首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Certain species of winter migratory waterfowl in San-in District, western Japan, were surveyed for influenza virus from November 1983 to March 1984. Faeces of the waterfowl were collected regularly at five stations. Eleven influenza A viruses including H5N3 and H10N4 subtypes were isolated from 450 faecal samples from whistling swans, 28 viruses including H2N2 and H10N4 subtypes were isolated from 362 faecal samples from pintails; and subtype H13N6 was isolated from 240 faecal samples of black-tailed gulls.  相似文献   

2.
3.
4.
为弄清上海地区活禽批发市场中H9禽流感病毒(Avian influenza virus,AIV)的流行情况及鸡群的免疫情况,2009年对上海三大活禽批发市场进行了采样监测。采用HI试验检测H9 AIV抗体、荧光RT-PCR试验和鸡胚接种分离鉴定病毒。共采集110批次1 646份血样和喉头泄殖腔棉拭样品,平均抗体合格率为60.27%,分离到H9病毒134株,其中4-6月和9-11月为全年中病毒分离的2个高峰期(样品带毒率均超过了10.00%),明显比其它月份要高(其他月份均低于5.00%),样品带毒率平均为8.14%。不同市场、不同地区采集的样品其抗体合格率和样品的带毒率也存在一定的差异。在30批分离到病毒的样品中,13批次已免疫H9N2油乳剂灭活苗且抗体合格率均大于70.00%的样品中分离到45株病毒(45/195),其中6批次抗体合格率达到100%的样品中也分离到了病毒(8/90),但带毒率明显比未经疫苗免疫的样品(79/255)低。调查结果表明养殖户对肉鸡群H9N2油乳剂灭活苗免疫重视程度不够,鸡群中带毒现象较普遍。疫苗免疫后能产生较高的免疫抗体,且抗体能减轻临床症状,降低带毒率,但不能完全阻止病毒复制,存在高抗体下带毒现象。  相似文献   

5.
An avian influenza (AI) outbreak occurred in meat-type chickens in central Pennsylvania from December 2001 to January 2002. Two broiler breeder flocks were initially infected almost simultaneously in early December. Avian influenza virus (AIV), H7N2 subtype, was isolated from the two premises in our laboratory. The H7N2 isolates were characterized as a low pathogenic strain at the National Veterinary Services Laboratories based on molecular sequencing of the virus hemagglutinin cleavage site and virus challenge studies in specific-pathogen-free leghorn chickens. However, clinical observations and pathologic findings indicated that this H7N2 virus appeared to be significantly pathogenic in meat-type chickens under field conditions. Follow-up investigation indicated that this H7N2 virus spread rapidly within each flock. Within 7 days of the recognized start of the outbreak, over 90% seroconversion was observed in the birds by the hemagglutination inhibition test. A diagnosis of AI was made within 24 hr of bird submission during this outbreak using a combination of virus detection by a same-day dot-enzyme-linked immunosorbent assay and virus isolation in embryonating chicken eggs. Follow-up investigation revealed that heavy virus shedding (90%-100% of birds shedding AIV) occurred between 4 and 7 days after disease onset, and a few birds (15%) continued to shed virus at 13 days post-disease onset, as detected by virus isolation on tracheal and cloacal swabs. AIV was not detected in or on eggs laid by the breeders during the testing phase of the outbreak. The two flocks were depopulated at 14 days after disease onset, and AIV was not detected on the two premises 23 days after depopulation.  相似文献   

6.
Between November 1997 and February 2000, winter migratory waterfowls of several species staying in San-in district, western Japan were surveyed for influenza A virus and paramyxovirus at four stations. A total of 18 influenza A viruses was isolated from 1,404 fecal samples of whistling swans, pintails, mallards, and white-fronted geese. Five different hemagglutinins and eight neuraminidases were identified in the viruses isolated, in 11 different combinations, including H7N8 related to a subtype of a highly pathogenic chicken virus. In 2000, five lentogenic (non-pathogenic) Newcastle disease viruses were also isolated from white-fronted geese. These results suggested that possible precursor viruses for highly pathogenic avian myxoviruses are still brought into Japan by migratory waterfowls. The results also support the contention that continued surveillance of wild waterfowl population should be an integral part of control policies for these serious poultry diseases.  相似文献   

