首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A vein-yellowing disease of Ageratum conyzoides in Singapore was shown to be caused by a geminivirus, here named ageratum yellow vein virus (AYVV), which was transmitted by the whitefly Bemisia tabaci but not by inoculation with sap or through seed. AYVV particles (30 × 20 nm) are serologically related to those of other whitefly-transmitted geminiviruses, and reacted with some monoclonal antibodies elicited by particles of African cassava mosaic or Indian cassava mosaic geminiviruses. However, the epitope profile of AYVV differed from the profiles of these viruses, and from those of geminiviruses from vein yellowing-affected A. conyzoides from India and from yellow leaf curl-affected tomato from either Singapore or India. The results provide further evidence of antigenic differences among geminiviruses that cause similar diseases in the same plant species in different geographical regions.  相似文献   

2.
Genomic characterization using nonradioactive probes, polymerase chain reaction with degenerate primers for whitefly transmitted geminiviruses and nucleotide sequencing were used to describe a new bipartite geminivirus, associated with dwarfing and leaf curling of tomatoes and peppers in Jamaica. Partial DNA-A and DNA-B clones were obtained. DNA sequence analysis showed that tomato and pepper samples have a similar geminivirus associated with them. Nucleotide sequence identity > 92% between the common regions of DNA-A and DNA-B confirmed the bipartite nature of the Jamaican geminivirus isolates. Nucleotide sequence comparisons of DNA-A and DNA-B with those of geminiviruses representing the major phylogenetic groups of Western Hemisphere geminiviruses showed the greatest similarity to potato yellow mosaic virus and members of the Abutilon mosaic virus cluster of geminiviruses. This new virus is given the name tomato dwarf leaf curl virus (TDLCV) because of the dwarfing and leaf curling symptoms associated with infected tomato plants. Polymerase chain reaction and Southern hybridization showed mixed infections of TDLCV with tomato yellow leaf curl virus from Israel in 16% of the field samples of tomatoes and peppers.  相似文献   

3.
An investigation of the biological properties of the virus causing tomato yellow leaf curl disease in Tanzania was initiated to compare it with other known tomato yellow leaf curl viruses. Properties relating to acquisition and inoculation feeding time, persistence, mechanical inoculation, seed transmission and host range were studied. Results obtained indicate that the virus was transmitted persistently byBemisia tabaci Genn., but it was not mechanically, sap- or seed-transmissible. Minimum acquisition and inoculation feeding time was 30 min.Capsicum annuum, Datura stramonium, Nicotiana glutinosa, N. tabacum andLycopersicon esculentum were found to be hosts of the virus among the plant species tested, whereasPhaseolus vulgaris was not. It is concluded that the properties of the agent causing yellow leaf curl symptoms in tomato plants from different regions in Tanzania are similar to those ofTomato yellow leaf curl Sardinia virus species studied elsewhere. http://www.phytoparasitica.org posting Feb. 20, 2003.  相似文献   

4.
A. A. BRUNT 《EPPO Bulletin》1989,19(3):437-451
The viruses and virus-like pathogens transmitted by zoosporic fungi are reviewed. The nine furoviruses (and possible members of the group), with labile rod-shaped particles, have nearly all been shown to be transmitted by plasmodiophoromycete vectors. As they have been reviewed extensively elsewhere, they are covered only briefly; important examples are beet necrotic yellow vein furovirus and potato mop-top furovirus. Five viruses with filamentous particles, tentatively recognized as poty viruses, are transmitted by Polymyxa graminis. Within this group, wheat yellow mosaic virus should be considered to include wheat spindle streak mosaic virus, while the M and NM forms of barley yellow mosaic virus, the best known members of the group, should probably be regarded as distinct viruses. Chytrids (especially Olpidium brassicae) transmit a variety of viruses in different groups (e.g. tobacco necrosis necrovirus, lettuce big-vein virus, melon necrotic spot carmovirus, red clover necrotic mosaic dianthovirus). Finally, several diseases caused by uncharacterized pathogens appear to be transmitted by O. brassicae: freesia leaf necrosis, lettuce ring necrosis, pepper yellow vein, watercress chlorotic leaf spot.  相似文献   

