首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
In April 2001, stunted barley plants bearing mosaic symptoms were observed in a field in France (Marne Department, 51). Rod-shaped and flexuous particles were visualized by electron microscopy and positive serological reactions were detected by ELISA with Barley yellow mosaic virus (BaYMV) and Soil-borne cereal mosaic virus (SBCMV) polyclonal antisera. The tubular virus which was soil transmissible to barley cv. Esterel was separated from BaYMV by serial mechanical inoculations to barley cv. Esterel. This furo-like virus, in contrast to a French isolate of SBCMV, could be transmitted to Hordeum vulgare, Avena sativa, Beta vulgaris and Datura stramonium. RT-PCR was used to amplify the 3′-terminal 1500 nucleotides of RNA1 and the almost complete sequence of RNA2. Nucleotide and amino acid sequence analyses revealed that the French virus infecting barley is closely related to a Japanese isolate of Soil-borne wheat mosaic virus (SBWMV-JT) which was originally isolated from barley. This French isolate was named SBWMV-Mar. The 3′ UTRs of both RNAs can be folded into tRNA-like structures which are preceded by a predicted upstream pseudoknot domain with seven and four pseudoknots for RNA1 and RNA2, respectively. The four pseudoknots strongly conserved in RNAs 1 and 2 of SBWMV-Mar show strong similarities to those described earlier in SBWMV RNA2 and were also found in the 3′ UTR of Oat golden stripe virus RNAs 1 and 2 and Chinese wheat mosaic virus RNA2. Sequence analyses revealed that the RNAs 2 of SBWMV-Mar and -JT are likely to be the product of a recombination event between the 3′ UTRs of the RNAs 2 of SBWMV and SBCMV. This is the first report of the occurrence of an isolate closely related to SBWMV-JT outside of Japan.  相似文献   

2.
Soil-borne cereal mosaic virus (SBCMV) causes a severe disease in susceptible cultivars of winter wheat. The virus is vectored by the soil-borne protist Polymyxa graminis. Experiments were conducted to investigate whether SBCMV RNA2 could persist in seed from SBCMV-infected susceptible cultivars of winter wheat. Over 7,000 seedlings were generated from seed collected from two cultivars of SBCMV-infected winter wheat. Seedlings were grown in a glasshouse compartment and batch tested for the presence of SBCMV using real-time RT-PCR. The majority of batches tested positive for SBCMV, indicating an RNA2 transmission rate of 1.8–9.4% in wheat. The presence of the virus was confirmed by amplifying and sequencing a larger (400 bp) fragment of viral RNA2 in a sub-set of the seedlings testing positive by real-time RT-PCR. Root extracts from this sub-set tested negative for P. graminis using real-time PCR. The implications for disease epidemiology of this virus are discussed. The authors are British Civil Servants and as such their work is subject to British Crown Copyright. This means the exclusive copyright for the article cannot be transferred.  相似文献   

3.
A virus with elongate particles (656 nm) was isolated from severalLonicera species. This virus, apparently belonging to the carlavirus group, is serologically distantly related to shallot latent virus and closely related to poplar mosaic virus. The inability to infect poplar and two other hosts of poplar mosaic virus characterizes the virus fromLonicera as a new virus which was namedLonicera latent virus.The virus was easily sap-transmissible but was not transmitted byMyzus persicae.Dilution end-point was about 10–3, thermal inactivation between 65°C and 80°C and ageing in vitro 1–6 days.Heat treatment, combined with tip-rooting appeared to be a good method to eliminate the virus from severalLonicera species and cultivars.Samenvatting In verschillende soorten en cultivars van het geslachtLonicera (kamperfoelie) blijkt een virus voor te komen dat gemakkelijk door sapinoculatie kan worden overgebracht op kruidachtige planten.Een tegen gezuiverd virus bereid antiserum had een titer van ca. 4096. Er kon mee worden aangetoond dat het virus van kamperfoelie serologisch nauw verwant is met populieremozaïekvirus (Tabel 1). Het virus van kamperfoelie is echter niet in staat om populier,Phaseolus vulgaris Bataaf enVigna sinensis te infecteren en wordt mede daarom als een afzonderlijk virus beschouwd. Het wordt aangeduid als latent kamperfoelievirus (Lonicera latent virus) en behoort evenals populieremozaïekvirus tot de carlavirusgroep (aardappelvirus-S-groep).Het virus blijkt vrij gemakkelijk te kunnen worden geëlimineerd door besmette kamperfoelieplanten gedurende ongeveer zes weken een warmtebehandeling (37°C) te geven en daarna de uiterste toppen (1 cm) te stekken. Van verschillende cultivars werd op deze wijze virusvrij uitgangsmateriaal verkregen.  相似文献   

