首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
半开式离心泵变工况叶顶间隙的流动特性   总被引:1,自引:5,他引:1  
为研究不同工况下,叶顶间隙对半开式叶轮离心泵内部流场及外特性的影响,该文对某半开式叶轮离心泵内部三维湍流流场进行数值模拟。揭示了离心泵内不同工况下叶轮流道和叶顶间隙层内的流动规律,对比分析了4种不同流量工况下叶顶间隙泄漏涡的流动特性、叶顶间隙层总压与相对速度分布,以及流量的变化对离心泵外特性的影响。结果表明:在小流量(设计流量为1.5 m3/h)时,间隙层内充满了泄漏涡,随着流量的增加涡核逐渐减少;大流量时涡核几乎消失,但此时流体速度激增,流动冲击损失变大在叶轮出口与间隙层附近存在着大面积回流,小流量时回流几乎占据了整个出口。通过模型泵外特性试验,验证了数值计算的准确性。该文为离心泵叶顶间隙设计及水力优化提供了参考。  相似文献   

2.
固液两相流条件下半开式叶轮离心泵中颗粒冲击、泄漏涡发展和颗粒轨迹之间存在紧密交互作用,导致过流部件的磨损行为复杂多变。该研究结合双向耦合欧拉-拉格朗日方法和颗粒磨损Finnie模型,对不同颗粒体积浓度下半开式叶轮离心泵固液两相流场进行求解,分析了颗粒体积浓度对泄漏涡结构特征、颗粒运移轨迹和磨损特性的影响,揭示了颗粒体积浓度、叶顶间隙泄漏涡和过流部件表面磨损规律的关联机制。结果表明:随着颗粒体积浓度的增加,颗粒的频繁撞击加剧了叶片压力面进水边和后盖板磨损程度,叶片吸力面出水边的磨损范围向进水边方向延伸;颗粒体积浓度小于1%时,颗粒的轴向运动和叶顶间隙泄漏涡的阻碍作用导致颗粒易与叶片前缘靠近叶根处和吸力面出水边靠近叶顶的区域发生撞击,诱发严重磨损,且呈现点状磨损;当颗粒体积浓度大于3%时,叶轮后盖板的整体磨损强度大于叶片,颗粒体积浓度的增加造成流入叶顶间隙层的颗粒数增加,颗粒对叶顶间隙泄漏涡的冲击导致涡流的破碎、分离、再融合,加剧不稳定流动,泵的扬程和效率均明显下降。该研究可为固液两相半开式叶轮离心泵优化设计和安全稳定运行提供理论参考。  相似文献   

3.
不同叶顶间隙对斜流泵性能影响的数值分析   总被引:4,自引:3,他引:1  
斜流泵具有高效,启动特性好,运行工况宽等特点。目前斜流泵设计时,无法定量评估叶顶间隙对性能影响的敏感性。为了揭示不同叶顶间隙值对斜流泵内部流场和性能的影响,给定叶顶间隙选取的范围。分别选取无叶顶间隙和叶顶间隙分别为0.5,1.0,1.5 mm共4种设计方案的斜流泵为对象,基于剪切压力传输模型(shear stress transport,SST k-ω)湍流模型,SIMPLEC算法与块结构化网格,对斜流泵内部流场进行数值模拟和试验验证。结果表明,叶顶间隙为0.5 mm时,可以有效抑制斜流泵的扬程-流量正斜率特性,此时斜流泵的效率值最高;无叶顶间隙时,斜流泵扬程-流量正斜率特性较为明显;叶顶间隙为1 mm时,数值模拟与试验结果吻合较好,SST k-ω模型可较好模拟斜流泵叶顶间隙区流动特征,性能预估结果具有一定的可信度。在小流量工况下,叶顶间隙为0.5 mm可有效抑制斜流泵的正斜率不稳定特性。小叶顶间隙0.5mm时,斜流泵水力性能最优;叶顶间隙增大时,叶顶泄漏流动逐渐显著,叶轮出口近壁区轴面流速和涡量分布规律显著变化,表明叶顶间隙直接影响叶轮轴面速度分布规律和叶片负荷分布规律,由于受壁面摩擦阻力和液体黏滞阻力的影响,叶轮轮毂和叶顶间隙侧的叶轮轴面速度较小;叶顶间隙增大时,叶轮轮毂和叶顶间隙侧叶片负荷急剧衰减,影响叶片的做功能力。同时,叶顶泄漏流动区域与叶片主流区域的掺混效应,使叶片轮缘的低速区扩展到叶轮流道内部的主流区域,引起叶轮流道内部主流流动的堵塞效应,产生二次流动、漩涡等流动不稳定现象。上述研究结果,揭示了叶顶间隙对斜流泵内部流场和性能的影响机理,为斜流泵叶顶间隙的选择提供了理论依据。  相似文献   