7.
Low‐pathogenicity avian influenza (LPAI) viruses have caused illness in poultry and humans with poultry contact. To determine whether there is evidence of exposure to avian influenza viruses (AIV) among backyard poultry in Minnesota and their human caretakers, 150 flocks of backyard birds were sampled for antibodies to AIV from August 2007 through December 2008. One hundred flocks were tested through routine slaughter surveillance by the Minnesota Board of Animal Health and an additional 50 flocks were contacted and sampled by study investigators. Blood was collected from 10 to 13 birds from each flock and a survey of biosecurity and management practices was administered to the flock owner. Blood samples were tested by agar gel immunodiffusion (AGID) for influenza A antibodies. Tested flocks had a median flock size of 100 birds (range: 12–800 birds), and were most commonly owned for meat for personal use (81% of respondents), fun or hobby (58%) and eggs for personal use (56%). Although 7% of flock owners reported that their birds had shown respiratory signs in the previous 3 months, only 1 of 150 flocks tested positive for influenza by AGID. Antibodies to LPAI H6N1 were detected in the positive flock. The owner of the positive flock did not have antibodies to H6 or other common AIV. Based on the findings of this study, the risk of transmission of LPAI viruses from backyard poultry to owners in Minnesota appears to be low under current conditions and management practices.  相似文献   

8.
Sun Y  Pu J  Fan L  Sun H  Wang J  Zhang Y  Liu L  Liu J 《Veterinary microbiology》2012,156(1-2):193-199
Despite the long-term vaccination programs implemented in China, H9N2 avian influenza viruses (AIVs) continue to persist in chicken populations, even in vaccinated flocks. We previously demonstrated that H9N2 AIV isolated from chickens in China also underwent antigenic drift and evolved into distinct antigenic groups (C, D and E). To understand whether antigenic drift of viruses away from the vaccine strain partially contributed to the circulation of H9N2 AIV in China, we evaluated the protective efficacy of a commercial vaccine against different antigenic groups of H9N2 AIV. Challenge experiments using vaccinated chickens indicated that the vaccine prevented shedding of antigenic group C viruses, but not those of the more recent groups D and E. Vaccinated chickens, even those with vaccine-induced HI titers of 1:1024, shed virus after being infected with A/chicken/Shandong/ZB/2007, a representative virus of antigenic group D. Genetic analysis showed that the representative viruses of antigenic groups D and E possessed greater numbers of amino acid substitutions in the hemagglutinin protein compared to the vaccine strain and the antigenic group C virus, and many of which were located in antigenic sites. Our results indicated that the persistence of H9N2 AIV in China might be due to incomplete vaccine protection, and that the avian influenza vaccine should be regularly evaluated and updated to maintain optimal protection. Furthermore, the avian influenza vaccination policy also needs to be re-assessed, and increased veterinary biosecurity on farms, rather than vaccine application alone, should be implemented to prevent and control avian influenza.  相似文献   

9.
Lu H 《Avian diseases》2003,47(2):361-369
A monoclonal antibody (MAb)-based dot-enzyme-linked immunosorbent assay (ELISA) has been developed that detected the epitopes specifically associated with avian influenza virus (AIV). The dot-ELISA detected the antigens of AIV directly from clinical and field specimens. Data obtained from experimentally AIV-infected specific-pathogen-free chickens and also the 2001/02 AIV outbreak of serotype H7N2 positive flocks in Pennsylvania indicated that the mean sensitivity (Se) of the dot-ELISA ranged between 45% and 68% and the mean specificity (Sp), between 85% and 90%. The values were derived from various clinical and field specimens when compared with virus isolation with embryonating chicken eggs. On routine AIV surveillance samples, the dot-ELISA achieved a 92%-100% Sp on the basis of resting over 1500 AIV surveillance samples that were confirmed negative by virus isolation. The dot-ELISA detected AIV antigens with a 5-microl allantoic fluid sample that contained a concentration of 0.4 hemagglutinating units. Furthermore, the dot-ELISA retained its specificity for AIV because no cross-reactions were obtained with various other avian viruses. The findings in this study indicated that the dot-ELISA was highly sensitive and specific and comparable with the commercial Directigen test in the detection of AIV obtained from clinical and field specimens.  相似文献   

10.
In order to determine the actual prevalence of avian influenza viruses (AIV) in wild birds in Germany, extensive surveillance studies were carried out between March 2003 and January 2005. More than 3.000 samples of 79 different species of wild birds (migratory and resident birds) were taken and 1.151 established pools investigated. Samples came from 80 different regions of Germany. Forty AIV isolates representing 14 combinations of eight different hemagglutinin and eight neuraminidase subtypes, among them H5 and H7, were identified. All H5 and H7 isolates were found to be of low pathogenicity. The overall incidence of the investigated pools based on virus isolation was 3,5 % for AIV, with considerable variability noted among species, season and location. All AIV were isolated from birds sampled in autumn. Most of the AIV isolates came from the resting or wintering areas of mallards breeding far north. This study adds to the understanding of the ecology of influenza viruses in wild birds and empahsizes the constant need for surveillance in times of an ongoing and expanding epidemic of highly pathogenic AI.  相似文献   

