首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 218 毫秒
1.
The occurrence of genetic erosion in local maize varieties in Mexico is intensely debated. Recent publications from Mexico show contradicting results about the loss of local varieties. Genetic erosion is a complex process, and well-documented examples of actual genetic erosion are not common in the literature. We worked in a region in which adoption of improved varieties was negligible, but other factors affecting maize agriculture were at play. The objectives of the study were to describe changes in maize diversity in the last 10 years and to associate them with socio-economic and environmental changes in a region in Mexico’s Central Highlands. We used richness and abundance of local varieties and diversity indices of races as indicators of maize diversity changes over time. We analyzed statistics and based on interviews we evaluated maize diversity changes between 2005 and 2015. We interviewed 113 farmers on two occasions with intervals from 5 to 10 years. According to climate statistics, rain has declined and temperature has increased. We also found a decrease in the lake level during the past 35 years. The total population in the region has doubled since the 1960s. The indigenous population has not changed significantly. Number of people working in agriculture has decreased since the 1960s. Rain fed agriculture decreased 8.1 % from 1990 to 2007. In four villages studied, farmed land area had decreased between 1995 and 2015. This reduction varies between 22 and 39 % depending on the village. Maize planted area decreased from 9675 to 8115 ha from 2003 to 2014. In the same period, avocado plantations grew from 34 to 786 ha. In despite of these changes, we did not find significant changes in average landraces per farmer (2.13 ± 0.28 in 2015) nor per village (4.15 ± 1.26 in 2015). Significant changes in maize races were not found either (1.91 ± 0.26 per farmer, 2.85 ± 0.86 per village in 2015). These results show that maize landrace diversity in the region is resilient but dynamic.  相似文献   

2.
Trichoderma harzianum strain T22 controls various diseases of maize and other crops, including seedling and root rots caused by Pythium ultimum. Seedlings of inbred line Mo17 were grown from T22-treated or untreated seeds in field soil or in field soil intested with the pathogen. Five days after planting, seedlings of Mo17 (5-days-old) were smaller in the presence of P. ultimum and larger in the presence of T22 relative to the control. The combination of T22 with P. ultimum (T22 P.…  相似文献   

3.
The struggle over genetically-engineered (GE) maize in Mexico reveals a deep conflict over the criteria used in the governance of agri-food systems. Policy debate on the topic of GE maize has become “scientized,” granting experts a high level of political authority, and narrowing the regulatory domain to matters that can be adjudicated on the basis of scientific information or “managed” by environmental experts. While scientization would seem to narrow opportunities for public participation, this study finds that Mexican activists acting “in defense of maize” engage science in multiple ways, using and producing scientific knowledge as well as treating scientific discussions as a stage for launching complex social critiques. Drawing from research in science and technology studies, this article assesses the impacts and pitfalls of three tactics used by maize activists that respond to the scientization of biotechnology politics: (1) using scientific information as a resource; (2) participating in scientific research; and (3) reframing policy problems as broadly social, rather than as solely scientific or technical. The obstacles that maize activists have faced in carrying out each of these efforts indicate that despite diverse and sophisticated engagements between social movements and the scientific field, scientization remains a significant institutional barrier to democratizing agricultural governance.  相似文献   

4.
Maize plants adapt to low phosphorus (P) stress by increasing root growth. It is of importance to know the extent to which genetic improvement of root growth can enhance P acquisiton. In the present study, the contribution of root growth improvement to efficient P acquisition was evaluated in two soils using T149 and T222, a pair of near isogenic maize testcrosses which were derived from a backcross BC 4 F 3 population. T149 and T222 showed no difference in shoot biomass and leaf area under normal growth conditions, but differed greatly in root growth. T149 had longer lateral roots and a larger root surface area compared to T222. In calcareous soil, when P was insufficient, i.e., when P was either supplied as KH 2 PO 4 at a concentration of 50 mg P kg-1 soil, or in the form of Phy-P, Ca3-P or Ca10-P, a 43% increase in root length in T149 compared to T222 resulted in an increase in P uptake by 53%, and shoot biomass by 48%. In acid soil, however, when P supply was insufficient, i.e., when P was supplied as KH 2 PO 4 at a concentration of 100 mg P kg-1 soil, or in the form of Phy-P, Fe-P or Al-P, a 32% increase in root length in T149 compared to T222 resulted in an increase in P uptake by only 12%, and shoot biomass by 7%. No significant differences in the exudation of organic acids and APase activity were found between the two genotypes. It is concluded that genetic improvement of root growth can efficiently increase P acquisition in calcareous soils. In acid soils, however, improvements in the physiological traits of roots, in addition to their size, seem to be required for efficient P acquisition.  相似文献   