5.
In April 2001, stunted barley plants bearing mosaic symptoms were observed in a field in France (Marne Department, 51). Rod-shaped and flexuous particles were visualized by electron microscopy and positive serological reactions were detected by ELISA with Barley yellow mosaic virus (BaYMV) and Soil-borne cereal mosaic virus (SBCMV) polyclonal antisera. The tubular virus which was soil transmissible to barley cv. Esterel was separated from BaYMV by serial mechanical inoculations to barley cv. Esterel. This furo-like virus, in contrast to a French isolate of SBCMV, could be transmitted to Hordeum vulgare, Avena sativa, Beta vulgaris and Datura stramonium. RT-PCR was used to amplify the 3′-terminal 1500 nucleotides of RNA1 and the almost complete sequence of RNA2. Nucleotide and amino acid sequence analyses revealed that the French virus infecting barley is closely related to a Japanese isolate of Soil-borne wheat mosaic virus (SBWMV-JT) which was originally isolated from barley. This French isolate was named SBWMV-Mar. The 3′ UTRs of both RNAs can be folded into tRNA-like structures which are preceded by a predicted upstream pseudoknot domain with seven and four pseudoknots for RNA1 and RNA2, respectively. The four pseudoknots strongly conserved in RNAs 1 and 2 of SBWMV-Mar show strong similarities to those described earlier in SBWMV RNA2 and were also found in the 3′ UTR of Oat golden stripe virus RNAs 1 and 2 and Chinese wheat mosaic virus RNA2. Sequence analyses revealed that the RNAs 2 of SBWMV-Mar and -JT are likely to be the product of a recombination event between the 3′ UTRs of the RNAs 2 of SBWMV and SBCMV. This is the first report of the occurrence of an isolate closely related to SBWMV-JT outside of Japan.  相似文献   

6.
The distribution of two UK strains of barley yellow mosaic virus has been studied and both have been transmitted experimentally by Polymyxa graminis. cDNA hybridization studies support the suggestion that the strains should be considered distinct viruses. Oat mosaic and oat golden stripe (OGSV) viruses also occur in the UK. OGSV is a furovirus related to wheat soil-borne mosaic furovirus: it has particles of two lengths and a bipartite genome.  相似文献   

7.
发生在我国的小麦黄花叶病毒病   总被引:6,自引:0,他引:6  
本文对山东荣成流行的一种小麦病毒病进行了鉴定。提纯的病毒颗粒为长线状,13×100—300nm及13×350—650nm。汁液接种感染小麦,但不感染烟草、苋色藜等植物。病土、病根以及含有禾谷类多粘菌(POlymyxa graminis)游动孢子的浸液可以传毒于小麦、大麦及黑麦。此病毒与大麦黄花叶病毒(BYMV)、小麦梭条花叶病毒(WSSMV)有血清学关系,与小麦土传花叶病毒(WSBMV)无血清学关系。病叶表皮细胞中有无定形内含体。超薄切片可见风轮状内含体。实验结果表明,荣城地区发生的这种小麦病毒病是小麦黄花叶病毒所致。  相似文献   

8.
The diversity of whitefly‐transmitted begomoviruses in Europe is low, most being exotic, introduced species. The only agriculturally important viruses are two species causing tomato yellow leaf curl. These viruses are believed to have originated in the Middle East but have since spread right across the Mediterranean region. Two ornamentals (Abutilon and Lonicera japonica) were introduced into Europe from the New World and the Far East, respectively, for the striking symptoms induced by the viruses which infect them. The virus infecting honeysuckle (Honeysuckle yellow vein mosaic virus) has been shown to be part of newly identified cluster of begomoviruses which require an additional component, a satellite molecule termed DNA β, to induce symptoms in their host plants. A further begomovirus, Ipomoea yellow vein virus, which infects the weed Ipomoea indica, is present in the Mediterranean region. The precise origin and relationship of this virus to other begomoviruses is unclear.  相似文献   