4.
深井离心泵内部非定常流动的压力脉动特性分析   总被引:5,自引:4,他引:1  
为了分析深井离心泵内部的非定常压力脉动特性,该文基于标准k-ε湍流模型和滑移网格模型,应用SIMPLEC算法,在CFD软件Fluent中对深井离心泵内部全流场进行三维非定常数值计算,得到了额定工况下流道内不同位置的压力脉动特性,并通过快速傅里叶变换进行了频域分析。结果表明,网格数对数值计算结果影响较大;在叶轮出口与导叶进口交界处,叶轮叶片与导叶叶片的动静耦合是产生压力脉动的原因;压力脉动周期与叶轮叶片数相关,导叶叶片数对压力脉动周期影响较小;叶片通过频率是影响压力脉动的主要因素。该文为改善泵体结构,进一步提高深井离心泵的使用可靠性提供了依据。  相似文献   

5.
诱导轮时序位置对离心泵水力性能的影响   总被引:1,自引:1,他引:1  
对带有诱导轮的离心泵而言,诱导轮相对叶轮的时序位置非常关键。为探讨时序位置对整台离心泵性能的影响,该文以某单级离心泵为研究对象,采用三维黏性非定常数值方法,对诱导轮相对叶轮的3种不同时序位置下离心泵的内部流动进行了模拟,并分析了其外特性、振动特性、空化特性随时序位置的变化。结果表明:随诱导轮时序位置的变化,离心泵的扬程和效率都是先增大后减小,扬程变化达1.3%,效率变化达1.32%;诱导轮叶片尾部压力面的漩涡逐渐消失。时序效应对叶轮与径向导叶间的动静干涉有影响,从而影响叶轮所受径向力的分布及叶轮内部和径向导叶头部的压力脉动特性;合理的时序位置可以改善离心泵的空化性能。  相似文献   

6.
多级离心泵内部非定常压力分布特性   总被引:3,自引:2,他引:1  
为研究多级离心泵运行过程中的振动特性,以一台两级离心泵为例,建立整泵的流道模型,基于计算流体力学(computational fluid dynamics,CFD)软件ANSYS CFX,选取标准k-ε模型,进行全流场三维非定常数值计算,获取额定工况下叶轮出口处和径向导叶内不同位置处的压力脉动特性、作用在叶轮上的扭矩特性以及作用在叶轮上的径向力特性,并对其进行频域分析。结果表明:各监测点的压力均呈现出以叶片通过频率为主频的周期性压力波动;作用在叶轮上的径向力呈现脉动状态,其矢量分布图基本呈圆形分布,作用在叶轮上的扭矩呈现出以叶片通过正导叶频率为主频的周期性波动;叶片和导叶间动静干涉是影响压力和扭矩波动的主要因素。该研究结果为改善泵体结构设计,提高多级泵的使用稳定性提供依据。  相似文献   

7.
为改善筒袋泵水动力性能,基于SST k-ω湍流模型,对立式筒袋泵首级叶轮进行三维非定常数值模拟,采用时-频域数据处理法,对各个监测点的压力脉动进行分析,主要研究了同一叶轮模型下蜗壳不同截面的压力脉动情况及不同交错角对离心泵内压力脉动和径向力的影响。结果表明:在三隔舌三通道蜗壳内,每隔120°压力脉动情况相似;随着交错角度的增加,距离隔舌较近且顺着叶片旋转方向的监测点压力脉动下降最多,压力脉动标准差下降了85%以上;叶轮所受径向力最多下降了60%;叶片交错后液体在轴向方向上会更容易产生流动,导致流动损失但有助于平稳蜗壳内的压力。综上所述,采用交错叶片有助于提高筒袋泵水动力性能。该研究为交错叶片结构在筒袋泵中的应用提供了参考。  相似文献   

