首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The waxy mutant wheat Tanikei A6599‐4 contains little amylose and exhibits a stable hot paste viscosity. It has null alleles at the Wx‐A1 and Wx‐B1 loci and a mutated allele at the Wx‐D1 locus (Wx‐D1e). From the cross‐combination of Kanto 123 (normal amylose line) and Tanikei A6599‐4, 51 DH (doubled haploid) lines were produced and their genotypes were determined by SDS‐PAGE and a derived cleaved amplified polymorphic sequence (dCAPS) analysis. Eight genotypes were obtained at the expected ratio. Using a Rapid Visco Analyser (RVA), all the lines with the same genotype as Tanikei A6599‐4 showed a stable hot paste viscosity. The other lines did not show a stable hot paste viscosity regardless of the presence of the Wx‐D1e allele. When two genotypes with the same Wx‐A1 and Wx‐B1 alleles were compared, the one with Wx‐D1e contained less amylose and exhibited a lower final viscosity and a lower setback with RVA. Although the Wx‐D1e allele produces an almost inactive Wx protein, these findings suggest that this allele contributes at some level to starch synthesis.  相似文献   

2.
Grain hardness, amylose content, and glutenin subunit composition are critical determinants for end‐use properties of wheat. To improve the end‐use properties of domestic wheats, we studied these traits between the Australian and North American wheat classes exported to Japan in 2009 and 2011 by analyzing the corresponding alleles. Most hard classes had Pina‐D1b or Pinb‐D1b. A partial waxy allele (Wx‐B1b) was found in all Australian Standard White (ASW) seeds in 2009 and two‐thirds of ASW seeds in 2011. All or most American hard wheat seeds had Glu‐D1d. Most U.S. Western White (WW) seeds had a null allele (Glu‐A1c) or alleles that lacked one of the two Glu‐B1 subunits. Most hard red winter (HRW) seeds had Glu‐B3b or Glu‐B3g. Quality characteristics of these classes seemed to be consistent with these results. In addition, we also found new Glu‐1 and Glu‐3 alleles in HRW and WW. These results suggested that although there are variations in its allelic composition from year to year, each class has unique quality‐related alleles corresponding to its end use. We proposed two matrices for classification of starch properties on the basis of Pin and Wx allelic combinations and for classification of gluten strength on the basis of glutenin allelic combinations.  相似文献   

3.
Doubled haploid wheat lines developed from a cross between a hard white winter wheat variety of normal starch endosperm and a waxy wheat variety were used to determine the effects of allelic variation in Wx‐1, Glu‐D1, Glu‐B3, and Pinb‐D1 loci on physiochemical properties of flour, noodle dough properties, and textural quality of cooked noodles. Milling yield, damaged starch content, protein content, and SDS sedimentation volume of flour were influenced the most by allelic composition of Pinb‐D1 loci, less by Wx‐1 loci, and least by Glu‐B3. Wheat lines carrying Pinb‐D1b or Glu‐B3h alleles exhibited higher milling yield and damaged starch content of flour than those with Pinb‐D1a and Glu‐B3d alleles. Wheat lines carrying the Pinb‐D1b allele were higher in protein content and SDS sedimentation volume than those carrying Pinb‐D1a. Mixograph water absorption was largely influenced by allelic composition of Wx‐1 loci, whereas mixograph mixing time and mixing tolerance were predominantly determined by allelic composition of Glu‐D1 loci. Amylose content and pasting properties of starch were mainly determined by allelic composition of Wx‐1 loci with little influence by allelic compositions of Glu‐D1, Glu‐B3, and Pinb‐D1 loci. Allelic composition of Wx‐1 loci contributed 53.4% of the variation in optimum water absorption of noodle dough and 26.7% of the variation in thickness of the noodle dough sheet. The variation of 7.8% in optimum water absorption of noodle dough was contributed by the allelic composition of Pinb‐D1 loci. Allelic composition of Wx‐1 loci was responsible for 73.2, 74.4, and 59.6% in the variation of hardness, springiness, and cohesiveness of cooked noodles, respectively. Cohesiveness of cooked noodles was also influenced by the allelic compositions of Glu‐B3 and Pinb‐D1 loci to a smaller extent.  相似文献   