9.
Aubian wheat mosaic virus, a new soil-borne wheat virus emerging in France   总被引:1,自引:0,他引:1  
The properties of Aubian wheat mosaic virus (AWMV), a new soil-borne wheat virus in France, were investigated. Symptoms include foliar mosaic and severe stunting of winter wheat. The vector of the disease is unknown but the plants infected carry Polymyxa graminis in the roots. AWMV was transmitted mechanically to wheat and to two dicotyledoneous species: Lactuca sativa and Vicia faba. This virus was transmitted by seed to three winter wheat cultivars tested. Purified preparations contained rod-shaped particles with a variable length of 150–700 nm. Certain particles are very long and appear flexible. Antiserum raised against AWMV reacted specifically with AWMV in both indirect and direct enzyme-linked immunosorbent assays (ELISA). The incidence of AWMV in 26 winter wheat cultivars was investigated in the field during the growing season of 1999–2000. AWMV was detected in roots and shoots of all cultivars regardless of the symptoms. Twelve virus species belonging to the genera Benyvirus, Bymovirus, Furovirus, Pecluvirus and Pomovirus did not react with the AWMV antisera. A new tubular virus described in winter wheat in Bedfordshire in England reacted strongly with AWMV in ELISA. It is concluded that AWMV and probably the Bedford-virus constitute a previously undescribed tubular virus biologically and serologically distinct from other soil-borne viruses of wheat.  相似文献   

10.
A virus that caused a distinct yellow mosaic was isolated in Okayama, Japan from Chinese cabbage (Brassica rapa L., Pekinensis group). The virus, with spherical particles ca. 28 nm in diameter, was mechanically transmissible only to cruciferous species. From the host range, characteristic morphology of virus particles, serology and sequence analysis of coat protein gene, the causal virus was identified as Turnip yellow mosaic virus (TYMV). Seed transmission of TYMV at 0–2.2% in Chinese cabbage was confirmed. This report is the first of TYMV from Chinese cabbage and in Japan. The nucleotide sequence data reported are available in the DDBJ/EMBL/GenBank databases as accessions AB358971 and AB358972.  相似文献   

11.
为探索新型生防菌剂解淀粉芽胞杆菌对小麦黄花叶病的防治作用,通过盆栽和田间药效试验研究了解淀粉芽胞杆菌对小麦黄花叶病的防治效果和对小麦幼苗的促生长作用。结果表明,解淀粉芽胞杆菌对小麦黄花叶病有较好的预防效果和一定的治疗效果,浓度为500~2 000 mg/L时,预防效果为24.86%~84.55%,治疗效果为13.61%~62.58%,预防效果明显优于治疗效果。其中灌根处理的防治效果显著高于喷雾、拌种处理,且随着施用浓度的增大,防治效果提高;当灌根处理浓度为2 000 mg/L时效果最好,预防和治疗效果分别达到84.55%和62.58%。另外解淀粉芽胞杆菌对小麦有一定的促生作用,并可提高麦苗的地上部鲜重,浓度为1 200 mg/L时,地上部鲜重增重最大,较对照提高52.76%。表明解淀粉芽胞杆菌可作为生防菌剂防治小麦黄花叶病。  相似文献   

12.
Yellow mosaic disease (YMD) of legumes endemic to South Asia are caused by begomoviruses transmitted by whiteflies. Based on molecular characterization, two distinct viruses – Mungbean yellow mosaic India virus (MYMIV) and Mungbean yellow mosaic virus (MYMV) – were found previously to be the etiological agents of YMD in legumes. Here, host range studies with a soybean isolate of MYMIV (MYMIV-[Sb]) were carried out by both whitefly transmission and agroinoculation. MYMIV-[Sb] was similar to a cowpea isolate of MYMIV (MYMIV-[Cp]) in its ability to infect cowpea, thus differing from blackgram (MYMIV) and mungbean (MYMIV-[Mg]) isolates, which do not infect cowpea. Genomic analysis of DNA A and DNA B components of these MYMIV isolates show characteristic differences in complete DNA B nucleotide sequence correlating with host range differences.  相似文献   

