首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Seven sunflower genotypes comprising of populations and hybrids showing differential sporophytic reaction to Alternaria leaf and stem blight were studied for their gametophytic reaction to pathogen culture filtrate. The sunflower pollen grains germinate well in the liquid medium and give good pollen tube growth in the absence of the culture filtrate. The addition of increasing concentrations of culture filtrate to medium significantly reduced the pollen germination and tube growth in all the genotypes. The reduction in pollen germination and tube growth in vitro due to culture filtrate was more in highly susceptible genotypes L-101 and Morden than the moderately resistant genotypes Acc. nos. 1229, 180 and ISFH-306. Pretreating the stigma and style with the culture filtrate before pollination reduced the number of pollen grains germinating compared to untreated control suggesting toxin stress can be created on the stigmatic surface before pollination. There was correspondence between pollen germination on stressed stigma (in vitro) and sporophytic reaction of the genotype suggesting pollen grain having resistance would germinate on the stressed stigma and fertilise the ovule achieving selective fertilisation. The correlation analysis indicated that there is a negative relation between sporophytic per cent disease index value and gametophytic parameters such as in vitro and in vivo pollen germination, culture filtrate required to inhibit 50% pollen germination and pollen tube growth. The association between pollen and the sporophytic reaction to the disease indicate the possibility of rapid screening of a large number of genotypes by means of pollen assay as an alternate technique with regard to sporophytic disease index in sunflower. The study also indicate the possibility of pollen selection before fertilisation to achieve rapid improvement in disease resistance. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
Summary Two cycles of recurrent selection for yield were previously conducted using a population of Arachis hypogaea L.-like tetraploid hybrid derivatives selected from among the progeny of a cross between A. hypogaea and A. cardenasii Krap. et Greg. nom. nud., a diploid species with resistance to late leafspot (Cercosporidium personatum (Burk. and Curt.) Deighton). Using the 10 highest yielding parents from each of the above cycles of recurrent selection, a study was conducted for 12 morphological traits and susceptibility to leafspot infection in a replicated test at a single location. The two parents used to initiate the interspecific hybrid population (PI 261942-3 and A. cardenasii) as well as two adapted cultivars (Florigiant and NC 7) were included as checks. The objectives of the study were to determine the amount of genetic variation remaining in the population after two cycles of recurrent selection in order to predict whether further progress from selection could be expected and determine the potential for utilizing wild species for the improvement of quantitative traits in peanut. The results indicate that significant levels of genetic variation remain in the population after two cycles of recurrent selection for all traits measured, including several components of yield and leafspot resistance. This suggests that continued progress in population improvement from further cycles of selection should be possible while enhancing the genetic diversity of cultivated peanut germplasm.Paper no. 12347 of the Journal Series of the North Carolina Agric. Res. Serv., Raleigh, NC 27695-7643. This work was partially funded by the Peanut CRSP, USAID grant number DAN-4048-G-SS-2065-00. Recommendations do not represent an official position or policy of USAID.  相似文献   

3.
Summary During a four year period, a total of 258 winter and spring wheat genotypes were evaluated for resistance to head blight after inoculation with Fusarium culmorum strain IPO 39-01. It was concluded that genetic variation for resistance is very large. Spring wheat genotypes which had been reported to be resistant to head blight caused by Fusarium graminearum were also resistant to F. culmorum. The resistant germplasm was divided into three gene pools: winter wheats from Eastern Europe, spring wheats from China/Japan and spring wheats from Brazil. In 32 winter wheat genotypes in 1987, and 54 winter wheat genotypes in 1989, the percentage yield reduction depended on the square root of percentage head blight with an average regression coefficient of 6.6. Heritability estimates indicated that for selection for Fusarium head blight resistance, visually assessed head blight was a better selection criterion than yield reduction.  相似文献   

4.
Blackspot, caused by Didymella pinodes (Berk. & Blox.)Vestergr., is one of the most important diseases of field pea, causing significant reduction in seed yield and quality in southern Australia and in other parts of the world. Development of resistant germplasm has been slow because of the low level of resistance found in the available germplasm, poor reliability of screening methods and the polygenic nature of inheritance. Crosses were made between agronomically suitable lines and resistant germplasm from different sources. Their progeny were advanced through the single seed descent method and single plants were selected at F4/F5. The F4/F5 derived lines were screened against blackspot in the field under disease pressure and evaluated for grain yield at multilocations over 2 years. Despite the low level of resistance in the parental germplasm, the level of resistance has increased significantly in the new germplasm. Many of the resistant lines were late and low yielding, but lines with higher resistance and early flowering and high yield potential were also identified indicating that the disease resistance, adaptation and yield potential can be combined. However, the resistance identified in this study is only partial and suitable agronomic practices may need to be supplemented to minimise the yield loss and enhance the benefits of this partial resistance.  相似文献   