4.
A unique wheat genotype carrying waxy‐type allelic composition at the Wx loci, Gunji‐1, was developed, and its starch properties were evaluated in comparison to parental waxy and wild‐type wheat varieties. Gunji‐1 was null in all three of the Wx genes but exhibited a lower level of Wx proteins than the wild‐type. Starch amylose content and cold water retention capacity were 10.1 and 70.5% for Gunji‐1, 4.2 and 76.6% for waxy, and 27.9 and 65.0% for wild‐type, respectively. No significant differences were observed in microstructure, granule size distribution, and X‐ray diffractograms of the starch granules isolated from Gunji‐1 compared with those of waxy and wild‐type wheat varieties. Starch pasting peak, breakdown, and setback viscosities and peak temperature of Gunji‐1 were intermediate between waxy and wild‐type wheat. In starch gel hardness, Gunji‐1 (1.1 N) was more similar to waxy wheat (0.5 N) than to the wild‐type variety (17.6 N). Swelling power, swelling volume, paste transmittance during storage, and gelatinization enthalpy of Gunji‐1 were lower than those of waxy wheat but greater than those of wild‐type wheat. Retrogradation of starch stored for one week at 4°C expressed with DSC endothermic enthalpy was absent in the waxy wheat variety, whereas Gunji‐1 exhibited both retrogradation of amylopectin and amylose‐lipid complex melting similar to the wild‐type parent, even though enthalpies of Gunji‐1 were much smaller than the wild‐type parent.  相似文献   

5.
Amylose content in wheat endosperm is controlled by three Wx loci, and the proportion of amylose decreases with successive accumulation of Wx null alleles at the three loci. The proportion of amylose is believed to influence end‐use quality of bread and Asian noodles. The objectives of this study were to determine influence of the allelic difference at Wx‐B1 locus on bread quality, bread firmness, and white salted noodle texture in a spring wheat cross segregating for the Wx‐B1 locus and in a set of advanced spring wheat breeding lines differing in allelic state at the Wx‐ B1 locus. In addition, we examined the relationship between amylose content and flour swelling properties on bread and noodle traits. Fifty‐four recombinant inbred lines of hard white spring wheat plus parents were grown in replicated trials in two years, and 31 cultivars and breeding lines of hard spring wheat were grown in two locations. Bread and white salted noodles were processed from these trials. The presence of the Wx‐B1 null allele reduced amylose content by 2.4% in a recombinant inbred population and 4.3% in a survey of advanced breeding lines and cultivars compared with the normal. The reduced amylose was accompanied by an average increase in flour swelling power (FSP) for the Wx‐B1 null group of 0.8 g/g for the cross progeny and 2.3 g/g for the cultivar survey group. The Wx‐B1 allelic difference did not affect flour protein in cross progeny where the allelic difference was not confounded with genetic background. Bread from the Wx‐B1 null groups on average had increased loaf volume and was softer than the normal group for the cross progeny and cultivar survey group. The Wx‐B1 allelic difference altered white salted noodle texture, most notably noodle springiness and cohesiveness where the Wx‐B1 null groups was more springy and more cohesive than the normal groups for both sets of genetic materials. Flour protein was more highly related to loaf volume than were FSP or amylose. Both flour protein and FSP were positively related to noodle textural traits, but especially noodle springiness and cohesiveness.  相似文献   