4.
发生在我国的小麦黄花叶病毒病   总被引:6,自引:0,他引:6  
本文对山东荣成流行的一种小麦病毒病进行了鉴定。提纯的病毒颗粒为长线状,13×100—300nm及13×350—650nm。汁液接种感染小麦,但不感染烟草、苋色藜等植物。病土、病根以及含有禾谷类多粘菌(POlymyxa graminis)游动孢子的浸液可以传毒于小麦、大麦及黑麦。此病毒与大麦黄花叶病毒(BYMV)、小麦梭条花叶病毒(WSSMV)有血清学关系,与小麦土传花叶病毒(WSBMV)无血清学关系。病叶表皮细胞中有无定形内含体。超薄切片可见风轮状内含体。实验结果表明,荣城地区发生的这种小麦病毒病是小麦黄花叶病毒所致。  相似文献   

5.
Twenty-one UK winter wheat cultivars were grown over three seasons at sites with natural inoculum sources of Soil-borne cereal mosaic virus (SBCMV) and Wheat spindle streak mosaic virus (WSSMV) located in France, Italy and the UK. Plants were assessed visually for virus symptoms and leaf extracts were tested for the presence of each virus using enzyme-linked immunosorbent assays (ELISA). Cultivars showing little or no foliar symptoms and low levels of virus in leaf tissue were classified as resistant to each virus. All the trials were taken to harvest and agronomic data collected. At the most heavily infected sites, severe symptoms of SBCMV were observed in all UK cultivars except Aardvark, Charger, Claire, Cockpit, Hereward and Xi 19. The latter cultivars exhibited either light or no symptoms and little or no SBCMV infection in leaves. In fields with WSSMV, the virus failed to develop in Italy, but was detected in the leaves of all the susceptible control cultivars at a site in France. However, no UK cultivar tested positive for WSSMV. Multi-site analysis indicated that the presence of WSSMV did not increase the impact of SBCMV on the height, thousand-grain weight or yield of UK cultivars. The wheat cultivars on test gave a similar response to SBCMV across three European countries. Possible sources of SBCMV resistance are discussed.  相似文献   

6.
In Germany the furovirus Soil-borne cereal mosaic virus (SBCMV) and the bymovirus Wheat spindle streak mosaic virus (WSSMV) occur often together particularly in several rye production areas. Soil-borne wheat mosaic virus (SBWMV), a wheat infecting furovirus, has so far been found only in one field near Heidelberg. Each of these viruses is transmitted by Polymyxa graminis. The cultivation of resistant varieties is the only promising measure to prevent yield losses caused by soil-borne viruses. Resistance of wheat against the bymovirus WSSMV is comparable to the immunity of barley to the bymoviruses Barley yellow mosaic virus and Barley mild mosaic virus. In case of immunity no virus multiplication is observed in resistant cultivars. In contrast, all wheat cultivars are hosts of the furoviruses. All cultivars – including the resistant ones – can be infected following mechanical inoculation with SBWMV and SBCMV. Resistance to furoviruses is based on reduced levels of virus multiplication in roots and on inhibition of virus movement from roots to leaves. Because of the inhibited virus movement from roots to aerial parts of plants this type of resistance is referred to as translocation resistance. In spite of the different resistance mechanisms the absence of virus symptoms on the leaves is a common selection criterion for both immunity and translocation resistance. Therefore, the symptom free development of plants on uniformly infested fields is the best criterion for selecting wheat lines with resistance to soil-borne viruses. The limited suitability of other selection methods is discussed.  相似文献   