5.
Bacterial leaf blight (BLB), caused by Xanthomonas axonopodis pv. vignicola (Xav), is widespread in major cowpea [Vigna unguiculata (L.) Walp.] growing regions of the world. Considering the resource poor nature of cowpea farmers, development and introduction of cultivars resistant to the disease is the best option. Identification of DNA markers and marker‐assisted selection will increase precision of breeding for resistance to diseases like bacterial leaf blight. Hence, an attempt was made to detect QTL for resistance to BLB using 194 F2 : 3 progeny derived from the cross ‘C‐152’ (susceptible parent) × ‘V‐16’ (resistant parent). These progeny were screened for resistance to bacterial blight by the leaf inoculation method. Platykurtic distribution of per cent disease index scores indicated quantitative inheritance of resistance to bacterial leaf blight. A genetic map with 96 markers (79 SSR and 17 CISP) constructed from the 194 F2 individuals was used to perform QTL analysis. Out of three major QTL identified, one was on LG 8 (qtlblb‐1) and two on LG 11 (qtlblb‐2 and qtlblb‐3). The PCR product generated by the primer VuMt337 encoded for RIN2‐like mRNA that positively regulate RPM1‐ and RPS2‐dependent hypersensitive response. The QTL qtlblb‐1 explained 30.58% phenotypic variation followed by qtlblb‐2 and qtlblb‐3 with 10.77% and 10.63%, respectively. The major QTL region on LG 8 was introgressed from cultivar V‐16 into the bacterial leaf blight susceptible variety C‐152 through marker‐assisted backcrossing (MABC).  相似文献   

6.
陕西关中夏播玉米单产低而不稳,抗病性抗逆性降低,选育玉米新品种,应以多抗、广适、稳产、高产为育种目标。咸阳市农科所通过种质改良和系统选择,选育成功玉米杂交种隆玉五号。该品种夏播生育期95—98d。高抗大小斑病、穗粒腐病,抗茎腐病、弯孢叶斑病、黑粉病。籽粒含粗蛋白10.0%,淀粉71.0%,粗脂肪4.1%,赖氨酸0.258%,产量高、品质优良、抗病性好、抗倒伏、中早熟、适应性广,成熟时保绿性好。属于粮饲兼用型玉米杂交种。  相似文献   

7.
Selection for brown stripe downy mildew resistance in maize   总被引:3,自引:0,他引:3  
Summary The maize (Zea mays L.) cultivar Makki Safed 1 (MS1) with susceptibility to brown stripe downy mildew (BSDM) caused by Sclerophthora rayssiae var. zeae Payak & Renfro, was subjected to two cycles of mass selection and one cycle of full-sib family selection. Selection was carried out primarily for BSDM resistance.The mass selection was practised under artificial epiphytotic conditions in a disease nursery. Full-sib progenies and performance trials on MS1 and its improved versions were grown in diseased and disease free environments.Mass selection resulted in a significant improvement for resistance to BSDM. A cycle of full-sib selection resulted in an additional improvement for resistance to the disease. The disease rating of the improved version was 1.5 against 4.5 for the original population (scale: 1, highly resistant to 5, highly susceptible). The yield of the improved populations of MS1 was significantly greater than that of MS1 in the disease nursery. In disease free experiments, the improved populations showed almost no yield advantage over MS1. There were also no significant differences between the original population and the improved population after three selection cycles for ear length, ear girth, number of kernel rows per ear, number of kernels per row, 1000-kernel weight, plant height, ear height and days to silk.  相似文献   