6.
An automated single kernel near‐infrared (NIR) sorting system was used to separate single wheat (Triticum aestivum L.) kernels with amylose‐free (waxy) starch from reduced‐amylose (partial waxy) or wild‐type wheat kernels. Waxy kernels of hexaploid wheat are null for the granule‐bound starch synthase alleles at all three Wx gene loci; partial waxy kernels have at least one null and one functional allele. Wild‐type kernels have three functional alleles. Our results demonstrate that automated single kernel NIR technology can be used to select waxy kernels from segregating breeding lines or to purify advanced breeding lines for the low‐amylose kernel trait. Calibrations based on either amylose content or the waxy trait performed similarly. Also, a calibration developed using the amylose content of waxy, partial waxy, and wild‐type durum (T. turgidum L. var durum) wheat enabled adequate sorting for hard red winter and hard red spring wheat with no modifications. Regression coefficients indicated that absorption by starch in the NIR region contributed to the classification models. Single kernel NIR technology offers significant benefits to breeding programs that are developing wheat with amylose‐free starches.  相似文献   

7.
The Waxy (Wx) gene in hexaploid wheat (Triticum aestivum L.) encodes granule‐bound starch synthase (GBSS1), which is involved in the synthesis of amylose, a mostly linear glucan polymer that makes up ∼25% of wheat starch. A null mutation of the Wx gene in each of the three genomes is associated with starch almost entirely consisting of the branched glucan polymer amylopectin (waxy starch), with corresponding changes in functionality. However, the rheological behavior of partially waxy starch remains unclear. The objective of this study was to characterize flour and baking quality in 16 near‐isogenic lines, null at the Wx locus on zero, one, two, or all three genomes, grown in four different environments. Across allelic groups, significant variations in amylose concentrations, flour paste viscosity, loaf structure and texture, dough stability, and proximate variables were observed. Because waxy wheat starch has greater water absorbance and resistance to retrogradation than normal starch, its inclusion in flour blends has been suggested as a means of improving the texture and appearance of bakery products and noodles. The results indicate that wheat encoding <3 functional homeologs of GBSS1 produces starch that has potential in the production of certain food items, such as Asian noodles. However, further research is necessary to determine the optimal amylose‐to‐amylopectin ratio to improve baking quality.  相似文献   

8.
Plant breeding programs are active worldwide in the development of waxy hexaploid (Triticum aestivum L.) and tetraploid (T. turgidum L. var. durum) wheats. Conventional breeding practices will produce waxy cultivars adapted to their intended geographical region that confer unique end use characteristics. Essential to waxy wheat development, a means to rapidly and, ideally, nondestructively identify the waxy condition is needed for point‐of‐sale use. The study described herein evaluated the effectiveness of near‐infrared (NIR) reflectance single‐kernel spectroscopy for classification of durum wheat into its four possible waxy alleles: wild type, waxy, and the two intermediate states in which a null allele occurs at either of the two homologous genes (Wx‐1A and Wx‐1B) that encodes for the production of the enzyme granule bound starch synthase (GBSS) that controls amylose synthesis. Two years of breeders' samples (2003 and 2004), corresponding to 47 unique lines subdivided about equally into the four GBSS genotypes, were scanned in reflectance (1,000–1,700 nm) on an individual kernel basis. Linear discriminant analysis models were developed using the best set of four wavelengths, best four wavelength differences, and best four principal components. Each model consistently demonstrated the high ability (typically >95% of the time) to classify the fully waxy genotype. However, correct classification among the three other genotypes (wild type, wx‐A1 null, and wx‐B1 null) was generally not possible.  相似文献   

