropical forest under logging practices in East Kalimantan province, Indonesia. We modeled the forest attributes using both a parametric multiple linear regression analysis and neural networks approach, with Landsat ETM data acquired in 2000 (ETM00). We compiled sample plot data using forest inventory data collected from 1997 to 1998. A total of 226 plots were used to train the models and 112 plots were used for the validation. The remote sensing data (spectral values, vegetation indices, texture, etc.) coupled with digital elevation model (DEM) were experimented with and selectively used to model basal area, stem volume and above ground biomass (AGB). We investigated the possibility to estimate the forest attributes from bitemporal ETM data by calibrating radiometric properties of the ETM image from 2003 (ETM03) using the multivariate alteration detection method. The Pearson correlations showed that the mean texture index is strongly correlated with the forest attributes. We show that neural networks resulted in a higher coefficient of determination (r2) and lower RMSE than multiple regressions for predicting the forest attributes. The estimated forest properties increased with the forest succession advancement (i.e. from the open forest to advanced secondary forest classes). The modeled basal area, stem volume and AGB varied from 10.7–15.1 m2 ha−1, 123.2–181.9 m3 ha−1, and 132.7–185.3 Mg ha−1, respectively. The RMSEr values of model fitting ranged from 11.2% to 13.3%, and the test dataset estimated slightly higher RMSEr which varied from 12% to 14.1%. The ETM03 forest attributes revealed favorable estimates, showing considerably higher estimates than the ETM00. The estimation of forest properties using neural networks makes Landsat data a valuable source of information for forest management, mainly with the recent free access to its historical dataset.  相似文献   

3.
The increasing commercial interest and advancing exploitation of new remote territories of the boreal forest require deeper knowledge of the productivity of these ecosystems. Canadian boreal forests are commonly assumed to be evenly aged, but recent studies show that frequent small-scale disturbances can lead to uneven-aged class distributions. However, how age distribution affects tree growth and stand productivity at high latitudes remains an unanswered question. Dynamics of tree growth in even- and uneven-aged stands at the limit of the closed black spruce (Picea mariana) forest in Quebec (Canada) were assessed on 18 plots with ages ranging from 77 to 340 years. Height, diameter and age of all trees were measured. Stem analysis was performed on the 10 dominant trees of each plot by measuring tree-ring widths on discs collected each meter from the stem, and the growth dynamics in height, diameter and volume were estimated according to tree age. Although growth followed a sigmoid pattern with similar shapes and asymptotes in even- and uneven-aged stands, trees in the latter showed curves more flattened and with increases delayed in time. Growth rates in even-aged plots were at least twice those of uneven-aged plots. The vigorous growth rates occurred earlier in trees of even-aged plots with a culmination of the mean annual increment in height, diameter and volume estimated at 40–80 years, 90–110 years earlier than in uneven-aged plots. Stand volume ranged between 30 and 238 m3 ha−1 with 75% of stands showing values lower than 120 m3 ha−1 and higher volumes occurring at greater dominant heights and stand densities. Results demonstrated the different growth dynamics of black spruce in single- and multi-cohort stands and suggested the need for information on the stand structure when estimating the effective or potential growth performance for forest management of this species.  相似文献   

4.
The net primary productivity of Bruguiera parviflora dominated mangrove forest at Kuala Selangor, Malaysia was estimated from the average yearly biomass increment and litter production. The average yearly biomass increment in saplings and trees was 0.58 and 16.51 t ha−1, respectively, and the annual amount of total litter production was 10.35 t ha−1. The biomass increment in saplings and trees was not significantly different (t-test, p > 0.05) in 2 successive years and the estimated net primary productivity was 27.44 t ha−1 year−1. The ratio (2.65:1) of net primary productivity and litterfall suggests that this mangrove forest is at a juvenile stage.  相似文献   