7.
Actinidia chinensis and A. deliciosa plants from China, showing a range of symptoms, including vein clearing, interveinal mottling, mosaics and chlorotic ring spots, were found to contain ~300 nm rod-shaped virus particles. The virus was mechanically transmitted to several herbaceous indicators causing systemic infections in Nicotiana benthamiana, N. clevelandii, and N. occidentalis, and local lesions in Chenopodium quinoa. Systemically- infected leaves reacted with a Tobacco mosaic virus polyclonal antibody in indirect ELISA. PCR using generic and specific Tobamovirus primers produced a 1,526 bp sequence spanning the coat protein (CP), movement protein (MP), and partial RNA replicase genes which showed a maximum nucleotide identity (88%) with Turnip vein clearing virus and Penstemon ringspot virus. However, when the CP sequence alone was considered the highest CP sequence identity (96% nt and 98% aa) was to Ribgrass mosaic virus strain Kons 1105. The morphological, transmission, serological and molecular properties indicate that the virus is a member of subgroup 3 of the genus Tobamovirus.  相似文献   

8.
The multiplication of Soil-borne wheat mosaic virus (SBWMV) was studied in mixtures of two winter wheat (Triticum aestivum) cultivars, one susceptible (Soissons) and the other resistant (Trémie). Two seed mixtures of susceptible and resistant varieties in ratios of 1 : 1 and 1 : 3 and their component pure stands, i.e. each variety grown separately, were grown in a field infected with SBWMV. The presence of the virus was detected using DAS-ELISA from January to May. The resistant cultivar Trémie showed no foliar symptoms nor could the virus be detected in the leaves or roots. In May, about 88% of plants of susceptible cultivar Soissons grown in pure stands were infected. At this time, the disease reduction relative to pure stands was 32.2% in the 1 : 1 mixture and 39.8% in the 1 : 3 mixture. Optical density (OD) values from ELISA of the infected plants in the two mixtures were consistently lower than that of the infected plants in cultivar Soissons in pure stands. The ELISA index (EI) calculated using three scales of OD values was 65.5% in the susceptible cultivar in pure stands. The value for this index was 19.1% in the 1 : 1 mixture and 7.9% in the 1 : 3 mixture. The plants of the resistant cultivar Trémie infected in the same field and transferred in January to a growth cabinet at 15 °C multiplied the virus and produced viruliferous zoospores. These results show that the resistant cultivar Trémie plays a role in disease reduction in the cultivar mixtures in field conditions. Possible reasons for this are discussed.  相似文献   

9.
The dynamics of wheat spindle streak mosaic bymovirus in winter wheat were studied during two crop cycles in a field site with a history of high virus incidence. Individual plants of two susceptible cultivars were sampled from autumn to spring and the presence of virus antigen in roots and leaves was determined by ELISA. Virus incidence was higher in cv. Frankenmuth than in cv. Augusta. During year one, incidence of viral antigen in roots remained very low for four months after sowing, and did not reach maximum levels until the following spring. During year two, incidence of viral antigen in roots rose to maximum levels in autumn, only three months after sowing. These results strongly suggested that root infection occurred in spring as well as in autumn. In both cultivars and in both years, we detected the virus in roots one month prior to its detection in leaves, suggesting that virus moves slowly from roots into leaves. Maximum incidence of virus in leaves occurred in spring of both years, coinciding with the period of symptom development. Typical symptoms (yellow streaks, spindles, and mosaic) were observed in year two, whereas only mild mosaic was observed in year one. Virus antigen was detected in nonsymptomatic leaves from two months after sowing through crop senescence. Because antigen could be detected in roots throughout the crop cycle, and zoosporangia and cystosori of the fungal vector could be detected one and two months, respectively, after sowing, it is possible that wheat spindle streak mosaic bymovirus is acquired and/or spread by the vector during the majority of the crop cycle.  相似文献   

10.
Polymyxa graminis is the vector of several important viruses, including Soilborne cereal mosaic virus, Wheat spindle streak mosaic virus, Barley yellow mosaic virus and Barley mild mosaic virus, of winter cereals worldwide. Surveys were carried out to detect these viruses and their vector P. graminis in 300 soil samples from the main wheat and barley production areas of the Anatolian part of Turkey collected in May 2002, June 2004 and May 2005. For these surveys, various susceptible wheat and barley cultivars were pot grown in the collected soil samples in a greenhouse and then analysed using ELISA and RT-PCR to detect the presence of different virus species. In addition, a combination of light microscopy following roots staining with acid fuchsin and PCR was used for detection of P. graminis. All soil samples analysed were found to be free of these soilborne viruses and their vector.  相似文献   