9.
Some mutant wheat lines with low‐amylose content were grown in a field and greenhouse (15 or 20°C) to compare apparent amylose content and starch pasting properties. The apparent amylose content of flour and starch increased and starch pasting parameters as measured by a Rapid Visco Analyser (RVA) changed in the greenhouse (at cool temperatures) during seed maturation. Densitometric analysis of the protein band separated by electrophoresis suggested that the increase in amylose content by cool temperature was related to the amount of Wx‐D1 protein. This data suggests that the Wx‐D1 gene was responsible for these changes. In wheat starch from Tanikei A6099 and Tanikei A6598 at 15°C, the value of final viscosity and total setback was higher than that from the field. In wheat starch from Tanikei A6599‐4 (waxy mutant with stable hot paste viscosity), the peak viscosity temperature was higher and time maintained >80% of the peak was shorter at 15°C than that from the field. Genetic analysis using doubled‐haploid (DH) lines from a combination of Tanikei A6599‐4 and Kanto 118 (low‐amylose line) showed that apparent amylose content increased and the starch pasting curve and properties changed in waxy progenies similar to Tanikei A6599‐4.  相似文献   

10.
To determine the effect of amylose content on the starch properties, the amylose content, pasting properties, swelling power, enzymatic digestibility, and thermal properties of partial and perfect waxy types along with their wild‐type parent were analyzed. As expected, amylose content decreases differently in response to the loss of each Wx gene, showing the least response to Wx‐A1a. Most of the characteristics, except the thermal properties of the amylose‐lipid complex in differential scanning calorimetry (DSC), differed significantly among the tested types. Furthermore, the breakdown, setback, and pasting temperatures from the Rapid Visco Analyser (RVA) and the enzymatic digestibility, swelling power, peak temperature, and enthalpy of starch gelatinization from DSC showed a correlation with the amylose content. The relationships between the peak viscosity from the RVA and the onset temperature of starch gelatinization determined by DSC with amylose content of the tested materials were not clear. Waxy starch, which has no amylose, showed a contrasting behavior in starch gelatinization compared with nonwaxy starches. Among the nonwaxy starches, lower setback, lower pasting temperature, higher enzyme digestibility, higher peak temperature, higher enthalpy of starch gelatinization, and higher swelling were generally associated with low amylose starches.  相似文献   

11.
Wheat (Triticum aestivum) end‐product quality is impacted by grain hardness, which is determined by the Hardness locus consisting of the Puroindoline a and Puroindoline b genes, Pina and Pinb, respectively. Hard wheats commonly contain just one of two Pin mutations. We previously demonstrated the creation and preliminary hardness testing of 46 Pin missense alleles. In this study we examine the degree that individual Pin missense alleles confer unique milling and bread quality traits. Three Pina (PINA‐R103K, ‐G47S, and ‐P35S) and four Pinb (PINB‐D34N, ‐T38I, ‐G46D, and ‐E51K) missense alleles were chosen because they impart variable grain hardness levels, with one allele conferring soft seed texture, three conferring intermediate hardness (single‐kernel characterization system [SKCS] hardness approximately 50), and three conferring hard grain texture (SKCS hardness greater than 60). All but two of the alleles (PINA‐R103K and PINA‐G47S) resulted in higher total flour yield when compared with wild‐type controls. All hard and intermediate hardness alleles had decreased break flour yield, but intermediate hardness allele PINA‐P35S had higher break flour yield than common hard allele Pinb‐D1b. Intermediate and hard alleles resulted in increased abundance of larger and reduced levels of smaller flour particles. None of the missense alleles differed from their controls for loaf volume. The seven selected Pin alleles imparted defined levels of grain hardness and milling properties not previously available that may prove useful in wheat improvement.  相似文献   

