首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 87 毫秒
1.
潍坊市农田生态系统碳源(碳汇)及其碳足迹变化   总被引:4,自引:0,他引:4  
以山东省潍坊市为研究区,以种植面积、农作物产量及农业投入等相关数据为基础,定量测算2003—2012年潍坊市农田生态系统的碳源(碳汇),分析期间碳足迹的变化。结果表明:1)2003—2012年,潍坊市农田生态系统碳吸收总量小于碳排放总量,二者的比例为1∶7.4,碳排放强度增长率从0.055%减少到0.048%,碳吸收强度增长率从1.18%增加到1.98%。10年间农田生态系统碳吸收量和碳排放量分别增长了10.69%和7.02%,碳吸收增长率高于碳排放增长率,农田系统具有较强的碳汇功能。2)蔬菜是主要的碳汇,占比为73.31%,6种碳排放途径中,农田灌溉是主要的碳源,占比为87.32%。3)农田生态系统碳足迹从2003年的38.990万hm2减少到2012年38.769万hm2,碳足迹平均占生态生产性土地面积的1.456%,比例较低。10年间碳足迹强度均值为0.14 hm2/万元,2003—2012年潍坊市农田生态系统每增加1万元的产值可以制造0.14 hm2的碳足迹。  相似文献   

2.
以江苏省为案例,应用江苏省1995—2009年化肥用量、农药消耗量、灌溉面积、农机燃料用量、农膜用量、耕地面积、农作物产量等数据,测算了区域农田生态系统碳吸收、碳排放及碳足迹的变化动态,以及在各地市的空间分布特征。结果表明:近15a来,江苏省农作物碳吸收总量和碳吸收强度呈"V"字形变化,变化范围分别为2933.6×104~3896.9×104t·a-1和6.04~7.71t·hm-2·a-1。农业投入碳排放呈逐渐上升趋势,由727.2×104t·a-1增长至882.7×104t·a-1,同时碳排放强度从1.43t·hm-2·a-1上升到1.88t·hm-2·a-1,增长了31.5%,化肥排放始终占据主导地位。农田生态系统碳足迹呈现波动增长,变化在13.68×105~17.56×105hm·2a-1之间,占同期耕地面积的比重达到27.0%~36.1%,碳生态盈余呈明显减少趋势,变化在36.99×105~32.22×105hm2·a-1之间。各地市之间碳足迹存在明显差异,空间分布格局为由北向南递减。  相似文献   

3.
山东省农田生态系统碳源、碳汇及其碳足迹变化分析   总被引:3,自引:0,他引:3  
依据2002—2013年山东省17地市农业投入、播种面积以及作物产量等统计数据,对全省各地市农田生态系统进行碳源、碳汇估算,从中分析其变化规律,并探讨造成碳源、碳汇时空变化的影响因素。结果表明:山东省农田系统具备较强的碳汇能力,碳吸收量明显高于碳排放量,两者的总量之比为4.32∶1;碳吸收量和碳汇量呈增加趋势,碳排放量和碳足迹呈降低趋势;农田生态系统表现出较大的碳生态盈余,碳足迹占同期耕地面积的比值呈现降低趋势,2002年为27.71%,2013年为20.96%;17地市之间单位面积碳汇量和单位面积碳足迹存在明显差异,2013年单位面积碳汇量最高的为德州市(6.20t/hm~2)、最低为威海市(3.02t/hm~2),单位面积碳足迹最高的威海市为0.26hm~2/hm~2、最低的泰安市为0.08hm~2/hm~2。  相似文献   

