首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
姜黄素具有许多生物活性功能,但较差的溶解度和稳定性限制了其在食品和医药领域的应用。为筛选出具有良好稳定性的姜黄素乳液,本研究以亚麻籽油为姜黄素的油相载体,经高压均质法制备出姜黄素乳液中研究卵磷脂、吐温-80、阿拉伯胶和乳清分离蛋白4种食品级乳化剂对姜黄素乳液的理化特性和贮藏稳定性的影响,从包埋率、浊度、粒径、电位等方面进行稳定性评价。结果表明,吐温-80稳定的姜黄素乳液中姜黄素包埋率较高(76.98%),浊度和平均粒径最小,分别为848.0 NTR、214.23±1.52 nm;同时在贮藏期内姜黄素乳液的平均粒径变化最小,增长不到1%,贮藏稳定性表现良好。同时,4℃低温条件下姜黄素保留率最高,达到88.02%。结果表明,选用吐温-80作为乳化剂,姜黄素乳液具有最好的溶解性和稳定性,这为今后姜黄素在食品工业中的广泛应用提供了新思路。  相似文献   

2.
等离子体处理对亚麻籽胶结构和功能特性的影响   总被引:2,自引:2,他引:0  
为了揭示等离子体技术对亚麻籽胶的物理改性效应,该研究以5 mg/m L亚麻籽胶溶液为对象,比较了不同等离子体处理时间(0~120 s)对亚麻籽胶结构和功能特性的影响规律。结果发现,随着等离子体处理时间的延长,亚麻籽胶溶液p H值、Zeta电位绝对值和平均分子量逐渐减小,而对亚麻籽胶的多糖骨架结构和单糖组成无明显影响。等离子体处理降低亚麻籽胶的炭化和聚合反应温度、表观黏度和界面吸附能力。冷场扫描电镜结合稳定性指数(Turbiscan Stability Index, TSI)结果显示,0~15 s等离子体处理在不明显降低亚麻籽胶中酚类化合物含量和体外抗氧化活性的同时,明显改善了亚麻籽胶构建亚麻籽油乳液的稳定性(P0.05)。因此,等离子体作为一种非热加工技术,能够用于亚麻籽胶的适度改性研究,以拓宽其在健康食品领域中的应用前景。  相似文献   

3.
酸性浸润干燥辅助低水耗水代法提取亚麻籽油工艺   总被引:1,自引:1,他引:0  
为解决传统水代法提取亚麻籽油过程中乳状液生成过多,耗水量大等问题,该文在低料液比1:2.5 kg/L的条件下,探究了水代法提取亚麻籽油的工艺。结果表明,酸浸润预处理通过影响亚麻蛋白的溶解度,有效提高水代法中的清油得率,由未处理时的18.95%±0.91%提升至83.27%±0.67%。水代法提取亚麻籽油的工艺优化结果为:pH值9.0、温度50℃、料液比1∶2.5 kg/L、提取时间2 h。在此条件下,清油得率为82.88%±0.30%。在水代法提油后的水相中添加50%原料质量的纯水重复提取渣相后,渣相残油率从3.97%±0.11%降至2.09%±0.04%。剩余乳状液经木瓜蛋白酶破乳后,总清油得率为93.44%±0.29%。水代法得到的亚麻籽油各项指标均符合一级成品亚麻籽油标准。该研究为亚麻籽油的高效提取提供了一种新的思路。  相似文献   

4.
以黄瓜根系离体线粒体为研究对象,观察了盐胁迫对线粒体辅酶Q10(CoQ.10)、脂质过氧化物(LPO)、过氧化氢(H2O2)含量和线粒体呼吸功能及其有关酶的影响,以及盐胁迫下添加外源Si后这些指标的变化。试验设对照(CK)、盐胁迫(NaCl)、和盐胁迫加硅(NaCl+Si)。结果表明,盐胁迫下线粒体H2O2和丙二醛(MDA)的含量显著增加,线粒体膜流动性降低,CoQ10含量下降,与能量代谢相关的ATP酶及呼吸酶细胞色素c氧化酶(CCO)显著下降,引起线粒体膜损伤。加入外源Si后,线粒体H2O2和MDA的含量降低,膜流动性增加,CoQ10含量、ATP酶及细胞色素c氧化酶活力增加。表明Si可能通过促进线粒体ATPase与CCO活性的恢复,CoQ10含量的增加及减少氧自由基的损害而对线粒体产生保护作用,提高线粒体的氧化磷酸化及能量代谢,从而提高线粒体的呼吸作用。  相似文献   