12.
The effect of growing environments of soft wheat on amylose content and its relationship with baking quality and solvent retention capacities (SRC) was investigated. Near‐isogenic soft wheat lines of Norin 61 differing in granule‐bound starch synthase (Wx protein) activity and grown in three different regions of Japan: Hokkaido (spring‐sown) for 2006 and 2007, Kanto (autumn‐sown), and Kyushu (autumn‐sown) for 2007 were evaluated. Spring‐sown samples produced grains of greater protein content (10.9–12.4%) than autumn‐sown samples (7.3–9.1%). In contrast, spring‐sown samples of 2007 with higher maturing temperature had lower amylose content (25.5% for Norin 61) compare to the autumn‐sown and spring‐sown samples of 2006 (27.6–28.4% for Norin 61). Amylose content was strongly correlated to sugar snap cookie (SSCD) diameter (r = 0.957–0.961; n = 10, all samples; P ≤ 0.001, r = 0.701–0.976; n = 7 partial waxy and nonwaxy samples; and Japanese sponge cake (JSCV) volume r = 0.971–0.993; n = 10; P≤ 0.001, r = 0.764–0.922; n = 7 partial waxy and nonwaxy samples), regardless of seeding season and growing conditions. The strength of the JSVC‐amylose relationship (slope) was similar among the three regions, whereas the strength of the SSCD‐amylose relationship was slightly weaker for spring‐sown samples and slightly stronger for partial waxy and nonwaxy autumn‐sown samples. Among of the four solvents (water, solutions of sodium carbonate, sucrose, or lactic acid), water‐SRC showed the greatest correlation to amylose content (r = –0.969 to –0.996; n = 10; P ≤ 0.001, r = –0.629 to –0.983; n = 7 partial waxy and nonwaxy samples), indicated that amylose content can be accurately estimated from the water‐SRC within the samples from the same grown environment.  相似文献   

13.
The objective of this study was to evaluate protein composition and its effects on flour quality and physical dough test parameters using waxy wheat near‐isogenic lines. Partial waxy (single and double nulls) and waxy (null at all three waxy loci, Wx‐A1, Wx‐B1, and Wx‐D1) lines of N11 set (bread wheat) and Svevo (durum) were investigated. For protein composition, waxy wheats in this study had relatively lower albumins‐globulins than the hard winter wheat control. In the bread wheats (N11), dough strength as measured by mixograph peak dough development time (MDDT) (r = 0.75) and maximum resistance (Rmax) (r = 0.70) was significantly correlated with unextractable polymeric protein (UPP), whereas in durum wheats, moderate correlation was observed (r = 0.73 and 0.59, respectively). This may be due to the presence of high molecular weight glutenin subunits (HMW‐GS) Dx2+Dy12 at the Glu‐D1 locus instead of Dx5+Dy10, which are associated with dough strength. Significant correlation of initial loaf volume (ILV) to flour polymeric protein (FPP) (r = 0.75) and flour protein (FP) (r = 0.63) was found in bread wheats, whereas in durum wheats, a weak correlation of ILV was observed with FP (r = 0.09) and FPP (r =0.51). Significant correlation of ILV with FPP in bread wheats and with % polymeric protein (PPP) (r = 0.75) in durum lines indicates that this aspect of end‐use functionality is influenced by FPP and PPP, respectively, in these waxy wheat lines. High ILV was observed with 100% waxy wheat flour alone and was not affected by 50% blending with bread wheat flour. However, dark color and poor crumb structure was observed with 100% waxy flour, which was unacceptable to consumers. As the amylopectin content of the starch increases, loaf expansion increases but the crumb structure becomes increasingly unstable and collapses.  相似文献   

14.
Eight soft spring wheat (Triticum aestivum L.) genotypes representing the four granule bound starch synthase I (GBSSI) classes were evaluated with respect to flour/starch characteristics and pasting behaviors. Native starch was isolated from genotype straight‐grade flours (94.8–98.1% of starch recovered) to approximate the starch populations of the parent flours. As anticipated, amylose characteristics varied among the genotypes according to GBSSI class and accounted for the primary compositional difference between genotypes. Total (TAM), apparent (AAM), and lipid‐complexed (LAM) amylose contents ranged from 1.0–25.5 g, 0.7–20.4 g, and 0.3–5.6 g/100 g of native starch, respectively, and gradually decreased with the progressive loss of active Wx alleles. In addition, genotype flour total starch (FTS) and A‐type starch granule contents, which ranged from 81.7–87.6 g/100 g of flour (db) and 61.6–76.8 g/100 g of native starch (db), respectively, generally decreased with an increase in waxy character in parallel with amylose characteristics, as likely secondary effects of Wx gene dosage. Though amylose characteristics predominantly accounted for the majority of genotype flour pasting properties, FTS content and ratios of A‐ to B‐type granules also exhibited significant influence. Thus, loss of one or more Wx genes appeared to induce measurable secondary effects on starch characteristics and properties.  相似文献   