5.
The Forest Inventory and Analysis (FIA) unit of the U.S. Forest Service has collected, compiled, and made available plot data from three measurement periods (identified as 1977, 1990, and 2003, respectively) within Minnesota. Yet little if any research has compared the relative utility of these datasets for developing empirical yield models. This paper compares these and other subdatasets in the context of fitting a basal area (B) yield model to plot data from the aspen (Populus tremuloides Michx.) forest type. In addition, several models and fitting methods are compared for their applicability and stability over time. Results suggest that the three parent datasets, along with their subdatasets, provide very similar three parameter B yield model prediction capability, but as model complexity increases, variability in coefficient estimates increases between datasets. The absence of data for older aspen stands and the inherent noise within B data prevented the exact determination of an overall best model. However, the model B = b1Sb2(1 − exp( − b3A)) with site index (S) and stand age (A) as predictors was found consistently among the highest in precision and stability. Additionally, nonlinear least squares and nonlinear mixed-effects fitting procedures produced similar model fits, but the latter is preferred for its potential to improve model projections. The results indicate little practical difference between datasets from different time periods and different sizes when used for fitting the models. Additionally, these results will likely extend to other states or regions with similar remeasurement data on aspen and other forest types, thus facilitating the development of other ecological models focused on forest management.  相似文献   

6.
We tested the hypothesis that overstorey of eucalypt forest dominated by tall, large diameter trees uses less water than regrowth stands in the high rainfall zone (>1100 mm year−1) of the northern jarrah (Eucalyptus marginata) forest in southwestern Australia. We measured leaf area, cover, sapwood area and sapwood density at three paired old and regrowth stands. We also measured sapflow velocity at one paired stand (Dwellingup) from June 2007 to October 2008. Old stands had more basal area but less foliage cover, less leaf area and slightly thinner sapwood. The ratio of sapwood area to basal area decreased markedly as tree size increased. Sapwood area of the regrowth forest stands (6.6 ± 0.30 m2 ha−1) was nearly double that of the old stands (3.4 ± 0.17 m2 ha−1), despite larger basal area at the old stands. Leaf area index of the regrowth stands (2.1 ± 0.26) was only one-third larger than that at the old stands (1.5 ± 0.15); hence, the ratio of leaf area to sapwood area was larger in old stands than in regrowth stands (0.45 ± 0.022 m2 cm−2 versus 0.32 ± 0.045 m2 cm−2). Our results are consistent with theories that trees have evolved to optimize carbon gain rather than maintain stomatal conductance. Neither sapwood density (540–650 kg m−3) nor sap velocity differed greatly between regrowth and old stands. At the old forest site, daily transpiration rose from 0.5 mm day−1 in winter to 0.9 mm day−1 in spring–summer, compared to 0.9 mm day−1 and 1.8 mm day−1 at the regrowth site. Annual water use by the overstorey trees was estimated to be ∼230 mm year−1 for the old stand and ∼500 mm year−1 at the regrowth stand, or 20% and 44% of annual rainfall. The overwhelming role of stand sapwood area in determining stand water use, combined with the marked changes in the ratio of sapwood area to basal area with tree age and size, suggest that stand overstorey structure can be managed to alter overstorey water use and catchment water yield. Silviculture to promote old-forest-like attributes may be a viable means of delivering multiple water and conservation benefits.  相似文献   

7.
During the past few decades, China has implemented several large-scale forestation programs that have increased forest cover from 16.0% in the 1980s to 20.4% in 2009. In northern China, water is the most sensitive and limiting ecological factor. Understanding the dynamic interactions between forest ecosystems and water in different regions is essential for maximizing forest ecosystem services. We examined forest cover and runoff relationships in northern China using published data from a variety of sources. In the Loess Plateau region, forest cover is not correlated with annual precipitation (r = 0.08, p > 0.05) at micro (<50 km2) and meso scales (50-1000 km2), while they are positively correlated at macro (>1000 km2) scale (r = 0.77, p < 0.05). Moreover, forest cover is negatively correlated with the runoff coefficient (r = −0.64, p < 0.05). In Northwest China, natural forest distribution is highly correlated with annual precipitation (r = 0.48, p < 0.05) but not with the runoff coefficient (r = −0.09, p > 0.05). In Northeast China, we found a positive relationship between forest cover and the runoff coefficient (r = 0.77, p < 0.05), but the correlation between forest cover and precipitation was not significant (r = 0.28, p > 0.05). The multiple stepwise regression analysis indicated that runoff was influenced by altitude, annual precipitation, forest cover, and PET (potential evapotranspiration) in Northeast China. We concluded that geographic differences could mask the true role of forests in the partitioning of rainfall into runoff and evapotranspiration (ET) in a catchment. In determining the forest-water relationship, one must consider climatic controls on ET in addition to forest cover. Forests could potentially enhance the complementary relationship between ET and PET. Therefore, a greater amount of ET in forested areas may decrease the PET on a regional scale.  相似文献   