8.
Summary Reciprocal recurrent selection was carried out with two populations of maize (Zea mays L.) having good combining ability. We selected for higher grain yield, early maturity, shorter plant height and lodging resistance. Two cycles were completed in two years (four seasons), by resorting to late planting of S1 lines for recombination in the main season in which top-cross families were assessed. Top-crosses and selfings were made in the off-season. The original and improved versions of the populations and their crosses were evaluated in multilocation trials. The superiority of the population hybrid was 10.3% for grain yield, 5.5% for plant height and 1.8 days to silk. The improved hybrid had delayed leaf senescence and better resistance to lodging and post-flowering stalk rots. Among the yield components, only ear girth showed improvement. Syn 2 of the improved population cross showed a yield reduction of 6.2% in comparison to Syn 1. Intrapopulation gains were not significant except for lodging resistance in one population.  相似文献   

9.
Early blight disease, caused by Alternaria solani Sorauer, is a serious disease of potato foliage and tubers that occurs in most potato‐growing regions world‐wide. Developing new potato cultivars with resistance to early blight may reduce losses in the field and in storage, and lessen the need for fungicide applications. A total of 280 clones, derived from 72 maternal half‐sib families from a diploid random‐mated hybrid population of Solarium phureja×Solarium stenotomum were examined for resistance to early blight. The clones that were evaluated in a replicated field trial for 2 years in Pennsylvania, USA, had similar early blight intensity both years. Significant differences were found among families, within families and for the interaction of years × within families. Broad‐sense heritability for resistance, measured as area under the disease progress curve (AUDPC), was estimated as 0.73, with a 95% confidence interval of 0.65‐0.78, and narrow‐sense heritability was estimated as 0.61 ± 0.29 (P = 0.05). The correlation of AUDPC for early blight between years was 0.57 (P < 0.0001). These results suggest that this diploid population is worthy of use in breeding for early blight resistance.  相似文献   

10.
Several studies have indicated a possible link between genome size and earliness in maize. In this study, an original maize population, South African photo-period insensitive maize composite II (C0) and several selected generations were analyzed for days to flowering, plant height, ear height, and yield. The selection criterion was earliness. Over six cycles of selection a 14-day decrease in days to flowering was obtained with no significant reduction in grain yield. In the initial population (C0) and the most advanced selection (C6) 101 plants were analyzed for nuclear DNA content. A significant decrease in the mean nuclear DNA content of the C0 population (102 AU) was observed with respect to the C0 population (105 AU). This reduction was the result of a decrease in frequency of plants in the C6 population with large genome sizes. Therefore it was concluded that selection for earliness resulted in selection against plants with large genome sizes. Hence, the nucleotype of a maize plant can be modified by selection such as early flowering time.  相似文献   

11.
Summary A population of 572 F2 derived F3 lines from six crosses were used to estimate parameters relevant to selection for resistance to Septoria nodorum of wheat. Lines were grown in disease free (fungicide sprayed) and inoculated microplots in 2 replications of a split-plot design in a single environment in 1977. Average yield reduction due to disease was approximately 50%; this was associated with an average septoria score of 50% on the flag leaf, an average septoria score of 42% on the head, and a reduction of 37% in seed weight. Low S. nodorum scores were correlated with late heading date, tall plant height, high grain yield, and high seed weight in diseased plots, and high seed weight % (seed weight in diseased plots expressed as a percentage of seed weight in fungicide sprayed plots).Restricted selection indexes were used to study the relative contributions of disease escape, true resistance, and tolerance to variability in grain yield in diseased plots, seed weight in diseased plots, and seed weight %. True resistance appeared to be the most important factor causing variation in grain yield in diseased plots and seed weight %. Tolerance and escape seemed to be more important for seed weight in diseased plots.Heritabilities of S. nodorum scores on the flag leaf and head were 63% and 52%, respectively. Leaf and head scores could be used most effectively as selection criteria to upgrade resistance in a population before harvest.Selection for high seed weight % slightly reduced yields in disease free plots, although yield in diseased plots and seed weight in diseased plots were increased. However, selection for increased yield or increased seed weight in diseased plots improved yield in disease free plots. It is suggested that direct selection for yield or seed weight in diseased plots is likely to achieve more desirable goals than selection for seed weight %.  相似文献   

12.
A yellow-seeded exotic accession of Brassica juncea has shown complete freedom from white rust and powdery mildew and a high degree of resistance to Alternaria black spot under conditions of heavy disease infestation in the field. The germplasm line was, however, too late in flowering and maturity to be useful for either processing directly into a variety or to be involved in a crossing programme for breeding. Somaclonal variation from this accession has provided a highly productive line which retains the resistance to diseases of the parental material.  相似文献   