11.
河南省主要推广品种对小麦黄花叶病毒抗性的评价   总被引:2,自引:2,他引:0  
为了评价河南省主要推广品种对小麦黄花叶病毒(Wheat yellow mosaic virus, WYMV)的抗性,于2006—2010年在河南省西平县病圃进行了田间抗性鉴定试验和室内间接ELISA检测,并分析了病害严重程度对产量的影响。结果表明,在供试的62个品种中,仅有新麦208表现为免疫;豫麦70-36、泛麦5号、阜麦936、山东95519、豫麦70、高优503、豫麦9676、郑麦366和陕麦229等9个品种表现为抗病,占供试品种的14.5%;濮优938、兰考矮早8、新原958、花培2号、温优1号、豫麦18、郑麦9023、豫麦47、豫农201、偃展4110、豫麦36、百农878和豫麦49-198等13个品种表现为中抗,占供试品种的21.0%;另外39个品种表现为感病,占供试品种的62.9%。对48个品种进行了产量与病害严重度分析,发现随着病害的严重度增加,小麦的穗数、千粒重以及产量都有明显下降,严重度为1级时,平均减产9.6%;严重度达到2级和3级时,平均减产分别为30.3%和33.5%。  相似文献   

12.
Large-scale cDNA-AFLP profiling identified numerous genes with increased expression during the resistance response of wheat to the Septoria tritici blotch fungus, Mycosphaerella graminicola. To test whether these genes were associated with resistance responses, primers were designed for the 14 that were most strongly up-regulated, and their levels of expression were measured at 12 time points from 0 to 27 days after inoculation (DAI) in two resistant and two susceptible cultivars of wheat by real-time quantitative polymerase chain reaction. None of these genes was expressed constitutively in the resistant wheat cultivars. Instead, infection of wheat by M. graminicola induced changes in expression of each gene in both resistant and susceptible cultivars over time. The four genes chitinase, phenylalanine ammonia lyase, pathogenesis-related protein PR-1, and peroxidase were induced from about 10- to 60-fold at early stages (3 h–1 DAI) during the incompatible interactions but were not expressed at later time points. Nine other genes (ATPase, brassinosteroid-6-oxidase, peptidylprolyl isomerase, peroxidase 2, 40S ribosomal protein, ADP-glucose pyrophosphorylase, putative protease inhibitor, methionine sulfoxide reductase, and an RNase S-like protein precursor) had bimodal patterns with both early (1–3 DAI) and late (12–24 DAI) peaks of expression in at least one of the resistant cultivars, but low if any induction in the two susceptible cultivars. The remaining gene (a serine carboxypeptidase) had a trimodal pattern of expression in the resistant cultivar Tadinia. These results indicate that the resistance response of wheat to M. graminicola is not completed during the first 24 h after contact with the pathogen, as thought previously, but instead can extend into the period from 18 to 24 DAI when fungal growth increases dramatically in compatible interactions. Many of these genes have a possible function in signal transduction or possibly as regulatory elements. Expression of the PR-1 gene at 12 h after inoculation was much higher in resistant compared to susceptible recombinant-inbred lines (RILs) segregating for the Stb4 and Stb8 genes for resistance. Therefore, analysis of gene expression could provide a faster method for separating resistant from susceptible lines in research programs. Significant differential expression patterns of the defense-related genes between the resistant and susceptible wheat cultivars and RILs after inoculation with M. graminicola suggest that these genes may play a major role in the resistance mechanisms of wheat.  相似文献   

13.
The distribution of two UK strains of barley yellow mosaic virus has been studied and both have been transmitted experimentally by Polymyxa graminis. cDNA hybridization studies support the suggestion that the strains should be considered distinct viruses. Oat mosaic and oat golden stripe (OGSV) viruses also occur in the UK. OGSV is a furovirus related to wheat soil-borne mosaic furovirus: it has particles of two lengths and a bipartite genome.  相似文献   

14.
The incidence of seed infection by fungal species pertinent to the fusarium head blight complex was monitored from 1999 to 2002 in two soft and three durum wheat cultivars grown across the northern, central and southern production zones of Italy, in order to characterize the species composition at the seed level. The main species recovered were Fusarium graminearum, F. poae and Microdochium nivale. There was a marked influence of production zone on seed infection incidence for both durum and soft wheat cultivars, with incidence of infection generally decreasing from the northern to the southern zone. Incidence of seed infection by different species of Fusarium was twice to four times higher in durum compared with the soft wheat cultivars in the study. There were no significant differences in terms of seed infection incidence between the two soft wheat cultivars, but the durum cultivars differed in their levels of seed infection for some of the pathogens. The results demonstrated that the durum cultivars were more at risk of seed infection by pathogens associated with fusarium head blight, and that wheat grown in northern Italy is at higher risk of seed infection by these species.  相似文献   