13.
Badnavirus in Bougainvillea spectabilis showing virus-like symptoms was identified by the presence of bacilliform particles, measuring 125–130 × 30–40 nm in leaf-dip preparations and by analysis of its putative open reading frame 3 sequence. The virus, tentatively named Bougainvillea bacilliform virus (BBV), had the highest identities (up to 60%) with Spiraea yellow leaf spot virus, Gooseberry vein banding associated virus, Taro bacilliform virus, and Citrus yellow mosaic virus. In phylogenetic analysis, BBV clustered with Badnavirus putative species. Attempts to transmit the virus to several hosts failed. This is the first report of a new Badnavirus detected in Bougainvillea.  相似文献   

14.
Three viruses collected in southern Yemen in 1990, infecting watermelon, tobacco and tomato were shown to be transmitted by the whiteflyBemisia tabaci and to have particle morphologies typical of geminiviruses. Colonies ofB. tabaci collected from different locations and from different hosts were used in virus transmission tests with the same host range of plants. Colonies established from both watermelon and cotton in the Yemen were identified as the squash silverleaf-inducing B biotype. The culture host of the colony did not influence virus acquisition and transmission efficiencies to and from other hosts. The tobacco and tomato geminiviruses had a similar host range, but differed in their severity in some hosts. Both these viruses differed from the watermelon geminivirus in host range and symptoms.Datura stramonium, an alternative host for all three viruses, could be co-infected by the watermelon and tobacco viruses.B. tabaci was able to acquire both viruses from the co-infectedD. stramonium and infect seedlings of either original host plant species with their respective viruses orD. stramonium with both. The viruses were identified as watermelon chlorotic stunt virus, tobacco leaf curl virus and tomato yellow leaf curl virus and were distinguished by cross hybridisation.  相似文献   

15.
Clover yellow vein virus (ClYVV) elicits lethal tip necrosis in the pea line PI 118501. Pea line PI 118501 develops necrotic lesions and veinal necrosis on inoculated leaves, followed by systemic necrosis, leading to plant death. To understand the genetic basis of this lethal tip necrosis, we crossed lines PI 226564 and PI 250438, which develop mosaic symptoms in response to ClYVV inoculation. In reciprocal crosses of PI 118501 with PI 226564, all F1 plants had mosaic symptoms with slight stem necrosis and early yellowing of upper leaves. Essentially the same symptom was manifested in PI 118501 × PI 250438 F1 plants. In F2 populations from the cross between PI 118501 and PI 226564, the observed ratios of necrosis, mosaic with slight stem necrosis, and mosaic fit the expected 1 : 2 : 1 ratio. These results indicate that a single incompletely dominant gene confers the induction of necrosis in PI 118501. This locus in pea, conferring necrosis induction to ClYVV infection, was designated Cyn1 (Clover yellow vein virus-induced necrosis). A linkage analysis using 100 recombinant inbred lines derived from a cross of PI 118501 and PI 226564 demonstrated that Cyn1 was located 7.5 cM from the SSR marker AD174 on linkage group III.  相似文献   

16.
Zoospores of 12 isolatesO. bornovanus from geographically diverse sites and representing the three host specific cucurbit strains were tested as vectors for seven viruses using watermelon bait plants and the in vitro acquisition method. All isolates of the cucumber, melon, and squash strains transmitted melon necrotic spot carmovirus (MNSV) and cucumber necrosis tombusvirus (CNV) but none transmitted petunia asteroid mosaic tombusvirus (PAMV) or tobacco necrosis necrovirus (TNV). The isolates varied as vectors of three other carmoviruses: cucumber leaf spot virus (CLSV); cucumber soil borne virus (CSBV); and squash necrosis virus (SqNV). All cucumber isolates transmitted CLSV and SqNV but not CSBV. Some of the melon isolates transmitted CLSV and SqNV but none transmitted CSBV. Two squash isolates transmitted CSBV and SqNV but not CLSV. Two isolates ofO. brassicae transmitted only TNV and a third did not transmit any of the viruses. The species of bait plant sometimes affected transmission. The most efficient vector strains ofO. bornovanus, as determined by reducing zoospores and virus in the inoculum, were the cucumber strain for CLSV; the cucumber strain for CNV if cucumber was the bait plant or melon strain if watermelon was the bait plant; and the squash strain for SqNV. The plurivorous strain ofO. brassicae was the most efficient vector of TNV.Olpidium bornovanus is the first vector reported for CSBV and is confirmed as a vector of SqNV. It is proposed that all carmoviruses may have fungal vectors.Ligniera sp. did not transmit any of the viruses in one attempt.Abbreviations CLSV cucumber leaf spot virus - CNV cucumber necrosis virus - CSBV cucumber soil borne virus - MNSV melon necrotic spot virus - PAMV petunia asteroid mosaic virus - SqNV squash necrosis virus - TNV tobacco necrosis virus - TBSV tomato bushy stunt virus  相似文献   