13.
Screening of 144 varieties of celery A. graveolens L. for late blight (Septoria apiicola Speg.) resistance resulted in the detection of significant differences for disease reaction. However, each accession displayed greater than 25 % leaf necrosis area due to the disease pathogen. Hence the magnitude of infection in the least susceptible plants was still too great to use them as a valuable source for resistance. The wild species A. chilense and A. panul exhibited a few discrete yellow spots with very little, if any, pycnidial development. This type of resistance was not observed in any accession of celery screened. The degree of resistance was intermediate in the F1 hybrids between A. graveolens × A. chilense and A. graveolens×A. panul, indicating incomplete dominance. The resistance to late blight found in these wild species and their ability to cross with celery provides a novel germplasm source for breeding celery lines with improved resistance to late blight.  相似文献   

14.
D. J. Bonfil    O. Goren    I. Mufradi    J. Lichtenzveig    S. Abbo 《Plant Breeding》2007,126(2):125-129
Terminal drought is a major constraint to chickpea (Cicer arietinum L.) production. Autumn sowing and early flowering have been suggested as ways to benefit from the winter rains in short rainy seasons under dryland cropping. High‐yielding, late‐flowering, simple‐leafed (slv/slv) chickpea cultivars with good field resistance to Ascochyta blight have been bred recently. Changing plant architecture, by altering leaf shape, may affect agronomic performance. As no information is available on the effect of leaf shape on phenology and seed yield, this study was aimed at: (i) introducing the simple leaf trait into an early‐flowering chickpea background; (ii) comparing the grain yield of the two leaf types in early vs. late flowering backgrounds and (iii) producing breeding lines combining early flowering, large seeds and Ascochyta tolerance with both leaf types. Hybrid progeny were studied from the cross of ‘Sanford’ (slv/slv) and ICC7344, (compound, SLV/SLV). Four early‐podding, F8 breeding lines were selected with either simple or compound leaves. In three different field experiments under dryland conditions (334–379 mm), they yielded ca. 1.4 t/ha as compared with 1.0 t/ha in the standard Israeli ‘Yarden’ on one site, but no significant differences in yield were obtained in the other two experiments.  相似文献   

15.
Early blight (Alternatia solani) is a fungal disease in hot and humid environments, which causes leaf, stem and tuber lesions. Early blight resistance should be incorporated into potato cultivars because the fungicide spraying is an expensive solution for developing countries. The diploid cultivated species Solanum tuberosum group Phureja and group Stenotomum are sources of resistance alleles. The elucidation of the inheritance for early blight resistance must help to decide what could be the best breeding procedure to improve this diploid germplasm and transfer the resistance to the tetraploid level. Three experiments were carried out under controlled and field conditions to determine the heritability of this trait using nested and diallel mating designs with haploid, species and haploid-species hybrids. The narrow-sense heritability estimates were relatively high (0.64–0.78). This means that additivity was the most important type of gene action for determining resistance to early blight at the diploid level. The results suggested that diploid parents showing highest levels of resistance, throughout the cycle of disease development, can be used in 4x×2x crosses to obtain resistant tetraploid progenies to this fungal disease.  相似文献   

16.
Z. P. Yang    X. Y. Yang  D. C. Huang 《Plant Breeding》1999,118(4):289-292
The objectives of this study were to compare efficiency of evaluation for resistance to Fusarium head blight (FHB) under two inoculation methods in a recurrent selection programme. Fifty selected homozygous F5 fertile lines, from each of five cycles (C0, C1, C2, C3 and C4) of recurrent selection, and two control cultivars were evaluated in a split-plot design in 1995 and 1996 under the soil-surface inoculation with Fusarium graminearum-colonized kernels and the single-floret inoculation with ascospore suspension. Comparison of the two inoculation methods using means, ranges, coefficients of variation, heritabilities and correlations among infected spikelet rate (ISR), reaction index (RI) and disease index (DI) indicated that FHB resistance could be evaluated with similar accuracy and precision using either of the two inoculation methods. Regressions of disease scores in the soil-surface inoculation on disease scores in the single-surface inoculation were positive and highly significant, showing a strong relationship between both inoculation methods for FHB resistance. The percentage of lines with similar performance for FHB disease scores in both inoculation methods was high. The soil-surface inoculation and single-floret inoculation appear to be useful techniques for evaluating numerous individuals of segregating population and screening advanced homozygous lines for FHB resistance in a recurrent selection programme in wheat, respectively.  相似文献   

