首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human-grade (HG) pet foods are commercially available, but they have not been well studied. Our objective was to determine the apparent total tract digestibility (ATTD) of HG pet foods and evaluate their effects on fecal characteristics, microbiota, and metabolites, serum metabolites, and hematology of dogs. Twelve dogs (mean age = 5.5 ± 1.0; BW = 11.6 ± 1.6 kg) were used in a replicated 4 × 4 Latin square design (n = 12/treatment). The diets included 1) Chicken and Brown Rice Recipe (extruded; Blue Buffalo); 2) Roasted Meals Tender Chicken Recipe (fresh; Freshpet); 3) Beef and Russet Potato Recipe (HG beef; JustFoodForDogs); and 4) Chicken and White Rice Recipe (HG chicken; JustFoodForDogs). Each period consisted of 28 d, with a 6-d diet transition phase, 16 d of consuming 100% of the diet, a 5-d phase for fecal collection, and 1 d for blood collection. All data were analyzed using the Mixed Models procedure of SAS 9.4. Dogs fed the extruded diet required a higher (P < 0.05) daily food intake (dry matter basis, DMB) to maintain BW. The ATTD of dry matter (DM), organic matter (OM), energy, and acid-hydrolyzed fat (AHF) were greater (P < 0.05) in dogs fed the HG diets than those fed the fresh diet, and greater (P < 0.05) in dogs fed the fresh diet than those fed the extruded diet. Crude protein ATTD was lower (P < 0.05) for dogs fed the extruded diet than those fed all other diets. Dogs fed the extruded diet had greater (P < 0.05) fecal output (as-is; DMB) than dogs fed fresh (1.5–1.7 times greater) or HG foods (2.0–2.9 times greater). There were no differences in fecal pH, scores, and metabolites, but microbiota were affected by diet. Dogs fed HG beef had higher (P < 0.05) relative abundance of Bacteroidetes and lower (P < 0.05) relative abundance of Firmicutes than dogs fed the fresh or HG chicken diets. The Actinobacteria, Fusobacteria, Proteobacteria, and Spirochaetes phyla were unchanged (P > 0.05), but diet modified the relative abundance of nearly 20 bacterial genera. Similar to previous reports, these data demonstrate that the fecal microbiota of dogs fed HG or fresh diets is markedly different than those consuming extruded diets, likely due to ingredient, nutrient, and processing differences. Serum metabolites and hematology were not greatly affected by diet. In conclusion, the HG pet foods tested resulted in significantly reduced fecal output, were highly digestible, maintained fecal characteristics, serum chemistry, and hematology, and modified the fecal microbiota of dogs.  相似文献   

2.
Milk oligosaccharides (MO) are bioactive compounds in mammalian milk that provide health benefits to neonates beyond essential nutrients. GNU100, a novel animal MO biosimilar, was recently tested in vitro, with results showing beneficial shifts in microbiota and increased short-chain fatty acid (SCFA) production, but other effects of GNU100 were unknown. Three studies were conducted to evaluate the safety, palatability, and gastrointestinal (GI) tolerance of GNU100. In study 1, the mutagenic potential of GNU100 was tested using a bacterial reverse mutation assay and a mammalian cell micronucleus test. In study 2, palatability was assessed by comparing diets containing 0% vs. 1% GNU100 in 20 adult dogs. In study 3, 32 adult dogs were used in a completely randomized design to assess the safety and GI tolerance of GNU100 and explore utility. Following a 2-wk baseline, dogs were assigned to one of four treatments and fed for 26 wk: 0%, 0.5%, 1%, and 1.5% GNU100. On weeks 2, 4, and 26, fresh fecal samples were collected to measure stool quality, immunoglobulin A, and calprotectin, and blood samples were collected to measure serum chemistry, inflammatory markers, and hematology. On weeks 2 and 4, fresh fecal samples were collected to measure metabolites and microbiota. On week 4, total feces were collected to assess apparent total tract macronutrient digestibility. Although revertant numbers were greater compared with the solvent control in tester strain WP2uvrA(pKM101) in the presence of metabolic activation (S9) in the initial experiment, they remained below the threshold for a positive mutagenic response in follow-up confirmatory tests, supporting that GNU100 is not mutagenic. Similarly, no cytotoxicity or chromosome damage was observed in the cell micronucleus test. The palatability test showed that 1% GNU100 was strongly preferred (P < 0.05; 3.6:1 consumption ratio) over the control. In study 3, all dogs were healthy and had no signs of GI intolerance or illness. All diets were well accepted, and food intake, fecal characteristics, metabolite concentrations, and macronutrient digestibilities were not altered. GNU100 modulated fecal microbiota, increasing evenness and Catenibacterium, Megamonas, and Prevotella (SCFA producers) and reducing Collinsella. Overall, the results suggest that GNU100 is palatable and well-tolerated, causes no genotoxicity or adverse effects on health, and beneficially shifts the fecal microbiota, supporting the safety of GNU100 for the inclusion in canine diets.  相似文献   