8.
为研究叶片不等间距对离心泵性能及压力脉动影响,以一比转数为132.7的离心泵为研究对象,基于转子自动平衡理论建立了3种叶片不等间距叶轮模型,并对模型泵全流场进行了CFD数值计算,获得了模型泵外特性、叶轮内流分布及蜗壳内压力脉动信息。利用外特性试验验证了计算方法的准确性,并对叶片不等间距与原等间距叶轮模型计算结果进行了对比分析。分析表明:叶片不等间距布置会使泵扬程降低,效率升高,且最小角间距越小,扬程下降越明显,效率上升越明显,但最小角间距为45°、50°、55°时,3个工况下的扬程、效率计算值变化幅度均保持在5%以内,满足设计要求;叶片不等间距布置后叶轮工作面附近的低速区更明显,且主要存在于较宽流道,最小角间距越小,低速区范围越大;叶片不等间距模型在145 Hz及其谐频处产生新的压力脉动峰值,一定程度上改善了压力脉动频谱平稳性,其中最小角间距为45°、50°的2种模型在此处的脉动量整体比叶频处脉动量还大。该研究结果可为离心泵优化设计提供参考。  相似文献   

9.
该文利用高速摄影和压力脉动测量结果,以某一模型轴流泵为研究对象,研究了轴流泵叶顶涡空化机理,探讨了不同流量、不同空化数下的叶顶空化形态及垂直空化涡发展的瞬态特性,分析了叶顶空化形态与压力脉动结果之间的关系。试验结果表明,小流量(0.6~0.8)Qopt(Qopt=365 m3/h)工况下,更易空化初生且叶顶空化形态更不稳定,随着空化数的降低,叶顶空化更加剧烈;垂直空化涡自叶顶三角形云状空化尾缘脱落,垂直于叶片压力面向相邻叶片移动,造成流道堵塞,影响泵的水力性能。随着流量的降低,垂直空化涡初生点向叶顶尾缘移动;减小空化数,其尺度与强度增大。压力脉动与空化结构图像对比表明,叶片吸力面为传感器所在圆周压力最低处。叶顶空化区为低压区范围,在大流量1.2Qopt工况下,叶顶泄漏涡涡带为狭长的低压区。随着流量与空化数的降低,叶顶泄漏涡与叶顶相连形成三角形空化云,形成较大范围的低压区。垂直空化涡的脱落使得云状空化面积减小,低压区范围减小。垂直空化涡向相邻叶片压力面移动中,与脱落的叶顶泄漏涡尾缘混合作用,使压力回升过程中产生波动。空化结构对轴流泵叶轮叶顶区压力具有重要影响。  相似文献   

10.
诱导轮与叶轮匹配不合理,是影响微型离心泵运行稳定性的原因之一。为了研究诱导轮与叶轮之间的轴向距离(简称为轴向距离)的匹配对离心泵性能的影响,该文以一台前置诱导轮离心泵为研究对象,采用数值方法定量分析了不同轴向距离对离心泵能量特性、汽蚀特性和压力脉动特性的影响。选取5种轴向距离,分别为0.1S,0.5S,1.0S、1.5S和2.0S(S为诱导轮轴向长度与叶栅稠密度的比值),对离心泵进行三维流场数值预测。结果表明,轴向距离增加后,扬程和效率均有所增加,汽蚀余量降低,但叶轮内压力脉动幅值升高。其中,在额定工况下,当轴向距离增大至1.0S时,扬程提高了0.61m,效率提高了5.8%,临界汽蚀余量降低了0.4m;轴向距离继续增大后,各项性能变化不大。综合分析认为,轴向距离为1.0S时,诱导轮与叶轮的匹配性能最佳,有利于离心泵稳定运行。研究结果可为微型离心泵诱导轮与叶轮的匹配设计提供参考。  相似文献   

11.
不同口环间隙离心泵性能及水力激励特性分析及试验   总被引:2,自引:1,他引:1  
为进一步研究改变口环间隙所产生的影响,该文通过改变口环间隙大小,采用数值计算与试验相结合的方法,研究了离心泵内叶轮所受径向力以及压力脉动的变化。分别采用0.25、0.5以及0.75 mm的口环间隙,进行数值计算和试验。通过对叶轮外表面的压力场求解和分析,得到不同口环间隙对叶轮所受径向力的影响,通过试验测得的各监测点的压力脉动数据进行分析。结果表明:模拟所得扬程与试验结果较为吻合。叶频所对应的压力脉动幅值在前腔进口处,口环间隙为0.5 mm的方案约为0.25 mm方案的3.1倍,在叶轮出口处约为1.3倍;口环一周的平均压力脉动在0.75 mm时最小,此时约为0.5 mm方案的0.81倍;叶轮进口及其上游的压力脉动以0.75 mm方案最小,约为其他2个方案的0.67倍,说明口环间隙为0.5 mm时离心泵前腔及进口处的压力脉动最大。叶轮所受径向力随着口环间隙的改变呈现非线性变化,小流量及设计工况时0.75 mm方案的径向力最小,设计工况时0.25 mm方案的径向力最小。通过研究不同口环间隙所诱导的压力脉动及径向力的变化,对离心泵的传统设计进行了一定的补充,并且对口环的设计提供了参考。  相似文献   