5.
为了提高水酶法提取亚麻籽油的提油率,该文探究了亚麻籽表面黏质物的存在对水酶法提取亚麻籽油提油率的影响,并对热水浸提法脱除亚麻籽黏质物的工艺进行优化。结果表明,水酶法提取亚麻籽油的提油率随亚麻籽表面黏质物的减少而升高,未脱黏亚麻籽的提油率为69.20%±1.51%,渣相含油量为26.00%±1.24%。经100℃浸提脱黏后,黏质物的脱除率为94.69%±1.94%,此时亚麻籽的提油率可达84.26%±0.63%,渣相含油量降低至10.45%±0.89%。对热水浸提脱除黏质物的工艺(浸提温度、浸提时间、体系p H值、料水比以及浸提次数)进行了单因素优化,发现在浸提温度85℃、p H值3、料水比1:7 g/m L、浸提2次,每次浸提60 min的条件下,黏质物的脱除效果最好,脱除率为97.88%±0.69%,脱黏后亚麻籽的提油率可达84.47%±0.53%,亚麻籽油和蛋白质的损失率分别为0.70%±0.16%和10.78%±0.41%,且浸提脱黏过程对水酶法提取亚麻籽油的品质(酸值和过氧化值)无显著影响。此外,浸提脱黏过程还可有效去除亚麻籽中的抗营养因子生氰糖苷,使生氰糖苷的含量由浸提前的(242.6±0.8)mg/kg显著降低到浸提后的(7.1±0.6)mg/kg。该研究提供了一种简单高效的热水浸提脱黏工艺,显著提高了后续水酶法提取亚麻籽油的提油率,同时也有利于亚麻籽多糖的回收和亚麻籽粕的进一步利用,为亚麻籽资源的综合利用提供有益参考。  相似文献   

6.
为研究秸秆生物炭输入对冻融期黑土表层无机氮磷垂直迁移的影响,采用室内模拟冻融循环试验,设置冻融与不冻融、冻融循环次数和生物炭施加量3个影响因素,分析冻融作用下不同秸秆生物炭输入量土壤表层无机氮磷垂直迁移特征。结果表明:(1)冻融与不冻融、冻融循环次数及生物炭施加量对黑土表层NO3-—N、NH4+—N和PO43-—P垂直迁移液总体积、迁移液总浓度及迁移总量均有极显著影响。(2)淋溶时间随冻融作用增强而缩短,随生物炭施加量增加而延长。所有处理迁移液总体积均随生物炭输入量的增加呈降低趋势。未冻融组迁移液总体积随培养期增加呈现缓慢下降趋势,冻融组处理迁移液总体积在第5次冻融循环试验出现急剧增加,而后趋于平稳。(3)分析冻融作用下秸秆生物炭施入对无机氮磷垂直迁移累积影响,同一控制时间内生物炭对冻融组无机氮磷垂直迁移量的抑制作用大于不冻融组,且随生物炭施入量增加对无机氮磷垂直迁移的抑制作用增强。由于土壤物理性质的改变,冻融组NO3-—N、NH4+—N和PO43-—P累积迁移量均在第5次冻融循环左右发生急剧变化。综上可知,生物炭在冻融期可以有效的固持养分,研究结果可为寒冷地区解冻期面源污染防治提供一定的理论支持。  相似文献   