4.
贵州喀斯特农田生态系统碳足迹时空差异研究   总被引:1,自引:0,他引:1  
【目的】探明贵州省碳排放、碳吸收与碳足迹现状,可以为贵州省农田生态系统减源增汇以及农业的可持续发展提供参考。【方法】依据2007—2016年贵州省和贵阳、遵义、六盘水三市农业投入、农作物产量、耕地面积等数据,对贵州省不同尺度农田生态系统碳排放、碳吸收和碳足迹进行估算,分析变化规律并探讨其影响因素。【结果】①2007—2016年贵州省及贵阳、遵义、六盘水三市农田生态系统的碳排放量均呈逐年增长趋势,其中化肥施用产生的碳排放量所占比例最大,分别为68%、73%、81%、72%;2016年贵州省化肥单位面积碳排放达到298.23 kg/hm~2。②碳吸收量表现为"上升下降式"波动变化,总体呈增长趋势,其中,水稻碳吸收量所占比例最高,平均为50.9%,但呈减少趋势,蔬菜增幅较大,达到47%。③贵州省农田生态系统存在较大碳生态盈余,农田生态系统碳足迹呈现不断增加趋势。【结论】尽管农业碳吸收量远大于碳排放量,但化肥与农膜所占碳排放比例较大,应是未来农业减源的重点。  相似文献   

5.
2006—2015年重庆市农田生态系统碳足迹分析   总被引:1,自引:0,他引:1  
利用2006—2015年重庆市农业生产统计数据,对全市农田生态系统碳排放、碳吸收和碳足迹进行估算、分析,探讨造成碳排放和碳吸收变化的影响因素。结果表明:在所有排放因子中,氮肥的排放量和占比均最高,约为50%,但有逐年下降的趋势,由2006年的51.35%下降到2015年的47.32%;水稻是重庆市第一大农作物,也是生态系统中碳吸收第一大来源,截至2015年,其全生育期碳吸收量达到4.099 5×106 t,占全市农田生态系统碳吸收量的39.16%;农田生态系统碳足迹占同时期播种面积的比例也呈现下降趋势,由2006年的19.78%下降到2015年的17.44%,即农田生产产生的碳排放需要全市约1/5的播种面积来消纳;重庆市农田生态系统处于碳盈余状态,2015年达到了2.727 2×106 hm2,重庆市农田生态系统的碳汇功能逐年提高。  相似文献   

6.
福建省农田生态系统碳源/汇时空变化及其影响因素分析   总被引:1,自引:0,他引:1  
准确估算农田生态系统的碳排放和碳吸收对制定合理的农业减排措施具有重要意义.基于1991-2010年福建省农作物产量、耕地面积、农业投入等农业活动水平数据,对福建省农田生态系统的碳源汇进行估算,并分析碳源汇的时空变化特征及其影响因素.结果表明,1991-2010年福建省农田生态系统碳吸收总量总体呈下降趋势,从1991年的1161.14×104t减少到2010年的672.13×10^4t,减幅为42.11%,年平均递减5.89%;碳排放总量呈增加的趋势,从1991年的114.05×10^4t增加到2010年的195.10×10^4t,增幅达71.07%,年均递增2.87%;碳汇量总体呈降低趋势,从1991年的1047.09×10^4t降低到2010 年的477.03×10^4t,减幅为54.44%,年均递减8.36%;福建省农田生态系统单位耕地面积碳吸收呈下降的趋势,而单位耕地面积碳排放基本保持不变.2010年南平市的碳吸收量和碳汇量最大,漳州市的碳排放量最大,而厦门市的碳吸收量、碳排放量和碳汇量均最小.碳源汇影响因素相关性分析表明,碳吸收与水稻、小麦、甘蔗产量呈极显著正相关;碳排放与钾肥、复合肥、农药、农机动力、柴油使用均有极显著的正相关性.研究结果能够为福建省低碳农业发展提供科学参考.  相似文献   