3.
The objective of this experiment was to determine the effects of age and diet on serum chemistry, hematology, and nutrient digestibility in healthy dogs. Twelve senior (11 yr old; six males and six females) and 12 weanling (age = 8 wk old; six males and six females) beagles were randomly assigned to one of two dietary treatments: 1) an animal product-based (APB) diet or 2) a plant product-based (PPB) diet. The APB diet was primarily composed of brewer's rice, chicken by-product meal, and poultry fat, whereas the primary ingredients of the PPB diet included corn, soybean meal, wheat middlings, and meat and bone meal. Dogs remained on experiment for 12 mo. A 4-d total fecal collection was performed to determine apparent macronutrient digestibilities after 3 and 10 mo. Blood samples were collected at baseline and after 3, 6, 9, and 12 mo on study. After 3 mo, dogs fed the APB diet had greater (P < 0.001) DM (6 percentage units) and OM (7 percentage units) digestibilities than dogs fed the PPB diet. Senior dogs had greater DM (2.5 percentage units; P = 0.07) and OM (3 percentage units; P < 0.01) digestibilities than young dogs. Dogs fed the PPB diet had a lower (P < 0.001) fecal DM percentage (7.5 percentage units) and greater (P < 0.001) fecal output (253 vs. 97 g/d, as-is basis). After 10 mo, age did not affect nutrient digestibility or fecal characteristics. However, the effect of diet after 10 mo was similar to that observed after 3 mo, as dogs fed the PPB diet had a lower (P < 0.001) fecal DM percentage (7 percentage units), lower OM (4 percentage units; P = 0.09) and fat (6 percentage units; P < 0.001) digestibilities, and greater (P < 0.005) fecal output (235 vs. 108 g/d, as-is basis). At baseline, most serum metabolites were different between age groups, with weanlings having several metabolite concentrations outside the reference ranges for adult dogs. Blood cholesterol, red blood cells, hemoglobin, hematocrit, creatinine, total protein, albumin, bilirubin, sodium, chloride, and alanine transaminase were present in greater (P < 0.05) concentrations in senior dogs, but weanling dogs had greater (P < 0.05) concentrations of glucose, platelets, Ca, P, K, and alkaline phosphatase. Over time, blood cholesterol concentrations were affected by age (P < 0.05) and diet (P < 0.01). Senior dogs had greater (P < 0.05) cholesterol concentrations than weanling dogs. Moreover, dogs fed the APB diet had greater (P < 0.05) cholesterol concentrations than dogs fed the PPB diet. Overall, although serum metabolite concentrations of weanlings were different from senior dogs at baseline, as weanlings matured into young adults, metabolite concentrations were similar to those of senior dogs. Diet had the largest effects on nutrient digestibilities and fecal characteristics. Canine age and diet must be considered when interpreting experimental and clinical data.  相似文献   