12.
离心泵中存在各种间隙,其间隙流动极其复杂,易出现泄漏流、间隙涡等复杂湍流,影响离心泵的水力性能及运行稳定性.该文结合数值模拟与试验方法,采用SSTk–ω湍流模型,研究半高导叶端面间隙对离心泵水力性能及内部流场的影响规律,重点探讨半高导叶端面间隙对离心泵水力性能的影响机理.结果表明,适当的半高导叶端面间隙能有效改善离心泵水力性能,拓宽其高效区,导叶叶高为1.0时,最高效率点流量37.5m3/h处,而导叶叶高为0~0.8时,其最高效率点流量42.5m3/h处;导叶端面间隙为0.4~0.6导叶叶高时,离心泵的效率与扬程最优,且最大效率为57.5%;在0.6倍设计工况、0.8倍设计工况和1.0倍设计工况时,带半高导叶端面间隙的离心泵中叶轮做功和导叶内总压损失均高于普通导叶式离心泵,在0.6倍设计工况,导叶叶高为1.0时叶轮做功比导叶叶高为0~0.8时叶轮做功低将近7m水头,且在0.6倍设计工况和0.8倍设计工况下,导叶叶高为0时导叶内总压损失平均值比导叶叶高为1.0时分别高6.66m、4.62m水头;在1.2倍设计工况和1.4倍设计工况时,其叶轮做功和导叶内总压损失均低于普通导叶式离心泵;在各流量工况下,带导叶端面间隙的离心泵中蜗壳内总压损失均小于普通导叶式离心泵;随着流量增加,带半高导叶端面间隙的离心泵中叶轮-导叶动静干涉作用在逐渐减弱,叶轮-蜗壳动静干涉作用逐渐凸显.研究结果为离心泵导叶优化设计提供参考.  相似文献   

13.
离心泵内部流动时序效应的CFD计算   总被引:5,自引:5,他引:0  
为了研究导叶时序效应对离心泵性能的影响,采用CFD方法对设计流量工况下导叶不同时序位置时离心泵内部流动进行了数值计算,定义导叶叶片尾缘与隔舌夹角为0时为时序位置0,每增加10°增加一个时序位置。得到了泵内外特性随时序位置不同的变化规律,并分析了不同时序位置对隔舌处压力脉动及叶轮径向力非定常特性的影响。结果表明:随着导叶时序位置的增加,泵扬程和效率呈先上升后下降的趋势,导叶与隔舌相对位置在20°时达到最大值,扬程较最低值提高0.6 m;时序效应对隔舌处1倍和2倍叶片通过频率影响最大,且随时序位置的增加,主频和压力脉动幅值呈先减小后增加的趋势,时序位置1时幅值为4时的70%;导叶时序位置的改变主要影响泵底座-出口方向叶轮径向力分量。研究结果为离心泵径向导叶设计提供参考。  相似文献   

14.
低比转数离心泵的多目标优化设计   总被引:1,自引:7,他引:1  
为了提高IS50-32-160低比转数离心泵在设计工况下的扬程和效率,采用数值模拟、试验设计、近似模型和遗传算法相结合的优化方法,选取了泵叶轮的叶片出口宽度、叶片出口安放角和叶片包角3个参数作为设计变量,采用最优拉丁超立方试验设计方法进行20组方案设计,应用ANSYS CFX 14.5软件对各方案进行定常数值计算,得到设计工况下的效率和扬程,并将效率和扬程作为设计目标,根据Kriging近似模型建立了设计目标与设计变量之间的近似函数,采用遗传算法对近似函数进行求解,得到最优的叶轮参数组合。研究结果表明:原始方案的外特性数值模拟结果与试验结果吻合程度较好,设计工况下预测扬程偏差为3.3%;优化后的泵水力效率提高了4.18%,而且近似模型在预测性能的准确性高;通过对比原始方案和优化方案的内流场特性,优化方案内部流动得到改善,优化的叶轮的漩涡区域比原始方案的较小;优化使得效率在主频和次频下的脉动幅值分别下降了1.52和0.84,叶轮内的较大压力脉动强度区域减小,隔舌附近监测点在主频下的压力脉动系数幅值下降了0.02。非定常压力脉动强度降低,从而泵的运行稳定性提高。提出的优化设计方法对低比转数离心泵高效以及无过载特性的优化具有一定的参考意义。  相似文献   