7.
为黔北喀斯特山区的低碳农业持续发展提供理论依据,采用农田系统碳汇计算方法,研究遵义市近60年农田碳汇及碳足迹。结果表明:遵义市60a农田系统的年均固碳能力呈波动趋势,年均固碳量为274.61万t;农田碳汇强度为4.55t/hm~2,其中,1959—1961年碳汇强度为3.30t/hm~2,农田碳汇强度增加速度为0.04t/(hm~2·a),1961—2000年农田碳汇强度增速为0.10t/(hm~2·a),2001—2008年农田碳汇强度呈降低趋势。遵义市农田碳足迹总体呈增加趋势,平均为2.40×104hm~2;遵义市60a不同农作物对固碳的贡献水稻最大,为60.89%;玉米其次,为17.07%,小麦第三,为8.29%;研究期间内,水稻的碳汇贡献由最初的78.29%降至50.33%。遵义市农田碳汇随着农业碳投入的变化而变化,在农田管理年投入碳大于20万t后,遵义农田碳汇无显著变化;遵义农田管理碳投入小于20万t时,农田碳汇呈显著增加趋势,增速为10.44万t/万t。  相似文献   

8.
北京市农田生态系统碳足迹及碳生态效率的年际变化研究   总被引:2,自引:2,他引:0  
近年来,由于北京城市功能的疏解以及郊区城市化进程的加快,使北京市农田生态系统受到了较大的冲击。本文以北京农田生态系统作为研究对象,对2004—2012年农田生态系统的碳汇、碳源、碳足迹以及碳生态效率的年际变化进行了研究,以明确其在北京城市发展中的功能与地位,为北京市健康持续发展及产业布局提供理论依据。结果表明:北京农田生态系统碳汇总体呈增加趋势,年递增幅度为2.8%,年平均碳蓄积量为105.82 万t,决定其碳汇功能的主要因素是粮食作物中玉米与小麦的经济产量及种植面积。北京农田生态系统的年均碳排放量为27.6 万t,基本呈现逐年降低的趋势,年均递减1.3%,决定碳排放量的主要因素为农业化学品中氮素化肥的施用量。北京市农田生态系统年均碳足迹为5.71 hm22,呈逐年降低的趋势,年递减率为5.5%,处于碳生态盈余状态,但是由于近年北京市耕地面积的减少,碳生态盈余量呈下降趋势;北京农田生态系统的碳生态效率较高,年均为3.854 kg C·kg-1 CE,农业生产处于较高的持续状态。  相似文献   

9.
广东省农田生态系统碳足迹时空差异分析   总被引:1,自引:0,他引:1  
以广东省为例,通过1992要2011 年化肥、农药、农膜使用量、灌溉面积、农业机械总动力、农作物产量等 统计数据,估算了区域农田生态系统碳吸收、碳排放及碳足迹的时空特征。结果表明院近20 年来,广东省农作物碳吸 收总量总体处于下降趋势,从1992 年的4 017.02 万t 减少到2011 年的2 925.42 万t,减幅达到27.17%,年均递减 1.66%。而碳排放基本上呈现逐渐增加的趋势,排放总量从1992 年的224.05 万t 增加到2011 年的261.69 万t,增幅 为16.80%。广东省农田生态系统碳足迹呈现波动增加的趋势,2011 年比1992 年增长了89.76%,年平均增长率为 3.43%,碳足迹占同期生产性土地面积比例逐渐增大,2011 年达到8.95%。广东省农田生态系统表现为碳生态盈余, 且生态盈余占同期生产性土地面积比例逐步减小。各地区之间的碳足迹区域差异也较大。  相似文献   

10.
小尺度农田生态系统碳足迹的研究可为当地低碳农业的发展提供科学依据。基于碳足迹视角,以国家级重点生态功能区山西偏关县为例,根据主要投入要素的碳排放系数和各种作物的碳吸收率,利用SPSS软件回归分析了2007—2016年研究区农作物的碳吸收对农业化学物质及能源投入碳排放的消纳情况。结果表明,偏关县农田种植业的碳平衡处于碳生态盈余状态,粮食作物在种植业中占比较大,玉米是影响农作物固碳的主要因素,但是变幅不大,而大豆固碳能力逐年增长,氮肥、农膜、耕作耗能、秸秆焚烧是影响碳排放的主要因素,其中,氮肥碳排放年均贡献率为45%;农膜碳排放近10 a增长5%。因此,碳生态盈余状态并不能掩饰化学物质和能源投入所引发的不可再生资源年损耗的增加和农业面源污染潜在风险的加剧。  相似文献   