4.
The objectives of this study were to determine differences in apparent total tract energy and macronutrient digestibility, fecal and urine characteristics, and serum chemistry of domestic cats fed raw and cooked meat-based diets and extruded diet. Nine adult female domestic shorthair cats were utilized in a replicated 3 × 3 Latin square design. Dietary treatments included a high-protein extruded diet (EX; 57% CP), a raw beef-based diet (RB; 53% CP), and a cooked beef-based diet (CB; 52% CP). Cats were housed individually in metabolic cages and fed to maintain BW. The study consisted of three 21-d periods. Each period included diet adaptation during d 0 to 16; fecal and urine sample collections during d 17 to 20; and blood sample collection at d 21. Food intake was measured daily. Total feces and urine were collected for determination of nutrient digestibility. In addition, a fresh urine sample was collected from each cat for urinalysis, and a fresh fecal sample was collected from each cat for determination of DM percentage and ammonia, short-chain fatty acid (SCFA), and branched-chain fatty acid (BCFA) concentrations. All feces were scored after collection using a scale ranging from 1 (hard, dry pellets) to 5 (watery, liquid that can be poured). Blood was analyzed for serum metabolites. Apparent total tract DM, OM, CP, fat, and GE digestibilities were greater (P ≤ 0.05) in cats fed RB and CB than those fed EX. Total fecal SCFA concentrations did not differ among dietary treatments; however, molar ratios of SCFA were modified by diet, with cats fed RB and CB having an increased (P ≤ 0.05) proportion of fecal propionate and decreased (P ≤ 0.05) proportion of fecal butyrate compared with cats fed EX. Fecal concentrations of ammonia, isobutyrate, valerate, isovalerate, and total BCFA were greater (P ≤ 0.05) in cats fed EX compared with cats fed RB and CB. Our results indicated that cooking a raw meat diet does not alter apparent total tract energy and macronutrient digestibility and may also minimize risk of microbial contamination. Given the increasing popularity of feeding raw diets and the metabolic differences noted in this experiment, further research focused on the adequacy and safety of raw beef-based diets in domestic cats is justified.  相似文献   

5.
The aim of this study was to compare fecal microbiome, plasma, fecal and urine metabolomes, and serum biochemistry of adult companion dogs according to body condition scores. Blood, serum/plasma, urine, and fecal samples were collected from 66 clinically healthy, adult companion dogs of either normal weight (NW), overweight (OW), or obese dogs (OB). analyses included fecal microbiome analyses via 16S ribosomal RNA gene amplicon; sequencing, nontargeted plasma, fecal, and urine metabolomics using liquid chromatography/gas chromatography-mass; spectrometry, and serum biochemistry for each dog. Few significant differences in serum biochemistry and fecal microbiome Operational Taxonomic Unit (OTU) were found between weight groups and there was high OTU variation between individual dogs. NW dogs had higher relative abundance of the genus Eubacterium (log-fold change 4.3, adjusted P value?=?.003) and lower relative abundance of the family Bifidobacteriaceae (log-fold change ?3.6, adjusted P value?=?.02) compared to OB dogs. The microbiome of NW dogs had higher OTU richness compared with OB dogs. Metabolome analysis showed 185 plasma, 37 fecal, and 45 urine metabolites that significantly differed between NW and OW or OB dogs. There were notable significant differences in relative abundance of several plasma phospholipid moieties and fecal volatile fatty acids between weight phenotypes. The combinations of host and gut microbiota and metabolic shifts suggest a pattern that could help detection of early metabolic changes in overweight dogs before the development of obesity related disease. The results of this study support the need for continued investigation into sensitive measures of metabolic aberrancies in overweight dogs.  相似文献   