15.
为明确舌安放角对旋流泵性能及非定常流动特性的影响,该研究设计了不同隔舌安放角的蜗壳模型,基于Navier-Stokes方程和RNG k-?湍流模型对旋流泵进行了全流场数值模拟,并通过能量性能和压力脉动试验对数值模拟方法进行了验证。能量性能预测结果表明,存在最优隔舌安放角使泵扬程和效率均达到极大值。流场分析结果表明,隔舌安放角对蜗壳隔舌及扩散段的流态具有较大的影响:较小的隔舌安放角会减小蜗壳喉部的过流面积,使无叶腔内流体的旋转运动受阻,致使循环流与隔舌的动静干涉作用增强;过大的隔舌安放角会造成扩散段产生大尺度的漩涡和回流。压力脉动分析表明,隔舌处压力脉动分布特征受安放角和测点位置共同影响:随隔舌安放角的增大,隔舌处的压力脉动先降低后增大,安放角由30°增大至45°时,2倍轴频(fn)的脉动最大降幅约47%,安放角继续增大至50°时,(0.25~0.5)fn的低频脉动最大增幅约86%;随着测点与叶轮轴向距离增大,隔舌处的压力脉动逐渐减小,叶轮一侧的脉动幅值约为泵体进口一侧的2倍。涡量场分析表明:蜗壳隔舌处频率为2fn的压力脉动由入口螺旋状入流发展扩散产生;隔舌处涡核分布的不对称性是导致蜗壳隔舌处压力分布不对称的原因。适当增大隔舌安放角能有效改善旋流泵隔舌处内流的稳定性,并一定程度提升旋流泵扬程和效率。综合各项性能表明该模型泵隔舌安放角45°时性能最优。研究结果可为旋流泵优化设计提供理论参考。  相似文献   

16.
离心泵内部非定常压力场的数值研究   总被引:11,自引:8,他引:3  
为研究离心泵内部压力随叶轮旋转的变化,采用FLUENT提供的滑移网格技术对设计工况下离心泵内的非定常流动进行了数值计算,分析了离心泵内部非定常流动的规律。结果表明:离心泵内部流动的非对称特性和非定常特性明显;离心泵出口和叶片进口压力的波动对离心泵性能影响较大;在蜗壳中部截面S2和蜗壳出口截面S3上,静压的波动主要受叶片和蜗舌相对位置的影响,而动压的波动主要受叶片和截面相对位置的影响;两截面上沿蜗壳径向静压增大,动压减小;沿蜗壳周向静压随圆周角的增大而增大,而动压略成下降趋势。该分析为研究离心泵内流现象,降低离心泵的汽蚀、振动和噪声提供了有益的借鉴。  相似文献   

17.
旋转失速条件下离心泵隔舌区动静干涉效应   总被引:1,自引:2,他引:1  
为研究旋转失速条件下离心泵隔舌区动静干涉效应和流动特性,采用大涡模拟方法对一离心泵进行了数值模拟,得到了水泵内部流场和隔舌区压力脉动特性。对不同旋转时刻的内部流动进行分析,发现当流量小于0.75倍额定流量时,叶轮中发生了旋转失速,并且由于隔舌附近逆压梯度较大,当叶轮流道通过隔舌处时会发生"固定失速"的流动现象。对旋转失速条件下蜗壳上的压力脉动进行分析,发现蜗壳隔舌处的压力脉动幅值最高,沿着流动方向依次减小。当旋转失速发生以后,蜗壳上的压力脉动幅值约为非失速工况下的2~3倍,并随着流量减小,压力脉动主频幅值增大。在旋转失速初始阶段,隔舌区"固定失速"对压力脉动的影响较弱,旋转失速的影响占主导,蜗壳上的压力脉动主频为0.5倍叶频;而当流量进一步减小至0.25倍额定流量时,隔舌区的"固定失速"对压力脉动的影响作用增强,削弱了旋转失速的作用,蜗壳上靠近隔舌区的压力脉动主频为叶频,而远离隔舌区的位置受"固定失速"影响较小,旋转失速的影响占主导,主频仍是0.5倍叶频。该研究结果可为离心泵机组运行稳定性提供参考。  相似文献   