11.
基于生态足迹思想提出碳足迹和碳承载力概念,对甘肃省1995-2009年化石能源消费的碳排放和植被的碳承载力进行定量分析。结果表明:甘肃省化石能源消费的碳足迹由1995年的2 466.12×104 t C增长到2009年的4 464.47×104 t C;煤炭消费的碳足迹最大,其次为石油,天然气比重最小,2009年的比重分别为81.54%、15.20%和3.26%;碳承载力由1995年的1 158.89×104 t C增长到2009年的1 472.19×104 t C,其中,森林的碳承载力最大,其次为草地,农田最小;甘肃省能源消费碳足迹远高于生产性土地的碳承载力。伴随着碳足迹的高增长率,碳赤字持续增大。  相似文献   

12.
研究3种主要农田防护林树种杨树(Populus sp.)、榆树(Ulmus pummila)和沙枣(Elaeagnus angustifolia)不同林龄的生物量、碳储量、碳密度及其分布规律,为今后估算新疆伊犁河谷农田防护林生态系统碳储空间提供基础。根据2014年新疆的森林资源二类调查数据,利用研究区三大树种的样本数据,估算各树种的生物量、碳储量及碳密度变化特征,讨论三大树种的固碳能力。结果表明,3种主要农田防护林树种的面积以幼龄林和中龄林为主,占总面积的82.72%,其中杨树占绝对优势,为总面积的92%;各树种碳储量大小杨树(3 690.72×10~3 t)榆树(382.68×10~3 t)沙枣(261.49×10~3 t);各树种不同龄组的碳密度大小为幼龄林(129.41 t/hm~2)中龄林(388.16 t/hm~2)近熟林(639.36 t/hm~2)成熟林(2 012.04 t/hm~2)。这说明伊犁河谷农田防护林的生长潜力和未来的固碳空间巨大,研究结果可为伊犁河谷农田防护林经营管理和碳汇功能评价提供参考。  相似文献   

13.
山西农田生态系统碳源/汇时空差异分析   总被引:4,自引:0,他引:4  
【目的】分析山西省农业碳循环过程,为该省的农作物布局,以及利用农业结构调整固碳减排提供科学依据。【方法】运用山西省11个地区2000-2006年作物产量、种植面积、农业投入等统计数据,对山西省各地区农田生态系统部分碳源/汇进行了分析。【结果】(1)山西省农田生态系统碳吸收总量从2000年以来呈现波动增加趋势,碳吸收总量从2000年的2 010万t增加到2003年的2 330万t,上升近11%,但从20世纪初期以后开始呈现下降趋势,从2003年的2 330万t下降到2006年的2 230万t;2006年运城和临汾主要以小麦碳吸收为主,其余各市都以玉米碳吸收为主,其中玉米的碳吸收量和单位面积碳吸收量呈增长趋势,稻谷、高粱的碳吸收量和单位面积碳吸收量呈明显下降趋势。(2)山西省农田生态系统碳排放总量从2000年以来呈逐渐增加趋势,增长了8.8%;估算的3种主要碳排放途径中,肥料生产导致的间接碳排放所占比例较大,增速较快,增长近13%,农业机械生产和灌溉过程碳排放变化不大;2006年山西晋城和运城的碳排放量最高,都达到了碳排放总量的22%,单位面积碳排放量也呈逐年增加趋势。(3)山西省农田主要碳吸收量大于主要途径碳排放量。【结论】山西省农田作物具有较大的碳吸收功能,其中小麦和玉米的农田碳吸收功能较强,但其碳排放的增速也很明显,说明山西省农业投入的增加和机械化程度的提高,削弱了农田生态系统的碳汇功能。  相似文献   