5.
The fully mulched ridge–furrow(FMRF) system has been widely used on the semi-arid Loess Plateau of China due to its high maize(Zea mays L.) productivity and rainfall use efficiency. However, high outputs under this system led to a depletion of soil moisture and soil nutrients, which reduces its sustainability in the long run. Therefore, it is necessary to optimize the system for the sustainable development of agriculture. The development, yield-increasing mechanisms,negative impacts, optimizatio...  相似文献   

6.
Mechanisms controlling phosphorus (P) availability and the roles of microorganisms in the efficient utilization of soil P in the wheat–maize double cropping system are poorly understood.  In the present study, we conducted a pot experiment for four consecutive wheat–maize seasons (2016–2018) using calcareous soils with high (30.36 mg kg–1) and low (9.78 mg kg–1) initial Olsen-P content to evaluate the effects of conventional P fertilizer application to both wheat and maize (Pwm) along with a reduced P fertilizer application only to wheat (Pw).  The microbial community structure along with soil P availability parameters and crop yield were determined.  The results showed that the Pw treatment reduces the annual P input by 33.3% without affecting the total yield for at least two consecutive years as compared with the Pwm treatment in the high Olsen-P soil.  Soil water-soluble P concentrations in the Pw treatment were similar to those in the Pwm treatment at the 12-leaf collar stage when maize requires the most P.  Furthermore, the soil P content significantly affected soil microbial communities, especially fungal communities.  Meanwhile, the relative abundances of Proteobacteria and alkaline phosphatase (ALP) activity of Pw were significantly higher (by 11.4 and 13.3%) than those of Pwm in soil with high Olsen-P.  The microfloral contribution to yield was greater than that of soil P content in soil with high Olsen-P.  Relative abundances of Bacillus and Rhizobium were enriched in the Pw treatment compared with the Pwm treatment.  Bacillus showed a significant positive correlation with acid phosphatase (ACP) activity, and Rhizobium displayed significant positive correlations with ACP and ALP in soil with high Olsen-P, which may enhance P availability.  Our findings suggested that the application of P fertilization only to wheat is practical in high P soils to ensure optimal production in the wheat and maize double cropping system and that the soil P availability and microbial community may collaborate to maintain optimal yield in a wheat–maize double cropping system.  相似文献   

7.
A two-year field experiment was conducted to evaluate the effects of plant density on tassel and ear differentiation, anthesissilking interval(ASI), and grain yield formation of two types of modern maize hybrids(Zhongdan 909(ZD909) as tolerant hybrid to crowding stress, Jidan 209(JD209) and Neidan 4(ND4) as intolerant hybrids to crowding stress) in Northeast China. Plant densities of 4.50×104(D1), 6.75×104(D2), 9.00×104(D3), 11.25×104(D4), and 13.50×104(D5) plants ha~(-1) had no significant effects on initial time of tassel and ear differentiation of maize. Instead, higher plant density delayed the tassel and ear development during floret differentiation and sexual organ formation stage, subsequently resulting in ASI increments at the rate of 1.2–2.9 days on average for ZD909 in 2013–2014, 0.7–4.2 days for JD209 in 2013, and 0.5–3.7 days for ND4 in 2014, respectively, under the treatments of D2, D3, D4, and D5 compared to that under the D1 treatment. Total florets, silking florets, and silking rates of ear showed slightly decrease trends with the plant density increasing, whereas the normal kernels seriously decreased at the rate of 11.0–44.9% on average for ZD909 in 2013–2014, 2.0–32.6% for JD209 in 2013, and 9.7–28.3% for ND4 in 2014 with the plant density increased compared to that under the D1 treatment due to increased florets abortive rates. It was also observed that 100-kernel weight of ZD909 showed less decrease trend compared that of JD209 and ND4 along with the plant densities increase. As a consequence, ZD909 gained its highest grain yield by 13.7 t ha~(-1) on average at the plant density of 9.00×104 plants ha~(-1), whereas JD209 and ND4 reached their highest grain yields by 11.7 and 10.2 t ha~(-1) at the plant density of 6.75×104 plants ha~(-1), respectively. Our experiment demonstrated that hybrids with lower ASI, higher kernel number potential per ear, and relative constant 100-kernel weight(e.g., ZD909) could achieve higher yield under dense planting in high latitude area(e.g., Northeast China).  相似文献   