8.
This study estimates the aboveground biomass accumulation after forest clearing and slash burning and describes the structure and successional development of the secondary forest in the seasonally dry southern Amazon. The original burn study was conducted in four land clearings in 1997, 1998, and 1999. The size of the clearings varied from 1 to 9 ha. The native forest was felled, allowed to dry for approximately three months and then burned by the end of the dry season. A census was conducted in the central 1-ha forest on each site prior to the area's felling and burn. The aboveground biomass (AGB) and structure were similar to other primary tropical forests. However, the high density of Cecropia spp. before the forest felling and burn treatment indicates past low intensity disturbances. Seven and eight years after the fire, the fallow forests were still in an early successional stage dominated by Cecropia spp. The four areas had a high biomass accumulation during the studied period, varying from 7.5 to 15.0 Mg ha−1 year−1. The lower biomass accumulation in one plot was an effect of a higher fire severity, produced by the one-year difference in time between slash and burn of the forest, slowing the natural regeneration of Cecropia spp. The time needed for this forest to recover to the pre-fire AGB levels ranged from 20 to 30 years, assuming the current AGB accumulation rates are maintained. Considering these results, the maintenance of regenerating secondary forests in the Amazon would be a significant contribution to soil and watershed protection, minimizing biodiversity losses and perhaps mitigating climatic changes effects in the region.  相似文献   

9.
Fire is an important process in California closed-cone pine forests; however spatial variability in post-fire stand dynamics of these forests is poorly understood. The 1995 Vision Fire in Point Reyes National Seashore burned over 5000 ha, initiating vigorous Pinus muricata (bishop pine) regeneration in areas that were forested prior to the fire but also serving as a catalyst for forest expansion into other locales. We examined the post-fire stand structure of P. muricata forest 14 years after fire in newly established stands where the forest has expanded across the burn landscape to determine the important factors driving variability in density, basal area, tree size, and mortality. Additionally, we estimated the self-thinning line at this point in stand development and compared the size-density relationship in this forest to the theorized (−1.605) log-log slope of Reineke’s Rule, which relates maximum stand density to average tree size. Following the fire, post-fire P. muricata density in the expanded forest ranged from 500 to 8900 live stems ha−1 (median density = 1800 ha−1). Post-fire tree density and basal area declined with increasing distance to individual pre-fire trees, but showed little variation with other environmental covariates. Self-thinning (density-dependent mortality) was observed in nearly all stands with post-fire density >1800 stems ha−1, and post-fire P. muricata stands conformed to the size-density relationship predicted by Reineke’s Rule. This study demonstrates broad spatial variability in forest development following stand-replacing fires in California closed-cone pine forests, and highlights the importance of isolated pre-fire trees as drivers of stand establishment and development in serotinous conifers.  相似文献   