11.
We report the results of a 6-year serological and virological monitoring performed in ducks and coots in Italy, in order to assess the degree of influenza A virus circulation in these birds during wintering. A total of 1039 sera collected from 1992 to 1998 was screened by a double antibody sandwich blocking ELISA (NP-ELISA): seroprevalence of antibodies to influenza A viruses was significantly higher in ducks compared to coots (52.2% vs. 7.1%, respectively). The hemagglutination-inhibition (HI) assay, performed on NP-ELISA positive sera, showed that 16.9% of these duck sera and 33.3% of these coot sera had antibodies to at least one influenza virus HA subtype: ducks showed HI antibodies against most of the HA subtypes, except for the H3, H4, H7, and H12; coots were seropositive to the H3 and H10 subtypes, only. From 1993 to 1998, 22 virus strains were obtained from 802 cloacal swabs, with an overall virus isolation frequency of 2.7%. Viruses belonging to the H1N1 subtype were by far the most commonly circulating strains (18/22) and were isolated mainly from ducks (17/18). The remaining viruses were representative of the H10N8, H5N2 and H3N8 subtypes. Our data indicate some differences between influenza A virus circulation in sympatric ducks and coots and a significant antigenic diversity between some reference strains and viruses recently isolated in Italy.  相似文献   

12.
13.
为探究两广地区H9N2亚型禽流感病毒(avianinfluenzavirus,AIV)的变异情况及分子流行规律,于2011-2012年从该地区发病鸡群中共分离到16株H9N2亚型A1V,并对分离株HA基因进行测序与进化分析。结果表明,分离株HA基因开放阅读框全长均为1683bp,编码560个氨基酸;HA基因核苷酸同源性为88.7%~99.6%,编码氨基酸同源性为91.8%~99.5%。本试验分离毒株与国内疫苗株(GD-SS、SH—F和SD-6)的核苷酸同源性在90.1%~92.6%之间,推导的氨基酸序列同源性在91.6%~94.8%之间。进化分析显示分离株可分为Group1和Group2两个亚分支,与疫苗株均属于欧亚谱系的Y280分支,但亲缘关系较远。分离株HA蛋白裂解位点附近序列有3种形式:PARSSR+GLF、PSRSSR+GLF和PARLSR0GLF,均无连续碱性氨基酸的插A,符合低致病性AIv的特征。本试验发现分离株GD4、GX2在HA1的127、295位分别增加一个潜在的糖基化位点;除分离株GD5和GD6外,其余分离株在HAl的216位发生Q216L氨基酸突变,表明其存在感染人的可能性。  相似文献   

14.
15.
Isolation of H13N2 influenza A virus from turkeys and surface water.   总被引:1,自引:0,他引:1  
This is the first report of the isolation of H13N2 avian influenza virus (AIV) subtype from domestic turkeys. This subtype was also isolated from nearby surface water. The observation of large numbers of gulls in close association with turkeys on range before the virus isolations suggests that this virus subtype was transmitted from gulls to range turkeys. Turkey flocks infected by this virus subtype did not show any clinical signs of the disease, although seroconversion did occur. The H13N2 isolates were found to be non-pathogenic in chickens.  相似文献   

16.
野生鸟类禽流感病毒感染情况的调查   总被引:1,自引:0,他引:1  
为了解野生鸟类禽流感病毒(AIV)的携带感染情况,2006年~2010年,本研究在湖南省主要候鸟迁徙地收集115只野鸟组织或拭子样品、75份野鸟的新鲜粪便样品和72份血清样品。组织或拭子样品采用RT-PCR方法检测和鸡胚接种病毒分离鉴定,血清样品分别进行H5(含Re-5和Re-4)、H6、H7、H9、H10和H11抗体检测。结果表明,从斑鸠和绿头鸭组织中分别分离到H5N1亚型和H3N2亚型AIV;72份血清中有17份抗体为阳性,其中H5(Re-5)亚型5份、H5(Re-4)亚型1份、H6亚型1份、H7亚型2份和H9亚型8份,阳性率分别为6.94%、1.39%、1.39%、2.78%和11.11%。H10和H11亚型未检测到抗体阳性。  相似文献   