7.
不同pH条件下生物质灰渣中K+释放动力学研究   总被引:1,自引:0,他引:1       下载免费PDF全文
试验选取4种生物质灰渣(玉米灰渣、水稻灰渣、锯木灰渣和谷壳灰渣)为研究材料,以不同pH(4、7、9)的NH4Ac为交换液,采用渗透交换法,研究了生物质灰渣中K+的释放动力学特征。结果表明,在pH为4、7和9条件下,供试生物质灰渣中K+释放量在20~80 min达到平衡,平衡释放量分别为14.77~255.17 cmol·kg-1、4.83~106.71 cmol·kg-1和12.11~224.33 cmol·kg-1。相关分析表明,K+释放量与生物质灰渣中全钾含量极显著相关,说明受生物质灰渣中全钾含量影响,其K+释放平衡时间和释放量存在显著差异。方差分析显示,同一生物质灰渣中K+释放速率在不同pH条件之间存在极显著差异。由此可见,受交换液pH和全钾含量的影响,不同生物质灰渣中K+的释放量和平衡时间均存在较大差异。不同pH条件下,水稻灰渣和玉米灰渣K+释放量(Q)表现为Q4Q9Q7,锯木灰渣和谷壳灰渣的释放量表现为Q9Q4Q7;在3种pH条件下,4种生物质灰渣K+的释放总量均表现为Q水稻灰渣Q锯木灰渣Q谷壳灰渣Q玉米灰渣。平衡前不同时段K+的释放率(v)与反应时间的自然对数(lnt)极显著相关。4种生物质灰渣K+的释放动力学最适模型均表现为:pH=4时为Elovich方程,pH=7时为双常数方程,pH=9时为Elovich方程;同一pH条件下,4种生物质灰渣的模型拟合性最优为Elovich方程,双常数方程次之,抛物线扩散方程最差。  相似文献   

8.
为实现亚麻籽综合加工利用,以产自甘肃粗脂肪质量份数39.3%±0.25%的亚麻籽为研究对象,研究亚麻籽打磨脱胶提取亚麻籽胶粉,然后压榨制取亚麻籽油的联合加工工艺。利用自主研发的150型亚麻籽脱胶机,进行亚麻籽打磨脱胶试验,结果表明,该亚麻籽脱胶机稳定运行流量为40~220 kg/h,满负荷运行流量为220 kg/h,亚麻籽胶粉提取率为6.5%±0.3%,胶粉经脱脂后黏度为(5100±520)mPa·s,脱胶亚麻籽粗脂肪质量分数为41.62%±0.22%。脱胶亚麻籽榨油试验表明,采用兑饼压榨可实现脱胶亚麻籽稳定榨油,兑饼30%一次压榨饼粗脂肪质量分数为5.93%±0.13%,显著低于亚麻籽一次压榨饼和二次压榨饼的13.55%±0.18%(P0.05)和8.11%±0.15%(P0.05),亚麻籽脱胶后压榨出油率34.65%±0.43%,显著高于亚麻籽经2次压榨出油率之和33.94%±0.42%(P0.05)。通过对压榨亚麻籽油酸价、过氧化物值、不皂化物、天然维生素E、植物甾醇指标检测对比,采用打磨的方法进行亚麻籽脱胶不会引起压榨油品质劣变。该文研究结果可为亚麻籽打磨脱胶-榨油加工提供参考。  相似文献   

9.
共轭亚油酸水包油型乳液的物理化学稳定性   总被引:2,自引:1,他引:1  
共轭亚油酸(conjugated linoleic acid, CLA)是一种具有多重生理功效的不饱和脂肪酸,其氧化稳定性较差,对光、热、氧气很不稳定。以亲水胶体为乳化剂制备CLA的水包油(O/W)型乳液可改善其氧化稳定性,扩大其在食品中的应用。该研究采用改性阿拉伯胶EM2为乳化剂、2种不同黏度的CLA为油相,通过测定乳液颗粒的粒径和粒径分布以及乳液在40℃贮存过程中的过氧化值和茴香胺值,研究了CLA的水包油(O/W)型乳液的物理化学稳定性。结果表明,高质量分数的EM2有利于形成粒径更小且分布均一的乳液颗粒。乳液的氧化稳定性很大程度上依赖于其物理稳定性。对于黏度较小的CLA,在各测试EM2质量分数下,CLA乳液具有较好的物理稳定性,且随着EM2质量分数的增大,乳液氧化稳定性提高。对于黏度较大的CLA,EM2质量分数为5%时,乳液具有较好的物理化学稳定性;增大EM2的质量分数,其稳定性下降。该研究可为今后研究基于乳液技术的功能性因子保护和增效提供参考,有利于CLA在食品行业中的推广应用。  相似文献   