10.
The northern and central Appalachian forests are subject to high levels of atmospheric acid deposition (AD), which has been shown in some forests to negatively impact forest growth as well as predispose the forest system to damage from secondary stresses. The purpose of this study was to evaluate the possible contribution of AD to changes in composition and productivity of the Monongahela National Forest, and to evaluate soil-based indicators of acidification that might be useful for detecting AD-related forest changes. Soils adjacent to 30 Forest Inventory and Analysis (FIA) sites were sampled and analyzed for a suite of acidity indicators. These indicators were correlated with the periodic mean annual volume increment (PMAVI) of the forest stands on FIA plots for the 10-yr period 1989–2000. PMAVI ranged from −9.5 to 11.8 m3 ha−1 yr−1, with lower-than-expected growth (<3 m3 ha−1 yr−1) on two-thirds of the sites. In the surface horizon, effective base saturation, Ca2+ concentration, base saturation, K+ concentration, Ca/Al molar ratio, and Mg/Al molar ratio, were positively correlated with PMAVI and Fe concentration was negatively correlated with PMAVI (p ≤ 0.1). In the subsurface horizon pH(w) and effective base saturation were positively correlated and Al3− concentration and K+ concentration were negatively correlated with PMAVI. We hypothesized that NO3-N/NH4-N ratio would also be correlated with PMAVI, but it was not. Correlations between soil chemical indicators and PMAVI suggest that AD may contribute, in part, to the lower-than-expected forest growth on the Monongahela National Forest.  相似文献   

11.
An accurate characterization of tree carbon (TC), forest floor carbon (FFC) and soil organic carbon (SOC) in tropical forest plantations is important to estimate their contribution to global carbon stocks. This information, however, is poor and fragmented. Carbon contents were assessed in patula pine (Pinus patula) and teak (Tectona grandis) stands in tropical forest plantations of different development stages in combination with inventory assessments and soil survey information. Growth models were used to associate TOC to tree normal diameter (D) with average basal area and total tree height (HT), with D and HT parameters that can be used in 6–26 years old patula pine and teak in commercial tropical forests as indicators of carbon stocks. The information was obtained from individual trees in different development stages in 54 patula pine plots and 42 teak plots. The obtained TC was 99.6 Mg ha−1 in patula pine and 85.7 Mg ha−1 in teak forests. FFC was 2.3 and 1.2 Mg ha−1, SOC in the surface layer (0–25 cm) was 92.6 and 35.8 Mg ha−1, 76.1 and 19 Mg ha−1 in deep layers (25–50 cm) in patula pine and teak, respectively. Carbon storage in trees was similar between patula pine and teak plantations, but patula pine had higher levels of forest floor carbon and soil organic carbon. Carbon storage in trees represents 37 and 60% of the total carbon content in patula pine and teak plantations, respectively. Even so, the remaining percentage corresponds to SOC, whereas FFC content is less than 1%. In summary, differences in carbon stocks between patula pine and teak trees were not significant, but the distribution of carbon differed between the plantation types. The low FFC does not explain the SOC stocks; however, current variability of SOC stocks could be related to variation in land use history.  相似文献   

12.
Studies on the dynamics of Alaska boreal forest are sporadic and rare, and forest management in the region has been conducted in the absence of a useful growth model. This paper presents a matrix stand growth model to study the dynamics and management of Alaska's boreal forest, with harvests and artificial regeneration being accounted for. The model was calibrated with data from 446 constantly monitored permanent sample plots distributed across interior and south-central Alaska, and was tested to be accurate on an independent validation sample. The present model was applied on a most frequent commercial stand in interior Alaska to study a forest management regime that is being commonly used in the region. The simulation was for 300 years with a 40-year cutting cycle, and management outcomes under various permafrost levels and site elevations were investigated with sensitivity analysis. Despite the comparatively low financial returns, current management regime may generally benefit wildlife species by maintaining continuous forest cover and decent stand diversity, and properly managed forests had potential for timber production and wood-based energy. It was predicted by the model that both permafrost and site elevation had substantial impact on the management outcomes. Other variables being held constant at sample mean, net present value of harvests increased from $434 to $831 ha−1 and the annual volume of harvest more than tripled from 1.68 to 5.75 m3 ha−1 y−1 as permafrost declined from obvious to unlikely. Managers were also advised to focus on stands on medium elevation (300 m), as stands on lower or higher elevations were expected to produce less harvested volume and net present value. For rural Alaska communities suffering from expensive heating costs, it was suggested that approximately 20 ha of properly managed forest could sustain a household's annual heating requirement, while continuous forest coverage and decent diversity could still be maintained.  相似文献   