18.
为分析叶片安放角对轴流泵马鞍区工况运行特性的影响,以比转速822的轴流泵为研究模型,试验测试了不同叶片安放角下的运行特性。研究表明:随着叶片安放角的增大,模型泵最优工况处的扬程、流量和效率均逐渐增大,-4°到+4°的增幅分别为10.4%,26.7%和0.87%;不同安放角下,泵扬程曲线均存在明显的马鞍区;随着叶片安放角的增大,试验泵马鞍区的绝对位置向右上方偏移,但相对位置仍主要位于0.5QBEP~0.6QBEP(QBEP为最高效率点对应的额定流量),且均在0.55QBEP时扬程达到最小值;随着叶片安放角的减小,马鞍区内相对扬程在逐渐增大,马鞍区驼峰特性有所改善;随着叶片安放角的增大,各个安放角下马鞍区范围内的压力脉动较最优工况下更剧烈;叶轮进口压力脉动主频为叶片通过频率,泵出口处压力脉动主要受导叶影响,随流量减小逐渐向高频移动;随着叶片安放角的增大,叶轮进口和泵出口处主频处的压力脉动幅值均逐渐增大,在叶轮进口处,0.6QBEP和0.55QBEP时压力脉动幅值最大增幅分别达1.78和1.65倍,在泵出口处,正安放角下压力脉动幅值相对负角度有所增大;内流分析表明小流量工况下叶轮进口存在回流现象,叶轮出口靠近轮毂处有明显旋涡,导致小流量下压力脉动幅值增大。  相似文献   

19.
液力透平非定常压力脉动的数值计算与分析   总被引:7,自引:3,他引:4  
液力透平内部流场的非定常压力脉动是影响机组运行稳定性的关键因素之一,为了研究液力透平内部压力脉动,采用流场分析软件CFX对液力透平内部流场进行了三维非定常数值模拟,通过设置监测点,得到了不同位置处的压力脉动结果,并对压力脉动进行了频域分析。结果表明,液力透平内部压力沿着流道逐渐减弱;蜗壳环形部分入口位置和割舍处压力脉动较小,割舍前端和蜗壳中部位置处压力脉动较大,压力脉动主频为转频的2倍;叶轮内部的压力脉动在液力透平各过流部件的脉动中最为强烈,最大压力脉动发生在叶轮中间位置,压力脉动主频为叶频的2倍;尾水管内的压力脉动沿着尾水管流道逐渐减弱,压力脉动主频与蜗壳内部的压力脉动主频相同,为转频的2倍。  相似文献   

20.
半开式叶轮离心泵气液两相条件下内部流动特性分析   总被引:1,自引:1,他引:0  
半开式叶轮离心泵输送气液两相流时,其性能经常随入流含气率(α)的增加而下降,主要由内部的气液两相不稳定流动造成。为解决传统欧拉双流体模型不能考虑气泡直径变化及气泡形变的问题,采用一种群体平衡模型(Musig模型)数值计算了某设计比转速为88.6的半开式叶轮离心泵在不同入流含气率下的内部流场,并进行了试验验证。研究结果表明:模型泵在1 000 r/min可输送液体的最大入流含气率为4.6%;α>3%以后,Musig模型由于能表征气泡形态及破碎与聚合过程等气液两相流演化规律,其外特性计算结果比欧拉-欧拉双流体模型准确,且与可视化试验流型测试结果较为吻合;α=4%时扬程系数和效率与试验结果的最大误差分别为1.6%和5%;随着入流含气率的增加,叶轮和蜗壳流道内逐步出现均匀泡状流、聚合泡状流、气穴流和分离流等流型分布,设计流量下α≤1%时以均匀泡状流为主,α=3%时以聚合泡状流为主,α=4%时以气穴流为主,α≥4.2%时出现分离流并逐渐堵塞流道;叶顶间隙是影响泵内气液两相流型分布的重要原因,叶轮流道中存在大尺度漩涡和出口回流现象,且随着含气率的增大越发明显,进而在高含气率区域引发较大的湍动能分布,加剧了泵内部的不稳定流动,最终导致α≥4.6%后的泵空转。该研究可为综合分析离心泵内部不稳定流动规律提供一定参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号