17.
Natural occurrence of a geminivirus causing severe leaf curl disease on sunn hemp (Crotalaria juncea) was recorded in India. The association of a geminivirus with the disease was demonstrated by whitefly transmission tests and polymerase chain reaction (PCR) amplification of DNA fragments of expected sizes with three pairs of degenerate geminivirus primers. The PCR-amplified viral DNA fragments were further characterized by Southern hybridization with a geminivirus probe consisting of the cloned coat protein (CP) gene of Indian tomato leaf curl virus (ITLCV). Restriction fragment length polymorphism analysis of a PCR-amplified CP fragment revealed that the geminivirus from sunn hemp was different than ITLCV.  相似文献   

18.
19.
ABSTRACT Bean golden mosaic geminivirus (BGMV) is the single most devastating virus of common beans in the tropical and subtropical Americas and the Caribbean Basin. The BGMV from Brazil, named BGMV-BZ, is considered distinct from BGMV-PR isolates from Puerto Rico, Guatemala, and the Dominican Republic because of DNA sequence data, the ability to form pseudorecombinants, and mechanical transmissibility properties. In bean-growing areas of Brazil, samples were collected from beans, lima beans, and the weed Leonurus sibiricus displaying typical symptoms of infection by geminiviruses. Viral DNA fragments comprising part of the rep gene, the common region, and part of the cp gene were amplified by polymerase chain reaction, cloned, and sequenced. The bean samples had geminivirus with sequences nearly identical to that of BGMV-BZ collected in Goiania, state of Goiás, in 1986. The sample from lima bean contained a new species of geminivirus that induces symptoms similar to those induced by BGMV-BZ and was named lima bean golden mosaic virus (LBGMV-BR). While all sequences from bean samples clustered with BGMV-BZ, the sequence from the lima bean isolate stood alone. A mixed infection with abutilon mosaic geminivirus was also found in a single sample from the state of S?o Paulo. DNA sequence comparisons indicate that the virus isolate from L. sibiricus represents a new geminivirus species, designated here as leonurus mosaic virus.  相似文献   

20.
A survey identified viruses infecting garlic, leek and onion crops and wild Allium species in Greece. Virus identification was based on ELISA, immunoelectron microscopy, and occasionally on RT-PCR. Samples of cultivated Allium species were collected from five districts, whereas samples of twenty-seven wild Allium species were also collected from all over Greece. Onion yellow dwarf virus (OYDV) and Leek yellow stripe virus (LYSV) were identified in 98.5% and 83.7% of all samples, respectively, and were found in all regions. Allexiviruses were also detected in all regions and their incidence ranged from 62.5% to 70.5% (depending on region and type of allexivirus). Garlic common latent virus (GCLV) was detected in samples from Arcadia (97.6%) and Evia (18.0%) and in one field in Larissa (23.0%). Shallot latent virus (SLV) was found only in two areas (Evros and Theva) and in fields planted with imported propagative material, from Iran and China. The incidence of virus-like symptoms in leek crops ranged from 10.0% to 90.0% in different regions and fields and all symptomatic plants were found to be infected by LYSV. Onion yellow dwarf virus was only found in seven symptomatic onion samples from southern Greece. Allium ampeloprasum spp. ampeloprasum and Allium flavum, were the only wild Allium species found to be infected with LYSV. Finally Turnip mosaic virus (TuMV) was found in A. sphaerocephalon, A. guttatum, A. subhirsutum, and A. neapolitanum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号