14.
农田生态系统具有碳源和碳汇功能,是陆地生态系统的重要组成部分,探究农田碳足迹进而为农田生态系统的可持续发展提供参考。基于2000—2020年四川省以及21个市(州)的农田生产投入和农作物产量等数据,构建农田生态系统碳足迹模型,对碳足迹、碳生态效率的时空变化特征和影响因素进行探讨。结果表明,2000—2020年四川省农田生态系统碳排放量呈先波动上升后下降的趋势,拐点发生在2016年,其中土壤翻耕、化肥使用为碳排放量的主要贡献因素,占比分别为44.74%、30.22%。碳吸收量呈先减后增的趋势,2006年碳吸收量减至最低值,气象灾害是主要影响因素。水稻、玉米、小麦对碳吸收量的贡献较大。农田生态系统碳足迹呈先波动增长后持续下降的变化,2006年为最大值。2000—2020年四川省农田生态系统均为碳生态盈余状态,碳生态效率年均为5.150 kg C/kg CE。从空间上看,四川省农田生态系统碳排放、碳吸收、碳足迹、碳生态效率均呈现西北低、东南高的分布格局;单位面积碳足迹却呈现西北高、东南低的分布,空间差异和变化幅度差异均较大,主要是因为各地区农业生产条件和发展水平不同。应因地制宜,从农资投入、...  相似文献   

15.
以农业部望城红壤水稻土生态环境重点野外观测试验站的长期定位肥力效应试验稻田为研究对象,利用历年作物产量、凋落物固碳和农田CO_2排放等观测资料及生态系统的物质和管理投入等调查资料,估算了年碳汇平衡和经济收益,以及不同施肥处理的固炭速率、潜力及表土碳密度.结果表明,不同施肥处理下年碳汇量介于0.82~4.70tC·hm~(-2)·a~(-1),增施有机肥(猪粪、稻草)的处理NPK+RS、NK+PM和NP+RS的碳汇量分别是相应的仅施化肥处理NPK、NK和NP的1.1、1.7和1.4倍.不同处理生态系统物质投入的碳成本介于0.03~0.65 t C·hm~(-2)·a~(-1),人工管理的碳成本介于1.42~1.48 t C·hm~(-2)·a~(-1),年经济收益介于1.17×10~3~8.71×10~3CNY·hm~(-2)·a~(-1),有机肥配施的经济效益是单施化肥的1.1~1.6倍.不同施肥处理固碳速率介于25.83~51.98 kg·hm~(-2)·a~(-1),不同施肥处理表土碳密度介于29.21~43.24 t·hm~(-2).增施有机肥能够提高土壤固碳速率和表土碳密度.与单施化肥相比,有机无机配施处理的生态系统生产力较高,也表现出较高的碳汇效应和经济收益,是促进土壤固碳减排的一项重要措施.  相似文献   

16.
【目的】土地利用/覆被变化是引起全球碳排放的主要原因之一,通过预测土地利用变化评估未来县域尺度碳排放空间格局对于制定区域减排政策具有重要意义。【方法】基于2005—2020年重庆市渝北区土地利用数据及CLUE-S模型预测2025—2030年该区土地利用变化及碳收支时空动态。【结果】2005—2030年渝北区耕地面积将持续减少4.57×10~4hm~2,林地面积呈现"增加-减少"反复波动的趋势,面积净增长2 293.8 hm~2;水域及未利用地面积略有增加;建设用地扩张最明显,面积增长3.32×10~4hm~2,整体扩张强度为0.92%。人类活动影响指数(HAI)呈先降低后增长的趋势,其值在2020年最低(0.49),并在2030年最高(0.54)。渝北区耕地的碳汇功能和建设用地能源消费分别是该区碳吸收和碳排放的主要来源。渝北区碳吸收随耕地面积减少而逐渐降低,2005—2030年碳吸收由2.17×10~5t逐渐降低为1.43×10~5t,而碳排放却由2.07×10~5t逐渐增加到1.02×10~6t,导致渝北区净碳排放量由-1.01×10~4t增长为8.79×10~5t。渝北区地均碳吸收值在海拔较高的山地及该区北部平行岭谷的丘陵地带较高;地均碳排放值在西南部平坦丘陵地带较高,并随建设用地的扩张向北沿平行岭谷蔓延。【结论】基于CLUE-S模型对土地利用变化的预测从而获得未来县域碳收支空间格局的方法是可行的。现有产业结构下合理调整土地利用结构是保证县域低碳发展的重要途径。  相似文献   