15.
Starches were isolated from 12 soft wheat (Triticum aestivum L.) cultivars and were characterized for waxy (Wx) allelic expression, thermal pasting characteristics, and starch granule size. Gels were produced from the thermally degraded starches and were evaluated using large deformation rheological measurements. Data were compared with cultivar kernel texture, milling characteristics, starch chemical analyses, and flour pasting characteristics. Larger flour yields were produced from cultivars that had larger starch granules. Flour yield also was correlated with lower amylose content and greater starch content. Harder starch gels were correlated with higher levels of amylose content and softer kernel texture. The cultivar Fillmore, which had a partial waxy mutation at the B locus, produced the highest peak pasting viscosity and the lowest gel hardness. Softer textured wheats had greater lipid‐complexed amylose and starch phosphorus contents and had less total starch content. Among these wheats of the soft market class, softer textured wheats had larger starch granules and harder textured wheats had smaller starch granules. In part, this may explain why soft wheats vary in texture. The smaller granules have larger surface area available for noncovalent bonding with the endosperm protein matrix and they also may pack more efficiently, producing harder endosperm.  相似文献   

16.
Granule bound starch synthase1 (GBSS1) is a key enzyme in amylose biosynthesis and is encoded by the A, B and D GBSS1 wx loci in wheat. Wheat lines with mutations at the three GBSS1 loci have been identified. We have characterized and compared the grain starch of CDCW6 wheat line (null B and D for GBSS1) with PI235238 (null A and B for GBSS1), waxy (null A, B and D for GBSS1), and AC Reed (wild type wheat) grain starches. The grain starch of waxy, CDCW6, PI235238, and AC Reed lines contained ≈0, 12, 23, and 25% amylose (w/w), respectively. Waxy, partially waxy, and wild wheat grain starches showed significant differences in onset and peak transition temperatures as determined by differential scanning calorimetric analysis. Grain starches extracted from waxy, CDCW6, and PI235238 also had higher enthalpy of gelatinization values than did wild wheat starch. X-ray diffraction analysis revealed the highest crystallinity for starch extracted from waxy wheat, followed by CDCW6. The starch produced from the CDCW6 line may find special food and industrial applications because of its relatively low amylose concentration.  相似文献   

17.
Grain hardness is one of the most important characters that determine the end‐use quality of bread wheat (Triticum aestivum L.). Mutations in genes encoding either puroindoline a (Pina) or b (Pinb) have been associated with hard grain texture, i.e., Pina null at Pina‐D1 or seven mutations at Pinb‐D1. In this study, the diversity of puroindoline alleles in 251 Chinese winter wheat cultivars and advanced lines from four major autumn‐planted wheat regions were investigated. Among the examined cultivars, 79 were classified as soft, while 53 were mixed in hardness, and 119 were uniformly hard. Of these hard winter wheats, three of the seven reported mutation types were observed, with Pina‐D1a/Pinb‐D1b being the dominant type for hard texture; 91 genotypes carried this allele. Sixteen genotypes had the Pina‐D1b allele, and two genotypes had the Pinb‐D1d allele. A new mutation, designated as Pinb‐D1p, was detected in 10 hard genotypes, with a single nucleotide (A) deletion corresponding to position 42 in the amino acid sequence of puroindoline b, involving a lysine (K) to asparagine (N) change, and leading to a shift in the open reading frame (ORF). This deletion disrupts the last part of the tryptophanrich domain, changing it from KWWK to NGGR, which is considered essential for the lipid‐binding activity of this protein, and results in a stop codon corresponding to position Pro‐60 in the amino acid sequence. The characterization of different hardness alleles provides useful information in understanding the mechanism underlying the formation of endosperm hardness while providing breeders the means of manipulating this important trait.  相似文献   