10.
利用短链葡聚糖(short glucan chains,SGC)的螺旋空间结构来包埋姜黄素(curcumin,CUR)。通过使用高剪切分散乳化机高速剪切溶液5 min,用纳米均质机在50 MPa压力下高压均质经剪切后的乳液2次制备成纳米乳液以提高其包埋率和载药量。XRD (x-ray diffraction)和TGA (thermogravimetric analysis)很好的验证了包合物的形成,通过TGA、SEM (scanning electron microscopy)、激光粒径分析仪等各种表征分析得出短链葡聚糖-姜黄素纳米乳液制备成功,所制得的乳液对姜黄素的包埋率和载药量都高于短链葡聚糖-姜黄素包合物,分别达到了71.11%和12.07%,说明制备成纳米乳液对姜黄素的包埋率和载药量都有了明显的提高。所制备的纳米乳液的粒径小于300 nm,粒径分布均一,Zeta电位观测表明所制得的乳液的稳定性有所提高。为提高食品及医药领域姜黄素的生物利用率提供了一定的参考意义。  相似文献   

11.
The ability of enzymatically synthesized structured phosphatidylcholine (PC) containing caprylic acid to form and stabilize oil-in-water emulsions prepared with different triglycerides [medium chain triglycerides (MCT), soybean oil, and enzymatically synthesized structured lipids] was examined and compared with natural soybean PC and deoiled lecithin. Emulsions were prepared with varying oil and emulsifier concentrations. The particle size distribution, creaming stability, and viscosity were measured for the evaluation of the emulsifying properties. With an increase in the oil concentration, there was an increase in particle size, viscosity, and creaming layer. With an increase in the phospholipid (PL) concentration, there was usually a decrease in particle size and an increase in viscosity, where the emulsion stability was increased. General emulsions prepared with structured lipids resulted in smaller particle sizes as compared to MCT and soybean oil. Deoiled lecithin was able to increase the viscosity more significantly and give smaller particle sizes as compared to the other emulsifiers, thus producing more stable emulsions. However, in certain cases, structured PC was superior to deoiled lecithin and soybean PC. This observation was made for emulsions prepared with soybean oil or structured lipid at an oil/water ratio of 10:90. At an oil/water ratio of 30:70, the deoiled lecithin performed better as compared to the other PLs with all oil types. However, structured PC produced more stable emulsions as compared to natural soybean PC in MCT and soybean oil.  相似文献   

12.
Polysaccharides are widely used in the food industry to modify the stability of protein-based drinks. However, an in depth knowledge of the interactions occurring in the system is still lacking. In this study, the interactions between sodium caseinate and high methoxyl pectin under acidification conditions were studied nondestructively and without dilution using transmission diffusing wave spectroscopy. Oil-in-water emulsions were prepared with 10% soybean oil and 0.5% sodium caseinate. Various concentrations of pectin (ranging from 0 to 0.2%) were added, and the emulsions were acidified with glucono-delta-lactone. With acidification, a "sol-gel" transition occurred and emulsions containing pectin were more stable at lower pH than those without pectin. Furthermore, the sol-gel transition of the mixtures was more sudden for control emulsions without pectin. While in control samples the final solidlike emulsion after gelation tended to be more inhomogeneous and more dissimilar to the starting emulsion, emulsions with pectin in solution gelled later under acidification. With a sufficient amount of pectin, the emulsions showed no aggregation and the destabilization pH varied depending on the amount of pectin present in the emulsions. At intermediate pH values (pH > 5.5), the emulsions displayed a decrease in particle size, more pronounced in samples containing pectin. The results collected using light scattering in concentrated systems, 10% (v/v) in our case, suggested that pectin stabilizes the emulsion oil droplets forming a network of oil droplets loosely connected by strands of pectin.  相似文献   

13.
刘蕾  袁芳  高彦祥 《农业工程学报》2016,32(Z2):423-429
为了提高β-胡萝卜素乳液稳定性,该研究利用α-乳白蛋白(α-LA)为乳化剂,考察了不同α-LA添加量(0.25%~3.00%)对10%的水包油(O/W)β-胡萝卜素乳液粒径、电位、快速稳定性、包埋率、界面α-LA含量和化学稳定性的影响。结果表明:随着α-LA添加量的增加,β-胡萝卜素乳液粒径减小,电位增加,包埋率提高;当α-LA添加量大于1.50%时,乳液粒径、电位和包埋率不再随着α-LA添加量的增加而变化(P0.05)。乳液的Turbiscan扫描指数(TSI)在α-LA添加量大于1.50%之后没有显著性变化,β-胡萝卜素乳液趋于稳定。随着α-LA添加量的增加,水油界面上α-LA含量显著增加(P0.05)。当α-LA添加量大于1.00%时,β-胡萝卜素在乳液中的保留率不再随着α-LA添加量的增加而增加。研究结果表明α-LA是一种可以应用在β-胡萝卜素乳液中的乳化剂,在α-LA添加量为1.50%时,可以得到物理和化学稳定性较好的β-胡萝卜素乳液,为食品工业中应用β-胡萝卜素提供了参考。  相似文献   