17.
重庆市农田系统碳源/汇特征及碳足迹分析   总被引:2,自引:0,他引:2       下载免费PDF全文
利用1998-2010年重庆市农田生产投入和农作物产量等数据,采用碳足迹模型方法,对重庆市农田系统的碳 排放量、碳吸收量及碳足迹进行了估算.结果表明:(1)1998-2010年重庆市农田系统碳排放量增加了27.65万t,贡 献比例最大的主要碳汇类型为农田化肥施用和农业灌溉;(2)13年间重庆市农田系统碳吸收量增加了1143.95万t, 其中蔬菜、水稻和高粱吸收量最大.(3)重庆市农田系统2010年的碳足迹为9.07万hm2,总体呈下降趋势,处于碳生 态盈余状况,种植结构变化有利于增强农田系统的固碳功能.  相似文献   

18.
广东省森林碳储量与动态变化   总被引:5,自引:0,他引:5  
以广东省1979—2012年森林资源连续清查数据为基础,结合广东省当地分树种生物量扩展因子方程,对广东省近30 a的森林碳储量和碳密度进行估算。结果表明:广东省森林碳储量从1979年的2.766 47×10~7t增加到2012年的1.673 778×10~8t,年均增加4.366×10~6t,年变化率5.45%;平均碳密度从7.57 t/hm~2增加到23.01 t/hm~2。乔木林对森林碳储量的贡献占据主导地位,其中阔叶林贡献比较突出,且增长较快;在林龄结构上,幼龄林和中龄林面积和碳储量都占有较大比例。  相似文献   

19.
采用2003~2010年四川省兴文县农业投入和产出相关农业数据,对农田生态系统的碳源/汇现状特征进行了研究。结果表明:①2003~2010年兴文县农田生态系统碳吸收量呈持续增加趋势,2010年碳吸收量达183 487.22 t,比2003年提高了8.76%。②2003~2010年兴文县农田生态系统排放量总体呈增加的趋势,从2003年的10443.06 t增加到2010年的11955.70 t,化肥施用是导致碳损失的主要途径。③兴文县农田生态系统的碳吸收大于碳排放,具有较强的碳汇能力,但碳排放的增长大于碳吸收的增长,对农田碳汇培育形式压力。  相似文献   

20.
实施土地整理工程,不仅能够提供产能,而且能够减少农田碳排放。以河北省巨鹿县王虎寨镇土地整理项目为例,通过GIS空间分析方法,最优可达性分析等研究方法,研究了土地整理项目前后廊道结构变化及生产方式的改变导致的碳源碳汇、碳排放特征及其规律的相对差异,并对农田防护林固碳量和田间运输的缩减碳排放量进行了计算。结果表明:农田防护林10 a累计固碳量可达2.63×10~6kg,年固碳量在9×10~4~4.5×10~5kg/a之间,固碳高峰期在防护林种植后3~6 a,而后逐渐降低趋于稳定;田间道路的新建与整修后,在单田块机械作业方式下,田间运输年节约柴油2.16×10~4kg/a,碳减排量达1.28×10~4kg/a;规模化作业方式比单户自营最大可减少86.7%碳排放量。总体来看,巨鹿县土地整理工程在农田防护林及田间运输角度对农田碳排放降低有一定效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号