18.
Polyphenol oxidase (PPO) causes Asian noodles to lose their bright color over time. Null Ppo‐A1 and Ppo‐D1 alleles are available that confer very low kernel PPO levels. Our goal was to characterize the effect of the Ppo‐A1i and Ppo‐D1f null alleles on the color and texture profile of white salted noodles. A white‐seeded spring wheat carrying Ppo‐A1i/Ppo‐A2d and Ppo‐D1f was crossed to a hard white‐seeded isoline of Choteau spring wheat with Ppo‐A1b/Ppo‐A2a and Ppo‐D1b and to a hard white‐seeded isoline of Vida spring wheat with Ppo‐A1a/Ppo‐A2b and Ppo‐D1b. Resultant lines homozygous for the null‐Ppo alleles or for the alternate parent Ppo alleles were selected and grown in replicated trials. The null‐Ppo alleles had no detrimental effects on kernel or flour traits. Noodles prepared from straight‐grade or whole wheat flour from the null‐Ppo allele class were less cohesive and softer than noodles from the alternate parent Ppo allele class for the White Choteau but not the White Vida population. Noodles prepared from straight‐grade and whole wheat flour from the null‐Ppo class were brighter, more red, and more yellow after 24 h and showed less change in L* with time than noodles prepared from the alternate parent Ppo class. The relative difference between the two genotype classes for change in L* with time (0–24 h) exceeded 3.5 L* for noodles from both types of flour, which was an improvement over existing low‐Ppo alleles. Incorporating the null‐Ppo alleles into wheat varieties could improve the color profile of Asian noodles.  相似文献   

19.
Differences in milling behavior among hard‐type common wheat (Triticum aestivum) cultivars are well known to millers. Among them, the French cultivar Soissons, which contains the Pinb‐D1d allelic form of the puroindoline b gene, is particularly distinguished for its high milling value. Near‐isogenic lines (NILs) differing by the allelic forms of the puroindoline b gene, Pinb‐D1d or Pinb‐D1b (one of the most frequent alleles found in the European wheat population), were constructed. Grain characteristics obtained after wheat cultivation in distinct environmental conditions were compared between NILs and the cultivar Soissons, as was their fractionation behavior. Results showed that NILs containing the Pinb‐D1d allele displayed lower values of grain hardness and vitreousness than did the corresponding lines containing the Pinb‐D1b allelic form under the same cultivation conditions. Both genetic background and environmental conditions appeared to affect grain texture. Measured single‐kernel characterization system hardness index values of the samples under study were found to be correlated with the vitreousness values. Studies of the milling behavior helped to point out that grain vitreousness is an important factor acting on endosperm breakage ability, whatever the genetic background of the wheat. Our results also demonstrated that, at similar levels of vitreousness, the endosperm of Soissons could more easily be reduced than that of other wheat lines.  相似文献   

20.
Wx gene encodes for the granule-bound starch synthase I or waxy protein, which is the sole enzyme responsible for amylose synthesis in wheat seeds. The Aegilops species, which are related to wheat, could be important sources of variation in this gene. In addition to its role in starch quality, this gene has been used in phylogenetic studies of wheat. The current study evaluated the variability of Wx gene in seven diploid species of Aegilops genus and compared their nucleotide sequences with the wheat homeologous genes. Nineteen new Wx alleles were found in the seven species evaluated. The alleles detected in two species of the Sitopsis section, Ae. searsii and Ae. speltoides, were related to the Wx-B1 gene of wheat. Two more of the Sitopsis species did not appear to be associated with this genome, whereas the remaining species were related to the Wx-D1 gene of wheat. The results showed an important variation of the Wx gene present in the Aegilops genus, and the 19 new Wx alleles detected could enlarge the genetic pool of wheat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号