14.
Oil-in-water (O/W) emulsions containing small oil droplets (d32 approximately 0.22 microm) stabilized by sodium dodecyl sulfate (SDS)-fish gelatin (FG) membranes were produced by an electrostatic deposition technique. A primary emulsion containing anionic SDS-coated droplets (zeta approximately -40 mV) was prepared by homogenizing oil and emulsifier solution using a high-pressure valve homogenizer (20 wt % corn oil, 0.46 wt % SDS, 100 mM acetic acid, pH 3.0). A secondary emulsion containing cationic SDS-FG-coated droplets (zeta approximately +30 mV) was formed by diluting the primary emulsion with an aqueous fish gelatin solution (10 wt % corn oil, 0.23 wt % SDS, 100 mM acetic acid, 2.00 wt % fish gelatin, pH 3.0). The stabilities of primary and secondary emulsions with the same oil concentration to thermal processing, ionic strength, and pH were assessed by measuring particle size distribution, zeta potential, microstructure, destabilized oil, and creaming stability. The droplets in secondary emulsions had good stability to droplet aggregation at holding temperatures from 30 to 90 degrees C for 30 min, [NaCl] < or = 100 mM, and pH values from 3 to 8. This study shows that the ability to generate emulsions containing droplets stabilized by multilayer interfacial membranes comprised of two or more types of emulsifiers, rather than a single interfacial layer comprised of one type of emulsifier, may lead to the development of food products with improved stability to environmental stresses.  相似文献   

15.
Oil-in-water emulsions containing cationic droplets stabilized by lecithin-chitosan membranes were produced using a two-stage process. A primary emulsion was prepared by homogenizing 5 wt % corn oil with 95 wt % aqueous solution (1 wt % lecithin, 100 mM acetic acid, pH 3.0) using a high-pressure valve homogenizer. This emulsion was diluted with aqueous chitosan solutions to form secondary emulsions with varying compositions: 1 wt % corn oil, 0.2 wt % lecithin, 100 mM acetic acid, and 0-0.04 wt % chitosan (pH 3.0). The particle size distribution, particle charge, and creaming stability of the primary and secondary emulsions were measured. The electrical charge on the droplets increased from -49 to +54 mV as the chitosan concentration was increased from 0 to 0.04 wt %, which indicated that chitosan adsorbed to the droplet surfaces. The mean particle diameter of the emulsions increased dramatically and the emulsions became unstable to creaming when the chitosan concentration exceeded 0.008 wt %, which was attributed to charge neutralization and bridging flocculation effects. Sonication, blending, or homogenization could be used to disrupt flocs formed in secondary emulsions containing droplets with high positive charges, leading to the production of emulsions with relatively small particle diameters (approximately 1 microm). These emulsions had good stability to droplet aggregation at low pH (< or =5) and ionic strengths (<500 mM). The interfacial engineering technology utilized in this study could lead to the creation of food emulsions with improved stability to environmental stresses.  相似文献   

16.
The effect of fatty acid chain length on nicotine carboxylate insecticide emulsions has been studied in terms of particle size, interfacial tension, nicotine encapsulation on emulsion droplets, and bioactivity. The particle size of the nicotine emulsion and the interfacial tension at the nicotine carboxylate oil phase (0.03 M)--Tween 80 aqueous phase (0.001 M) were affected in a similar way by the change in the fatty acid chain length, which was correlated by the packing conformation of Tween 80 and nicotine carboxylate molecules as obtained by AM1 theoretical calculations. The amount of encapsulated nicotine inside the nicotine carboxylate emulsion droplets influenced the insecticide bioactivity of nicotine; this relationship was explained in terms of the acid value of the different fatty acids used to prepare the nicotine formulation.  相似文献   