13.
The recovery process of fallow stands in the mountainous region of Northwestern Vietnam was studied, based on a chronosequence of 1–26-year-old secondary forests after intensive shifting cultivation. The number of species present in a 26-year-old secondary forest attained 49% of the 72 species present in an old-growth forest. Total stem density decreased gradually from 172,500 ha−1 in a 3-year-old forest to 24,600 ha−1 in the 26-year-old stand, but stem density of larger trees (diameter at breast height (D) ≥ 5 cm) increased from 60 ha−1 in a 7-year-old to 960 ha−1 in the 26-year-old forests, which was similar to that of an old-growth forest. Annual biomass increment of the 26-year-old stand was 4.2 Mg ha−1 year−1. A saturation curve was fitted to biomass accumulation in secondary forests. After an estimated time of 60 years, a secondary forest can achieve 80% of the biomass of old-growth forests (240 Mg ha−1). Species diversity expressed by Shannon Index shows that it takes 60 years for a secondary forest in fallow to achieve a plant species diversity similar to that of old-growth forests.  相似文献   

14.
Even though considerable parts of the global tropical forests are located in Africa, reliable data on African forest resources is limited. While this is widely recognized for tropical moist forests, it also holds for tropical dry forests. To partially fill the gap a forest inventory was carried out in Burkina Faso, West Africa. In this paper we present a methodological approach and sample based estimates of the tree and forest resources including estimates of (1) land cover classes, (2) species composition, and (3) above ground tree carbon stocks. Following the land classification of the Food and Agriculture Organization of the United Nations (FAO), the forest cover of Burkina Faso was estimated as 42.6% (116,847 km2). For the classes “other wooded land”, “other land” and “other land with tree cover” the estimates were 1.6%, 53.6%, and 9.1%, respectively. We found notable differences to the estimates published by FAO, in particular when considering the classes “forest” and “other wooded land” separately, but lesser so when the two classes are combined. That points to a major issue in applying these class definitions in semiarid environments. Given the relatively small sample size (n = 46 field observed plots), relative standard errors (SE%) of area estimates are high (around 9% for the larger area classes). Aboveground tree carbon stocks were estimated to be 6.640, 5.580 and 7.222 Mg ha−1 for “forest”, “other wooded land” and “other land with tree cover”, respectively (SE% around 18% for all three estimates). Availability of biomass models is very limited for all classes, in particular when it comes to shrubs. Furthermore, it was estimated that the most abundant tree species in Burkina Faso is Vittelaria paradoxa, the “shea butter tree” which is a multi-use tree species of high relevance for rural livelihoods.To our knowledge this study is the first field-based forest inventory on national level in Burkina Faso where the estimation of errors was possible on statistical grounds, and done. The results of this study revealed major issues that should be taken into account when doing similar studies, including carbon monitoring and accounting: increasing the sample size will lead to smaller standard errors (at a higher costs, of course), but will not solve the crucial points (1) of non-availability of suitable biomass models, in particular for shrub lands and (2) of implementation issues regarding the definition of land cover types.  相似文献   