15.
A virus having tubular particles (124, 142 and 167 nm) was manually transmitted from and to Anthoxanthum odoratum (sweet vernal grass). Other experimental hosts were Chenopodium quinoa, C. amaranticolor, Zea mays, Avena sativa and Hordeum vulgare (barley); winter cultivars of barley were more often infected than spring cultivars. In tests which simulated mechanical injury, the virus was transmitted from infected to healthy A. odoratum but not to healthy barley. The virus particles, which were seen as aggregates in the cytoplasm of A. odoratum leaf cells and in anther walls, reacted strongly in immunosorbent electron microscopy tests with antisera to strains of barley stripe mosaic hordeivirus. Nevertheless, the virus could be distinguished from the Type strain of barley stripe mosaic virus by reciprocal serological tests and by symptoms in infected barley cv. Black Hulless. Using an antiserum produced against the virus, a survey of A. odoratum in the field revealed one of 72 tested plants to be naturally infected. The virus is probably that described by Catherall & Chamberlain (1980) and named anthoxanthum latent blanching virus.  相似文献   

16.
Pratylenchus thornei densities were monitored in field plots of two winter wheat cultivars in a dry farming area of southern Spain. Samples were taken fortnightly during the wheat-growing season and from the following dry fallow. Under bread wheat cv. ‘Yecora’, densities ofP. thornei increased for 5 to 6 months and then were maintained or slightly decreased thereafter, surviving the summer dry fallow in an anhydrobiotic state (78.2% and 85.3% survival in soil and roots, respectively). Under durum wheat cv. ‘Donpedro’, nematode densities decreased over the growing season, although densities within the roots increased during the first 2 months of the wheat-growing period, indicating that nematodes could penetrate the roots of this cultivar but were unable to reproduce. These observations suggest resistance of wheat cv. Donpedro toP. thornei.  相似文献   

17.
ABSTRACT Soilborne wheat mosaic virus (SBWMV) is an agronomically important pathogen of wheat that is transmitted by the soilborne plasmodiophorid vector Polymyxa graminis. In the laboratory, attempts to generate SBWMV-infected plants are often hampered by poor infectivity of the virus. To analyze the mechanism for virus resistance in wheat cultivars, we developed novel inoculation techniques. A new technique for foliar inoculation of SBWMV was developed that eliminated wound-induced necrosis normally associated with rub inoculating virus to wheat leaves. This new technique is important because we can now uniformly inoculate plants in the laboratory for studies of host resistance mechanisms in the inoculated leaf. Additionally, wheat plants were grown hydroponically in seed germination pouches and their roots were inoculated with SBWMV either by placing P. graminis-infested root material in the pouch or by mechanically inoculating the roots with purified virus. The susceptibility of one SBWMV susceptible and three field resistant wheat cultivars were analyzed following inoculation of plants using these novel inoculation techniques or the conventional inoculation technique of growing plants in P. graminis-infested soil. The results presented in this study suggest that virus resistance in wheat likely functions in the roots to block virus infection.  相似文献   

18.
We examined whether PWT4, an avirulence gene of Avena isolates of Magnaporthe oryzae toward wheat, corresponded to Rwt4, a resistance gene identified in wheat cultivar Norin 4, in a one-to-one manner. Twelve wheat cultivars were inoculated with 65X1, an F1 culture with PWT4 derived from a cross between an Avena isolate (Br58) and a Triticum isolate (Br48). Three wheat cultivars (Norin 26, Shin-chunaga, Cheyenne) were resistant and therefore selected as possible carriers of Rwt4. The three cultivars were then inoculated with a population derived from a backcross of 61M2 carrying PWT4 with Br48 carrying pwt4. Segregation analyses revealed that PWT4 operates against the three cultivars. If PWT4 corresponds to Rwt4 in a one-to-one manner, all three cultivars should carry Rwt4. To test if this is the case, the three cultivars were crossed with Chinese Spring (a noncarrier of Rwt4) and Norin 4. When F2 seedlings from Chinese Spring × Norin 26, Chinese Spring × Shin-chunaga, and Chinese Spring × Cheyenne were inoculated with 61M2, resistant and susceptible seedlings segregated in a 3 : 1 ratio. On the other hand, crosses between the three cultivars and Norin 4 yielded no susceptible F2 seedlings. These results indicate that all three cultivars carry Rwt4. Considering all results, we concluded that PWT4 corresponds to Rwt4 in a one-to-one manner. An inoculation test with Chinese Spring–Cheyenne chromosome substitution lines indicated that Rwt4 is located on chromosome 1D.  相似文献   