17.
Oil-in-water emulsions (4 wt % soy oil) containing 4 wt % whey protein hydrolysate (WPH) (27% degree of hydrolysis) and different levels of calcium, magnesium, or potassium chloride were prepared in a two-stage homogenizer. Other emulsions containing 4 wt % WPH but including 0.35 wt % hydroxylated lecithin and different levels of the above minerals were similarly prepared. The formation and stability of these emulsions were determined by measuring oil droplet size distributions using laser light scattering and by confocal scanning laser microscopy and a gravity creaming test. Both lecithin-free and lecithin-containing emulsions showed no change in droplet size distributions with increasing concentration of potassium in the range 0-37.5 mM. In contrast, the diameter of emulsion droplets increased with increasing calcium or magnesium concentration >12.5 mM. Emulsions containing hydroxylated lecithin were more sensitive to the addition of calcium or magnesium than the lecithin-free emulsions. Storage of emulsions at 20 degrees C for 24 h further increased the diameter of droplets and resulted in extensive creaming in emulsions containing >25 mM calcium or magnesium. It appears that both flocculation and coalescence processes were involved in the destabilization of emulsions induced by the addition of divalent cations.  相似文献   

18.
The inhibitory effect of Picholine olive oil from Montpellier in Southern France on the chemical mediator release in type I allergy, using rat basophilic leukemia (RBL-2H3) cells, was investigated. Oil-in-water (O/W) emulsions prepared using Picholine olive oil showed an inhibitory effect on the chemical mediator release and decreased expressions of genes related to type I allergy in RBL-2H3 cells. We then measured the phenolic compounds present in Picholine olive oil using high-performance liquid chromatography and investigated some physical properties, such as droplet size, size distribution, viscosity, and surface tension of the resulting olive O/W emulsions. Our findings indicate that Picholine olive oil has high flavonoids content, especially apigenin, and the prepared emulsion of Picholine olive oil resulted in a considerable small size distribution, with an average droplet size of 170 nm.  相似文献   

19.
Microencapsulating properties of sodium caseinate   总被引:5,自引:0,他引:5  
Emulsions were prepared with 5% (w/v) solutions of sodium caseinate (Na Cas) and soy oil at oil/protein ratios of 0.25-3.0 by homogenization at 10--50 MPa. Emulsions were spray-dried to yield powders with 20--75% oil (w/w). Emulsion oil droplet size and interfacial protein load were determined. Microencapsulation efficiency (ME), redispersion properties, and structure of the powders were analyzed. The size of emulsion oil droplets decreased with increasing homogenization pressure but was not influenced by oil/protein ratio. Emulsion protein load values were highest at low oil/protein ratios. ME of the dried emulsions was not affected by homogenization pressure but decreased from 89.2 to 18.8% when the oil/protein ratio was increased from 0.25 to 3.0, respectively. Mean particle sizes of reconstituted dried emulsions were greater than those of the original emulsions, particularly at high oil/protein ratios (>1.0), suggesting destabilization of high-oil emulsions during the spray-drying process.  相似文献   

20.
The influence of chelating agents (disodium ethylenediaminetetraacetate (EDTA) and sodium citrate) on the physicochemical properties of whey protein isolate (WPI)-stabilized oil-in-water emulsions containing calcium chloride was determined. The calcium-binding characteristics of EDTA and citrate at 30 degrees C were characterized in aqueous solutions (20 mM Tris buffer, pH 7.0) by isothermal titration calorimetry (ITC). EDTA and citrate both bound calcium ions in a 1:1 ratio, but EDTA had a much higher binding constant. Oil-in-water emulsions (pH 7.0) were prepared containing 6.94% (w/v) soybean oil, 0.35% (w/v) WPI, 0.02% (w/v) sodium azide, 20 mM Tris buffer, 10 mM CaCl(2), and 0-40 mM chelating agent. The particle size, apparent viscosity, creaming stability, free calcium concentration, and particle surface potential of the emulsions were measured. The chelating agents reduced or prevented droplet aggregation in the emulsions. When they were present above a certain concentration (>3.5 mM EDTA or >5 mM citrate), droplet aggregation was prevented. The reduction of aggregation was indicated by decreases in particle size, shear-thinning behavior, apparent viscosity, and creaming. Emulsions containing chelating agents had lower free calcium concentrations and more negatively charged droplets, indicating that the chelating agents improved emulsion stability by binding calcium ions. EDTA could be used at lower concentrations than citrate because of its higher calcium ion binding constant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号