8.
The wheat × maize system is one of the most effective ways to produce haploids in wheat. Whether and how it could be successfully applied in practical breeding mostly depends upon the efficiency of haploid embryo production. To perfect the protocols of haploid embryo induction, the efficiency of haploid embryo production between in vitro culture of cut plant and intact plant growth for hybrid spikes with two F1 wheat hybrids and two maize varieties was compared. Effects of different cutting plant times and formulas of nutrient solutions for cut plant culture on haploid embryo formation were also studied. Results indicated that the embryo rate of in vitro culture was 3.29 times that of intact plant growth, with the figures of 31.6% vs 9.6%, respectively. The optimal time for cut plant culture was 24 h after pollination. Formulas of nutrient solutions significantly affected the efficiency of haploid embryo induction. With an embryo rate of 0–35.5%, adding calcium phosphate in the culture solution at 3 g·L−1 could raise the caryopsis and embryo rates. According to this study, the best medium for cut plant culture was: 100 mg·L−1 2,4-D+ 40 g·L−1 sucrose + 10 mg·L−1 silver nitrate + 8 mL·L−1 sulfurous acid + 3 g·L−1 calcium phosphate, with which a caryopsis rate of 95% and an embryo rate of about 30% could be obtained. __________ Translated from Journal of Triticeae Crops, 2008, 28(1): 1–5 [译自: 麦类作物学报]  相似文献   

9.
The pollen tube pathway method of transformation has been reported to be successful in most crops,but less successfu in maize.DNA can be transferred by cutting the stigma following pollination and applying the DNA solution in a suitable period DNA presumably reaches the ovary by flowing down the pollen tube and then integrates into the just fertilized but undivided zygotic cells.To provide the molecular evidence for this procedure,the plasmids pGBIRC carrying a CaMV35S promoter-PPT acetyle transferase(bar)gene-nos terminator gene fusion construct were used.Total 3 276 seeds were produced from the ears treated with DNA.It was found that 35 seedlings were GUS assay positive,but less intense than that of the positive controls,of which 17 were PCR amplification positive.But,only 13 of the seeds from the plants treated with DNA containing the bar gene were found to be resistant compared with the negative control.Less than 1.07% of progeny seedlings tested expressed a herbicide positive reaction and polymerase chain reaction(PCR)with seedling DNA did detect the bar gene.Morphological variation was observed in six plants.We succeed in obtain PPT-resistant maize inbred lines via pollen tube pathway.  相似文献   

10.
Southern corn rust(SCR) caused by Puccinia polysora Underw and maize stalk rot caused by Pythium inflatum Matthews(MSR-2) are two destructive diseases of maize(Zea mays L.) in China.Our previous studies indicated that maize inbred line Qi319 is highly resistant to SCR but susceptible to MSR-2,while inbred line 1145 is highly resistant to MSR-2 but susceptible to SCR.The SCR resistant gene(RppQ) in Qi319 and MSR-2 resistant gene(Rpi1) in 1145 have been mapped on chromosome 10 and 4 respectively.In this research,through marker-assisted selection(MAS) with the molecular markers,bnlg1937 tightly linked to Rpi1 and phi041 tightly linked to RppQ,pyramid breeding of the two kinds of disease resistant genes were carried out from the year of 2003 to 2007.Two homozygotic inbred lines of F5 generation,DR94-1-1-1 and DR36-1-1-1 were identified.MAS result suggested DR94-1-1-1 and DR36-1-1-1 contained the two resistance genes RppQ and Rpi1.Field inoculation tests confirmed their high resistance to the two diseases.In addition,field investigation indicated that the two selected inbred lines,particularly DR94-1-1-1,had excellent agronomic traits such as plant height,ear height and yield-relating traits including ear length,ear diameter,ear weight,kernels per ear,kernels per row and kernel weight per ear.The two selected inbred lines DR94-1-1-1 and DR36-1-1-1 can either be directly developed into commercial variety or used as immediate donors of SCR and MSR resistance breeding programs in maize.  相似文献   