15.
The complex mix of economic and ecological objectives facing today's forest managers necessitates the development of growth models with a capacity for simulating a wide range of forest conditions while producing outputs useful for economic analyses. We calibrated the gap model ZELIG to simulate stand-level forest development in the Oregon Coast Range as part of a landscape-scale assessment of different forest management strategies. Our goal was to incorporate the predictive ability of an empirical model with the flexibility of a forest succession model. We emphasized the development of commercial-aged stands of Douglas-fir, the dominant tree species in the study area and primary source of timber. In addition, we judged that the ecological approach of ZELIG would be robust to the variety of other forest conditions and practices encountered in the Coast Range, including mixed-species stands, small-scale gap formation, innovative silvicultural methods, and reserve areas where forests grow unmanaged for long periods of time. We parameterized the model to distinguish forest development among two ecoregions, three forest types and two site productivity classes using three data sources: chronosequences of forest inventory data, long-term research data, and simulations from an empirical growth-and-yield model. The calibrated model was tested with independent, long-term measurements from 11 Douglas-fir plots (6 unthinned, 5 thinned), 3 spruce-hemlock plots, and 1 red alder plot. ZELIG closely approximated developmental trajectories of basal area and large trees in the Douglas-fir plots. Differences between simulated and observed conifer basal area for these plots ranged from −2.6 to 2.4 m2/ha; differences in the number of trees/ha ≥50 cm dbh ranged from −8.8 to 7.3 tph. Achieving these results required the use of a diameter-growth multiplier, suggesting some underlying constraints on tree growth such as the temperature response function. ZELIG also tended to overestimate regeneration of shade-tolerant trees and underestimate total tree density (i.e., higher rates of tree mortality). However, comparisons with the chronosequences of forest inventory data indicated that the simulated data are within the range of variability observed in the Coast Range. Further exploration and improvement of ZELIG is warranted in three key areas: (1) modeling rapid rates of conifer tree growth without the need for a diameter-growth multiplier; (2) understanding and remedying rates of tree mortality that were higher than those observed in the independent data; and (3) improving the tree regeneration module to account for competition with understory vegetation.  相似文献   

16.
We estimated water use by the two main oak species of the Lower Galilee region of Israel—Tabor (Quercus ithaburensis) and Kermes (Quercus calliprinos)—to develop management options for climate-change scenarios. The trees were studied in their typical phytosociological associations on different bedrock formations at two sites with the same climatic conditions. Using the heat-pulse method, sap flow velocity was measured in eight trunks (trees) of each species during a number of periods in 2001, 2002 and 2003. Hourly sap flux was integrated to daily transpiration per tree and up-scaled to transpiration at the forest canopy level. The annual courses of daytime transpiration rate were estimated using fitted functions, and annual totals were calculated. Sap flow velocity was higher in Tabor than in Kermes oak, and it was highest in the youngest xylem, declining with depth into the older xylem. Average daytime transpiration rate was 67.9 ± 4.9 l tree−1 d−1, or 0.95 ± 0.07 mm d−1, for Tabor oak, and 22.0 ± 1.7 l tree−1d−1, or 0.73 ± 0.05 mm d−1, for Kermes oak. Differences between the two oak species in their forest canopy transpiration rates occurred mainly between the end of April and the beginning of October. Annual daytime transpiration was estimated to be 244 mm year−1 for Tabor oak and 213 mm year−1 for Kermes oak. Adding nocturnal water fluxes, estimated to be 20% of the daytime transpiration, resulted in total annual transpiration of 293 and 256 mm year−1 by Tabor and Kermes oaks, respectively. These amounts constituted 51% and 44%, respectively, of the 578 mm year−1 average annual rainfall in the region. The two species differed in their root morphology. Tabor oak roots did not penetrate the bedrock but were concentrated along the soil–rock interface within soil pockets. In contrast, the root system of Kermes oak grew deeper via fissures and crevices in the bedrock system and achieved direct contact with the deeper bedrock layers. Despite differences between the two sites in soil–bedrock lithological properties, and differences in the woody structure, annual water use by the two forest types was fairly similar. Because stocking density of the Tabor oak forests is strongly related to bedrock characteristics, thinning as a management tool will not change partitioning of the rainfall between different soil pockets, and hence soil water availability to the trees. In contrast, thinning of Kermes oak forests is expected to raise water availability to the remaining trees.  相似文献   