6.
GNU100 is a novel animal milk oligosaccharide (AMO) biosimilar. In a recent in vitro fermentation study, GNU100 was shown to be fermentable by feline gastrointestinal microbiota and lead to increased short-chain fatty acid production. Our objectives herein were to evaluate the palatability, safety, and gastrointestinal tolerance of GNU100 in healthy adult cats. Exploratory end-points were measured to assess utility. In study 1, 20 adult cats were used to test the palatability of diets containing 0% or 1% GNU100. In study 2, 32 (mean age = 1.9 yr; mean body weight = 4.6 kg) male (n = 12) and female (n = 20) adult cats were used in a completely randomized design. After a 2-wk baseline, cats were assigned to one of the following treatment groups and fed for 26 wk: control (CT, no GNU100), low dose (LD, 0.5% GNU100), medium dose (MD, 1.0% GNU100), and high dose (HD, 1.5% GNU100). On weeks 2, 4, and 26, fresh fecal samples were collected for the measurement of stool quality and immune and inflammatory markers and on weeks 2 and 4 for microbiota and metabolites. On week 4, total feces were collected to measure apparent total tract macronutrient digestibility. On weeks 2, 4, and 26, blood samples were collected for serum chemistry, hematology, and inflammatory marker measurement. The palatability test showed that 1% GNU100 was strongly preferred (P < 0.05), with GNU100 having a 17.6:1 consumption ratio compared with control. In the long-term study, all cats remained healthy, without any signs of gastrointestinal intolerance or illness. All diets were well accepted, resulting in similar (P > 0.05) food intake, fecal characteristics, immunoglobulin A, and calprotectin, and dry matter, organic matter, fat, and crude protein digestibilities. Fecal butyrate was greater (P = 0.02) in cats fed HD than cats fed LD or MD. Fecal indole was lower (P = 0.02) in cats fed HD than cats fed LD. Cats fed CT had a higher (P = 0.003) relative abundance of Actinobacteria than cats fed LD. The relative abundance of Peptococcus was impacted by diet and time. At 4 wk, Campylobacter was lower in fecal samples of cats fed HD. Overall, the data suggest that dietary GNU100 supplementation was highly palatable, well tolerated, did not cause detrimental effects on fecal quality or nutrient digestibility, increased fecal butyrate concentrations, and reduced fecal indole concentrations, supporting the safety of GNU100 for inclusion in feline diets and suggesting potential benefits on gastrointestinal health of cats.  相似文献   

7.
This study was conducted to investigate host–microbiota interactions and explore the effects of maternal gut microbiota transplantation on the growth and intestinal functions of newborns in a germ-free (GF) pig model. Twelve hysterectomy-derived GF Bama piglets were reared in 6 sterile isolators. Among them, 6 were considered as the GF group, and the other 6 were orally inoculated with healthy sow fecal suspension as fecal microbiota transplanted (FMT) group. Another 6 piglets from natural birth were regarded as the conventional (CV) group. The GF and FMT groups were hand-fed with Co60-γ-irradiated sterile milk powder, while the CV group was reared by lactating Bama sows. All groups were fed for 21 days. Then, all piglets and then were switched to sterile feed for another 21 days. Results showed that the growth performance, nutrient digestibility, and concentrations of short-chain fatty acids in the GF group decreased (P < 0.05). Meanwhile, the serum urea nitrogen concentration and digesta pH values in the GF group increased compared with those in the FMT and CV groups (P < 0.05). Compared with the CV group, the GF group demonstrated upregulation in the mRNA expression levels of intestinal barrier function-related genes in the small intestine (P < 0.05). In addition, the mRNA abundances of intestinal development and absorption-related genes in the small intestine and colon were higher in the GF group than in the CV and FMT groups (P < 0.05). The FMT group exhibited greater growth performance, lipase activity, and nutrient digestibility (P < 0.05), higher mRNA expression levels of intestinal development and barrier-related genes in the small intestine (P < 0.05), and lower mRNA abundances of pro-inflammatory factor in the colon and jejunum (P < 0.05) than the CV group. In conclusion, the absence of gut microbes impaired the growth and nutrient digestibility, and healthy sow gut microbiota transplantation increased the growth and nutrient digestibility and improved the intestinal development and barrier function of newborn piglets, indicating the importance of intestinal microbes for intestinal development and functions.  相似文献   