19.
Tobacco rattle virus (TRV) was isolated from plants ofLimonium latifolium showing bright yellow or red line patterns and ringspots on the leaves. It was proved that this virus, designated TRV-Lim, was the causal agent of the disease. In its reactions onNicotiana clevelandii it resembled a yellow strain of TRV from Oregon (USA), but the symptoms inN. glutinosa, N. megalosiphon, N. tabacum andPetunia hybrida were more comparable to those caused by socalled unstable variants of TRV. Dilution end-point was 10–6–10–7, thermal inactivation at 76–80°C, and ageing in vitro 55–60 days. The purified virus suspension contained particles of three normal lengths, 70, 102, and 194 nm. The virus sedimented as three components with average sedimentation coefficients of 129, 161 and 206 S, respectively. In purified suspensions TRV-Lim had two different buoyant densities. A serological relationship was found with TRV isolated from Europe and Brazil.Samenvatting Tabaksratelvirus (TRV) werd geïsoleerd uitLimonium latifolium planten die heldergeel of rood figuurbont op de bladeren vertoonden. Er werd aangetoond dat dit virus, aangeduid als TRV-Lim, de ziekteverwekker was. De reacties van dit virus opNicotiana clevelandii deden denken aan die van een gele stam van TRV afkomstig uit Oregon (VS), maar de symptomen opN. glutinosa, N. megalosiphon, N. tabacum enPetunia hybrida vertoonden meer gelijkenis met die welke veroorzaakt worden door de zogenaamde onstabiele varianten van TRV. De verdunningsgrens was 10–6–10–7, de inactiveringstemperatuur 75–80°C en de houdbaarheid in vitro 55–60 dagen. De gezuiverde virussuspensie bevatte deeltjes met drie normale lengtes, nl. 70, 102 en 194 nm. Het virus sedimenteerde, als drie componenten met gemiddelde sedimentatiecoëfficiënten van respectievelijk 129, 161 en 206 S. In gezuiverde suspensie vertoonde TRV-Lim twee verschillende zweefdichtheden. Het virus was serologisch verwant aan TRV-isolaten uit Europa en Brazilië.  相似文献   

20.
Wheat and barley crops were shown to be susceptible to Indian peanut clump virus (IPCV) under field conditions. In wheat, the Hyderabad isolate of IPCV (IPCV-H) induced symptoms resembling the rosette caused by soil-borne wheat mosaic virus, and these were apparent only three weeks after emergence. Early-infected plants were severely stunted and dark green, with chlorotic streaks on the youngest leaves, which turned necrotic as the plants aged; most of these plants died. Late-infected plants were also stunted and were conspicuous in the field because of their dark green appearance as a result of delayed maturity. The virus was detected by ELISA and nucleic acid hybridization in all plants with symptoms. These plants usually produced fewer tillers than healthy ones. Spikes were malformed, often did not emerge from the flag leaf, and they contained few, shrivelled seeds. Grain yield was decreased, on average, by 58%. In barley, IPCV-H caused severe stunting and general leaf chlorosis. As the plants aged, the leaves became necrotic and the few infected plants that reached maturity produced small spikes. IPCV-H antigens were detected by ELISA in every wheat seed from infected plants and the virus was transmitted through wheat seed at a frequency of 0.5–1.3%. Storage at 4°C for more than a year did not affect seed transmission frequency. The virus was detected in leaves and roots of seed-transmitted plants. Seed transmission was not detected in barley. The Durgapura isolate (IPCV-D) was detected in wheat crops (cv. RR-21) at 3 different locations in Rajasthan State, India. Infected plants showed reduced growth without any overt symptoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号