11.
The efficient acceptors for maize transgenic engineering are currently insufficient in China. Seed production by male sterility is the best method for advancing the authenticity of maize hybrid. Maize inbred line 18–599 (white) is an antivirus high-quality maize inbred line in China, which has been used for lots of maize hybrid cultivars. The establishment of high efficiency transgenic acceptors is necessary for advancing the transgenic efficiency in maize transformation work. In this study, the efficient transgenic acceptors were optimized and established. 18–599 (white) was studied in state, types of culture mediums, times of callus regeneration and concentration of the screening reagent, Basta. The results showed that N6-4 medium was the best in 8 types of mediums for the immature embryo of 18–599 (white), 1.6 mm length was the feasible length of immature embryos for tissue culture in establishing the transgenic acceptor system, and it was within 5 times for suitable callus subculture. With the optimized transgenic acceptors, barnase gene was translated successfully into 18–599 (white) by a particle gun using bar as a marker gene. Basta was used as the screening reagent, its lethal concentration was 8 mg·L−1 and its working concentration for screening was 6, 8 and 6 mg·L−1 in 3 turns for callus regeneration, respectively. In this work, a transgenic plant with male sterility was obtained through molecule detection and observation in the field. The result has an important significance for the creation of new male sterility inbred lines in maize in the future. __________ Translated from Acta Agronomica Sinica, 2007, 33(5): 738–743 [译自: 作物学报]  相似文献   

12.
High-temperature stress(HTS) at the grain-filling stage in spring maize(Zea mays L.) is the main obstacle to increasing productivity in the North China Plain(NCP). To solve this problem, the physiological mechanisms of HTS, and its causes and impacts, must be understood. The HTS threshold of the duration and rate in grain filling, photosynthetic characteristics(e.g., the thermal stability of thylakoid membrane, chlorophyll and electron transfer, photosynthetic carbon assimilation), water status(e.g., leaf water potential, turgor and leaf relative water content) and signal transduction in maize are reviewed. The HTS threshold for spring maize is highly desirable to be appraised to prevent damages by unfavorable temperatures during grain filling in this region. HTS has negative impacts on maize photosynthesis by damaging the stability of the thylakoid membrane structure and degrading chlorophyll, which reduces light energy absorption, transfer and photosynthetic carbon assimilation. In addition, photosynthesis can be deleteriously affected due to inhibited root growth under HTS in which plants decrease their water-absorbing capacity, leaf water potential, turgor, leaf relative water content, and stomatal conductance. Inhibited photosynthesis decrease the supply of photosynthates to the grain, leading to falling of kernel weight and even grain yield. However, maize does not respond passively to HTS. The plant transduces the abscisic acid(ABA) signal to express heat shock proteins(HSPs), which are molecular chaperones that participate in protein refolding and degradation caused by HTS. HSPs stabilize target protein configurations and indirectly improve thylakoid membrane structure stability, light energy absorption and passing, electron transport, and fixed carbon assimilation, leading to improved photosynthesis. ABA also induces stomatal closure to maintain a good water status for photosynthesis. Based on understanding of such mechanisms, strategies for alleviating HTS at the grain-filling stage in spring maize are summarized. Eight strategies have the potential to improve the ability of spring maize to avoid or tolerate HTS in this study, e.g., adjusting sowing date to avoidHTS, breeding heat-tolerance varieties, and tillage methods, optimizing irrigation, heat acclimation, regulating chemicals, nutritional management, and planting geometric design to tolerate HTS. Based on the single technology breakthrough, a comprehensive integrated technical system is needed to improve heat tolerance and increase the spring maize yield in the NCP.  相似文献   

13.
The invasive fall armyworm Spodoptera frugiperda(J. E. Smith) invaded Asia in 2018, colonizing the tropical and southern subtropical regions as well as migrating with the monsoons into Northeast Asia during spring and summer. This has resulted in widespread infestations, with significant impacts on maize production in various Asian countries. Previous studies have shown that the invasion of this pest can alter the species relationships of maize pests, but the actual impact on maize pest manageme...  相似文献   