8.
本研究旨在评估短链脂肪酸在慢性肾衰竭患犬和健康犬中的水平,探究短链脂肪酸变化的原因及其对肾功能的影响。选取22例轻度慢性肾衰患犬(M-CRF组)、29例重度慢性肾衰患犬(S-CRF组)和26例健康对照犬(HC组),用16S rDNA测序技术分析肠道菌群多样性,气相色谱法检测粪中短链脂肪酸浓度。通过粪菌移植和补充丁酸钠给5/6肾摘除犬,观察肠道菌群及丁酸钠对肾功能影响。结果显示:1)S-CRF组肠道菌群多样性指标观察物种数及Simpson指数低于HC组(P<0.05),PCoA分析显示,S-CRF组肠道菌群与M-CRF、HC组有差异。2)LEfSe分析显示,S-CRF组和HC组间大量差异菌群,拟杆菌科、拟杆菌属及假单胞菌科等7个菌种富集于S-CRF组,普氏杆菌科、梭菌科、普氏杆菌属及普拉梭菌属等11个菌种富集于HC组。CCA分析发现富集于S-CRF组菌种丰度与肾功能指标呈正相关。3)S-CRF组粪中乙酸、丙酸及丁酸浓度均显著低于HC组和M-CRF组,M-CRF组丁酸浓度显著低于HC组(P<0.05),且丁酸浓度与血中胱抑素C(Cys-c)、肌酐(Cr)及尿素氮(BUN)等肾功能指标呈负相关(r值分别为-0.451、-0.583和-0.514,P<0.01)。4)与慢性肾衰模型组(5/6 Nx组)比较,慢性肾衰犬给与丁酸钠8周后,血清Cr和BUN显著降低(P<0.05);粪菌移植8周后,血清Cr和BUN显著升高(P<0.05),丁酸钠可回调血清Cr和BUN水平。综上表明,慢性肾衰竭患犬肠道菌群多样性降低,菌群结构及丰度改变,粪中短链脂肪酸浓度降低,这些变化可加剧肾功能障碍。为犬慢性肾衰竭的防治提供新的理论依据。  相似文献   

9.

Background

Limited information is available regarding the vaginal microbiota of normal spayed dogs and spayed dogs with recurrent UTIs. Vaginal lactic acid‐producing bacteria (LAB) have been associated with decreased frequency of recurrent urinary tract infection in women and may have a protective role within the urinary tract of female dogs.

Hypothesis/Objectives

Spayed dogs with historical recurrent UTI will have decreased prevalence of LAB and increased prevalence of uropathogenic bacterial populations in the vaginal microbiota when compared with the vaginal microbiota of healthy, spayed dogs.

Animals

Twenty‐one client‐owned adult spayed female dogs with historical recurrent UTI and 23 healthy, spayed female dogs without a history of recurrent UTI.

Methods

Dogs were placed into a recurrent UTI group or control group in this prospective study. Bacterial populations were isolated and characterized from vaginal swabs obtained from each dog.

Results

The most common bacterial isolates obtained from the vaginal tract of all dogs were Escherichia coli (11/44) and S. pseudintermedius (13/44). E. coli was isolated from the vaginal tract of 8 of 21 (38%) dogs in the rUTI group and 3 of 23 (13%) dogs in the control group (P = .08). LAB were isolated from 7 of the 44 dogs. Two of these 7 dogs were in the rUTI group and 5 of the 7 dogs were in the control group.