17.
A total of 1246 faecal and tissue samples collected/received from 119 farms located in various states of India were processed for isolation of avian influenza viruses (AIV) during 2003-2004 as part of a program to monitor AIV infection in Indian poultry population. Avian influenza virus was isolated for the first time in India from poultry farms with history of drop in egg production, respiratory illness and increased mortality in Haryana state. A total of 29 H9N2 AIV isolates were obtained from the states of Punjab, Haryana, Uttar Pradesh, Gujarat, and Orissa and Union Territory Delhi. Subtyping was done by HI, RT-PCR and neuraminidase inhibition assay. Pathotyping of six representative isolates by intravenous pathogenicity index (0.0/3.0) in 6-8 weeks old chicken, trypsin dependency in cell culture and HA cleavage site analysis (335RSSR*GLF341) confirmed that these isolates are low pathogenic. Nucleotide sequence analysis of the HA gene showed that the Indian isolates are very closely related (95.0-99.6%) and shared a homology of 92-96% with H9N2 isolates from Germany and Asian regions other than that of mainland China. Deduced amino acid sequences showed the presence of L226 (234 in H9 numbering) which indicates a preference to binding of alpha (2-6) sialic acid receptors. Two of the six isolates had 7 glycosylation sites in the HA1 cleaved protein and the remaining four had 5 sites. Phylogenetic analysis showed that they share a common ancestor Qa/HK/G1/97 isolate which had contributed internal genes of H5N1 virus circulating in Vietnam. Further characterization of Indian H9N2 isolates is required to understand their nature and evolution.  相似文献   

18.
The H3 subtype avian influenza virus (AIV) is one of the most frequently isolated subtypes in domestic ducks, live poultry markets, and wild birds in Korea. In 2002-2009, a total of 45 H3 subtype AIVs were isolated from the feces of clinically normal domestic ducks (n=28) and wild birds (n=17). The most prevalent subtypes in domestic ducks were H3N2 (35.7%), H3N6 (35.7%), H3N8 (25.0%), and H3N1 (3.6%, novel subtype in domestic duck in Korea). In contrast, H3N8 (70.6%) is the most prevalent subtype in wild birds in Korea. In the phylogenetic analysis, HA genes of the Korean H3 AIVs were divided into 3 groups (Korean duck, wild bird 1, and wild bird 2) and all viruses of duck origin except one were clustered in a single group. However, other genes showed extensive diversity and at least 17 genotypes were circulating in domestic ducks in Korea. When the analysis expanded to viruses of wild bird origin, the genetic diversity of Korean H3 AIVs became more complicated. Extensive reassortments may have occurred in H3 subtype influenza viruses in Korea. When we inoculated chickens and ducks with six selected viruses, some of the viruses replicated efficiently without pre-adaptation and shed a significant amount of viruses through oropharyngeal and cloacal routes. This raised concerns that H3 subtype AIV could be a new subtype in chickens in Korea. Continuous surveillance is needed to prepare the advent of a novel subtype AIV in Korea.  相似文献   

19.
Zhao S  Jin M  Li H  Tan Y  Wang G  Zhang R  Chen H 《Avian diseases》2005,49(4):488-493
To differentiate avian influenza virus (AIV)-infected chickens vs. chickens immunized with inactivated avian influenza virus, an enzyme-linked immunosorbent assay (ELISA) was developed using a recombinant nonstructural protein (NS1) as the diagnostic antigen, which was cloned from an AIV H9N2 subtype strain isolated during the avian influenza outbreak of 2003-04 and expressed in Escherichia coli. Antibodies to the AIV NS1 protein was only detected in the sera of chickens experimentally infected with AIV but not in the sera of chickens immunized with inactivated vaccine. This ELISA is useful for serological diagnosis to distinguish chickens infected with influenza viruses from those immunized with inactivated vaccine.  相似文献   

20.
Multiple avian influenza viruses’ subtypes are circulating worldwide possessing serious threat to human populations and considered key contributors to the emergence of human influenza pandemics. This study aimed to identify the potential existence of H7 and H9 avian influenza infections circulating among chicken flocks in Egypt. Serum samples were collected from chicken flocks that experienced respiratory distresses and/or variable mortality rates. H7 and H9 virus infections were screened by haemagglutination inhibition assay using chicken erythrocytes. Serum samples were collected from 9 broiler, 12 breeder and 18 layer flocks. Out of 1,225 examined sera, 417 (34 %) from 14 flocks and 605 (49.4 %) from 21 flocks were found positive for H7 and H9, respectively. Prevalence of both H7 and H9 antibodies were higher in layer followed by breeder then broiler flocks. Special consideration should be paid to control influenza viruses in Egypt, as pandemic influenza strains may develop unnoticed given the presence of subclinical infections, and the possibility of re-assortment with the prevailing endemic H5N1 virus strains in Egypt do exist.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号