17.
Ascochyta blight is a devastating disease of chickpea. Breeders have been trying to introduce resistance from wild Cicer into cultivated chickpea, however, the effort is hampered by the frequent genetic drag of undesirable traits. Therefore, this study was aimed to identify potential markers linked to plant growth habit, ascochyta blight resistance and days to flowering for marker-assisted breeding. An interspecific F2 population between chickpea and C. reticulatum was constructed to develop a genetic linkage map. F2 plants were cloned through stem cuttings for replicated assessment of ascochyta blight resistance. A closely linked marker (TA34) on linkage group (LG) 3 was identified for plant growth habit explaining 95.2% of the variation. Three quantitative trait loci (QTLs) explaining approximately 49% of the phenotypic variation were found for ascochyta blight resistance on LG 3 and LG 4. Flowering time was controlled by two QTLs on LG3 explaining 90.2% of the variation. Ascochyta blight resistance was negatively correlated with flowering time (r = −0.22, P < 0.001) but not correlated with plant growth habit.  相似文献   

18.
G. H. Jiang    C. G. Xu    J. M. Tu    X. H. Li    Y. Q. He  Q. F. Zhang 《Plant Breeding》2004,123(2):112-116
The wild‐rice‐derived dominant gene Xa21 conferring multi‐race resistance to bacterial blight and a fused Bt gene cry1Ab/cry1Ac conferring resistance to lepidopteran insects were individually introduced into the same genetic background of an elite indica cytoplasm male sterile (CMS) restorer line ‘Minghui 63′. The line showed the desirable insect‐ and disease‐resistant phenotypes. To maximize the effect, the two genes were also pyramided into the same recipient plant of ‘Minghui 63’ by marker‐assisted selection. After being subjected to natural infestation of leaf‐folders and yellow stem borers and inoculation of Xoo strain mixtures, the pyramiding line and its derived hybrids showed high levels of resistance against both insect damage and disease. Furthermore, data from field trials demonstrated that the hybrids made by crossing this pyramiding line with the CMS lines ‘Zhenshan 97A’ and ‘Maxie A’ retained a similar level of yield under conditions without chemical spray, indicating that the pyramiding genes have a yield‐stabilizing effect on the recipient line and its hybrids.  相似文献   

19.
Forage sorghum cultivars grown in India are susceptible to various foliar diseases, of which anthracnose, rust, zonate leaf spot, drechslera leaf blight and target leaf spot cause severe damage. We report here the quantitative trait loci (QTLs) conferring resistance to these foliar diseases. QTL analysis was undertaken using 168 F7 recombinant inbred lines (RILs) of a cross between a female parental line 296B (resistant) and a germplasm accession IS18551 (susceptible). RILs and parents were evaluated in replicated field trials in two environments. A total of twelve QTLs for five foliar diseases on three sorghum linkage groups (SBI-03, SBI-04 and SBI-06) were detected, accounting for 6.9–44.9% phenotypic variance. The morphological marker Plant color (Plcor) was associated with most of the QTL across years and locations. The QTL information generated in this study will aid in the transfer of foliar disease resistance into elite susceptible sorghum breeding lines through marker-assisted selection.  相似文献   

20.
Improvement of maize populations for resistance to downy mildew   总被引:1,自引:0,他引:1  
Upgrading levels of disease resistance are a primary objective of maize breeding programmes. Efficacy of S1 recurrent selection in improving levels of resistance to downy mildew (DM) infection was assessed in Nigeria from 1997 to 2000 in six maize populations. Improvement procedures consisted of evaluating S1 progenies under artificial infection with DM spores and in disease‐free environments and using a selection index to combine selection for reduced DM infection with appropriate agronomic characters from more than one environment. Three to four cycles of selection were completed in each of the populations. Products from the different cycles of selection were evaluated and data collected on DM infection parameters and agronomic traits. Result obtained showed 3–4 cycles of selection were adequate to reduce DM infection levels significantly and increase grain yield. Downy mildew infection decreased by between 58 and 100% while grain yield increases ranged from 10 to 98% for the 2‐4 cycles of selection relative to the C0 (original). Selection increased grain yield with acceptable changes in plant height while maintaining maturity in disease‐free environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号