Conclusions and Clinical Importance

The vaginal microbiota of spayed female dogs with recurrent UTI was similar to the control population of normal, spayed female dogs.  相似文献   

10.
肠道微生物参与营养物质代谢,影响猪的健康和发育,当肠道微生物发生紊乱,会造成猪腹泻并引起炎症反应,因此肠道微生物对猪的健康起着至关重要的作用。本文从肠道微生物在仔猪不同发育阶段的分布、肠道微生物的代谢产物对肠道健康的影响机制和肠道微生物与肠道屏障之间的关系进行阐述,并探讨了目前肠道健康研究的进展以及今后的研究方向,旨在为猪肠道健康调控提供理论参考。  相似文献   

11.
The risk of developing mammary gland tumors in dogs is significantly decreased by ovariohysterectomy at an early age. However, previous studies have not found a benefit to ovariohysterectomy concurrent with tumor removal in dogs with established mammary gland tumors, suggesting that the progression of these tumors is independent of continued estrogen stimulation. The purpose of this study was to evaluate the effect of spaying and of the timing of spaying on survival in dogs with mammary gland carcinoma. Signalment, spay status and spay age, tumor characteristics, treatment. survival, and cause of death of 137 dogs with mammary gland carcinoma were analyzed. The dogs were classified into 3 groups according to spay status and spay time: intact dogs, dogs spayed less than 2 years before tumor surgery (SPAY 1), and dogs spayed more than 2 years before their tumor surgery (SPAY 2). Dogs in the SPAY 1 group lived significantly longer than dogs in SPAY 2 and intact dogs (median survival of 755 days, versus 301 and 286 days, respectively, P = .02 and .03). After adjusting for differences between the spay groups with regard to age, histologic differentiation, and vascular invasion, SPAY 1 dogs survived 45% longer compared to dogs that were either intact or in the SPAY 2 group (RR = .55; 95% CI .32-.93; P = .03). This study reveals ovariohysterectomy to be an effective adjunct to tumor removal in dogs with mammary gland carcinoma and that the timing of ovariohysterectomy is important in influencing survival.  相似文献   

12.

Background

Serotonin (5‐hydroxytryptamine, 5HT) is involved in hypothalamic regulation of energy consumption. Also, the gut microbiome can influence neuronal signaling to the brain through vagal afferent neurons. Therefore, serotonin concentrations in the central nervous system and the composition of the microbiota can be related to obesity.

Objective

To examine adipokine, and, serotonin concentrations, and the gut microbiota in lean dogs and dogs with experimentally induced obesity.

Animals

Fourteen healthy Beagle dogs were used in this study.

Methods

Seven Beagle dogs in the obese group were fed commercial food ad libitum, over a period of 6 months to increase their weight and seven Beagle dogs in lean group were fed a restricted amount of the same diet to maintain optimal body condition over a period of 6 months. Peripheral leptin, adiponectin, 5HT, and cerebrospinal fluid (CSF‐5HT) levels were measured by ELISA. Fecal samples were collected in lean and obese groups 6 months after obesity was induced. Targeted pyrosequencing of the 16S rRNA gene was performed using a Genome Sequencer FLX plus system.

Results

Leptin concentrations were higher in the obese group (1.98 ± 1.00) compared to those of the lean group (1.12 ± 0.07, P = .025). Adiponectin and 5‐hydroytryptamine of cerebrospinal fluid (CSF‐5HT) concentrations were higher in the lean group (27.1 ± 7.28) than in the obese group (14.4 ± 5.40, P = .018). Analysis of the microbiome revealed that the diversity of the microbial community was lower in the obese group. Microbes from the phylum Firmicutes (85%) were predominant group in the gut microbiota of lean dogs. However, bacteria from the phylum Proteobacteria (76%) were the predominant group in the gut microbiota of dogs in the obese group.