14.
Spatial dynamics of crop yield provide useful information for improving the production. High sensitivity of crop growth models to uncertainties in input factors and parameters and relatively coarse parameterizations in conventional remote sensing(RS) approaches limited their applications over broad regions. In this study, a process-based and remote sensing driven crop yield model for maize(PRYM–Maize) was developed to estimate regional maize yield, and it was implemented using eight data-model coupling strategies(DMCSs) over the Northeast China Plain(NECP). Simulations under eight DMCSs were validated against the prefecture-level statistics(2010–2012) reported by National Bureau of Statistics of China, and inter-compared. The 3-year averaged result could give more robust estimate than the yearly simulation for maize yield over space. A 3-year averaged validation showed that prefecture-level estimates by PRYM–Maize under DMCS8, which coupled with the development stage(DVS)-based grain-filling algorithm and RS phenology information and leaf area index(LAI), had higher correlation(R, 0.61) and smaller root mean standard error(RMSE, 1.33 t ha~(–1)) with the statistics than did PRYM–Maize under other DMCSs. The result also demonstrated that DVS-based grain-filling algorithm worked better for maize yield than did the harvest index(HI)-based method, and both RS phenology information and LAI worked for improving regional maize yield estimate. These results demonstrate that the developed PRYM–Maize under DMCS8 gives reasonable estimates for maize yield and provides scientific basis facilitating the understanding the spatial variations of maize yield over the NECP.  相似文献   

15.
《农业科学学报》2023,22(6):1896-1908
Compared with sole nitrate (NO3) or sole ammonium (NH4+) supply, mixed nitrogen (N) supply may promote growth of maize seedlings. Previous study suggested that mixed N supply not only increased photosynthesis rate, but also enhanced leaf growth by increasing auxin synthesis to build a large sink for C and N utilization. However, whether this process depends on N absorption is unknown. Here, maize seedlings were grown hydroponically with three N forms (NO3 only, 75/25 NO3/NH4+ and NH4+ only). The study results suggested that maize growth rate and N content of shoots under mixed N supply was little different to that under sole NO3 supply at 0–3 d, but was higher than under sole NO3 supply at 6–9 d. 15N influx rate under mixed N supply was greater than under sole NO3 or NH4+ supply at 6–9 d, although NO3 and NH4+ influx under mixed N supply were reduced compared to sole NO3 and NH4+ supply, respectively. qRT-PCR determination suggested that the increased N absorption under mixed N supply may be related to the higher expression of NO3 transporters in roots, such as ZmNRT1.1A, ZmNRT1.1B, ZmNRT1.1C, ZmNRT1.2 and ZmNRT1.3, or NH4+ absorption transporters, such as ZmAMT1.1A, especially the latter. Furthermore, plants had higher nitrate reductase (NR) glutamine synthase (GS) activity and amino acid content under mixed N supply than when under sole NO3 supply. The experiments with inhibitors of NR reductase and GS synthase further confirmed that N assimilation ability under mixed N supply was necessary to promote maize growth, especially for the reduction of NO3 by NR reductase. This research suggested that the increased processes of NO3 and NH4+ assimilation by improving N-absorption ability of roots under mixed N supply may be the main driving force to increase maize growth.  相似文献   

16.
The Northeast Plain is the largest maize production area in China, and drip irrigation has recently been proposed to cope with the effects of frequent droughts and to improve water use efficiency (WUE). In order to develop an efficient and environmentally friendly irrigation system, drip irrigation experiments were conducted in 2016–2018 incorporating different soil water conservation measures as follows: (1) drip irrigation under plastic film mulch (PI), (2) drip irrigation under biodegradable film mulch (BI), (3) drip irrigation incorporating straw returning (SI), and (4) drip irrigation with the tape buried at a shallow soil depth (OI); with furrow irrigation (FI) used as the control. The results showed that PI and BI gave the highest maize yield, as well as the highest WUE and nitrogen use efficiency (NUE) because of the higher root length density (RLD) and better heat conditions during the vegetative stage. But compared with BI, PI consumed more soil water in the 20–60 and 60–100 cm soil layers, and accelerated the progress of root and leaf senescence due to a larger root system in the top 0–20 cm soil layer and a higher soil temperature during the reproductive stage. SI was effective in improving soil water and nitrate contents, and promoted RLD in deeper soil layers, thereby maintaining higher physiological activity during the reproductive stage. FI resulted in higher nitrate levels in the deep 60–100 cm soil layer, which increased the risk of nitrogen losses by leaching compared with the drip irrigation treatments. RLD in the 0–20 cm soil layer was highly positively correlated with yield, WUE and NUE (P<0.001), but it was negatively correlated with root nitrogen use efficiency (NRE) (P<0.05), and the correlation was weaker in deeper soil layers. We concluded that BI had advantages in water–nitrogen utilization and yield stability response to drought stress, and thus is recommended for environmentally friendly and sustainable maize production in Northeast China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号