17.
18.
We monitored the decomposition of mixed leaf litter (Quercus spp., Carya spp., and Pinusechinata) in a Missouri Ozark forest eight years after experimental harvest. Leaf litter mass losses and changes in carbon chemistry (extractive, acid soluble, and acid insoluble fractions) were measured over 32 months in field incubations to determine the effects of litter composition and stand manipulation on decomposition and nitrogen (N) concentration in the remaining litter. The decay (k) rate over this period ranged between 0.39 (±0.010) and 0.51 (±0.002) year−1 for oak, oak–hickory, and oak–pine litter. There were significant main effects of stand manipulation (p = 0.03) and litter type (p < 0.01) on decay. Mass losses of oak and oak–hickory litter were 7% (p = 0.02) and 4% (p = 0.04) higher on harvested stands than controls, respectively. Mass loss of oak–hickory litter was 3% faster than oak–pine (p = 0.03) and 6% faster than oak (p = 0.02) litter on control stands, whereas the oak–hickory litter mass loss was 5% higher than oak litter on harvested stands (p = 0.01). The decay (k) rate had a linear relationship with initial leaf litter nitrogen content and lignin-to-N ratio. The nitrogen concentration in remaining litter had a nonlinear relationship to cumulative mass loss suggesting an exogenous source of N. In summary, this study demonstrated significant effects of timber harvest and litter mixtures on decomposition and N dynamics in a managed Missouri Ozark forest.  相似文献   

19.
The aim of this study was to develop and evaluate a new approach for estimating forest carbon fluxes for large regions based on climate-sensitive process-based model, national forest inventory (NFI) data and satellite images. The approach was tested for Central Finland and Lapland with NFI field data and daily weather data from 2004 to 2008.The approach combines (1) a light use efficiency (LUE) model, (2) a process-based summary model for estimating gross primary production (GPP) and net primary production (NPP), and (3) the Yasso07 soil carbon model, which together allow the estimation of net ecosystem exchange (NEE). Landsat TM 5 satellite images were utilized to generalize the carbon fluxes obtained for field sample plots for all forested areas using the k-NN imputation method. The accuracy of the imputations was examined by leave-one-out cross validation and by comparing the imputed and simulated values with Eddy covariance (EC) measurements.RMSE of the k-NN imputations was slightly better in Central Finland than in Lapland, the bias staying at a similar level. Based on the EC comparisons, the approach seemed to work rather well with GPP estimates in both areas, but in the north the NEE estimates were remarkably biased. The main advantages of the approach include its applicability to basic NFI data and a high output resolution (30 m).The method proved to be a promising way to produce carbon flux estimates based on large-scale forest inventory data and could therefore be easily applied to the whole of Northern Europe. However, there are still drawbacks to the approach, such as lacking parameters for peat lands. One of the future goals is to integrate the approach with an interactive mapping framework, which could thereafter be utilized, for example, in climate change research.  相似文献   

20.
Growth and yield models for uneven-sized forest stands in Finland   总被引:1,自引:0,他引:1  
Uneven-sized forestry is gradually gaining popularity and acceptability also in the Nordic countries. This is because of the willingness of the public and some forest owners to avoid clear-fellings and pursue more near-nature forest structures. It has also been realized that the profitability of uneven-sized forestry may be competitive with even-aged forestry. In Finland, management of uneven-sized stands is hampered by the lack of information about the dynamics of such stands, and about the yield and profitability of uneven-sized forestry. This study developed models which allow managers to simulate the growth and yield of uneven-sized stands in Finland, making it possible to predict the yield and analyze the sustainability of different management options. The model set consists of individual-tree diameter increment, height and survival models, and a model for ingrowth. The modeling data consisted of two long-term field experiments of uneven-sized forest management, a set of temporary sample plots measured earlier for growth modeling purposes, and the sample plots of the third National Forest Inventory of Finland. The application area of the models covers all growing sites, all main tree species, and the whole surface area of Finland. According to the models, the sustainable harvest of a fertile (Oxalis-Myrtillus site) uneven-sized Norway spruce forest varies between 5.5 and 7 m3 ha−1 a−1 in Central Finland, depending on the length of the cutting cycle, stand density, and shape of the diameter distribution. It is profitable to harvest large diameter classes more heavily than small ones. Due to the large amount of data the models for diameter increment are highly significant and reliably show the growth level of trees in uneven-sized stands. The weakest models are the ingrowth models, which are based on a clearly smaller data set than the other models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号