Conclusions and Clinical Importance

Decreased 5HT levels in obese group might increase the risk of obesity because of increased appetite. Microflora enriched with gram‐negative might be related with chronic inflammation status in obese dogs.  相似文献   

13.
This study investigated the effects of isomaltooligosaccharide (IMO) and Bacillus in perinatal diets on the duration of farrowing and post-weaning estrus, serum reproductive hormone concentrations, and gut microbiota and its metabolites of sows. Multiparous sows (n = 130) were fed diets without IMO (control, CON group), or diets containing only IMO (IMO group), IMO and Bacillus subtilis (IMOS group), IMO and Bacillus licheniformis (IMOL group), and IMO and B. subtilis and B. licheniformis (IMOSL group), respectively. The results indicate that the duration of farrowing and post-weaning estrus was shorter in sows in the IMOS, IMOL, and IMOSL groups, and the weaning-estrous interval was lower in sows in the IMOL greoup. In addition, the lowest fecal score was observed in the IMOL group during d 106 to 112 of gestation. Sows in most of the treatment groups had a higher concentration of serum prolactin and prostaglandin at farrowing, but a lower serum concentration of estradiol, oxytocin, and progesterone on d 18 of lactation than sows in the CON group. The treatment groups had a higher abundance of Candidatus Methanoplasma and Bacillus and a lower abundance of Escherichia-Shigella in their feces at farrowing. Furthermore, the treatment groups had higher concentrations of total short-chain fatty acids (SCFA) in feces at farrowing and a higher concentration of branched fatty acids in feces on d 18 of lactation. Furthermore, the abundance of Bacillus in feces was positively correlated with serum prostaglandin concentrations and fecal total SCFA of sows at farrowing, but was negatively correlated with the duration of farrowing. Overall, dietary IMO and Bacillus supplementation affected the concentration of serum reproductive hormones and the duration of farrowing and post-weaning estrus, and the gut microbiota is a key factor.  相似文献   

14.
Fructans are fermentable carbohydrates and include short-chain fructooligosaccharides (scFOS), inulin, and hydrolyzed inulin (oligofructose, OF). Two studies with dogs were designed to examine the effects of low concentrations of fructans on nutrient digestibilities, fecal microbial populations, and endproducts of protein fermentation, and fecal characteristics. In Exp. 1, 11 adult male beagles were fed corn-based, kibbled diets supplemented with or without OF to provide 1.9 +/- 0.6 g/d. Dietary inclusion of OF decreased (P < 0.05) nutrient digestibilities, but did not affect fecal characteristics. Increasing OF concentration tended (P < 0.06) to linearly decrease fecal ammonia concentrations, but not those of branched-chain fatty acids (BCFA), amines, indole, or phenols. Fecal concentrations of total short-chain fatty acids (SCFA) and butyrate tended to be higher in OF-supplemented dogs (P < 0.10), as was the ratio of bifidobacteria to total anaerobes (P = 0.15). In Exp. 2, ileally cannulated adult female hounds were fed a meat-based kibbled diet and were assigned to four scFOS treatments (0, 1, 2, or 3 g/d) in a 4 x 4 Latin square design. Ileal nutrient digestibilities tended to increase (P < 0.15) with increasing concentrations of scFOS. On a DMI basis, fecal output tended to decrease linearly (P < 0.10) in response to increasing scFOS supplementation, whereas fecal score tended to exhibit a quadratic response (P = 0.12). In general, fecal concentrations of SCFA, BCFA, ammonia, phenols, and indoles were not altered by supplemental scFOS. Supplementation of scFOS increased fecal concentrations of total aerobes (P < 0.05) and decreased concentrations of Clostridium perfringens (P < 0.05). From these data, it seems that low levels of supplemental fructans have divergent effects on nutrient digestibility and fermentative endproducts, but do not adversely affect nutrient digestibility or fecal characteristics and may improve colonic microbial ecology in dogs.  相似文献   

15.
Bacillus coagulans GBI-30, 6086 is a commercially available spore-forming non-toxigenic microorganism approved for use in dog foods with high resiliency to stresses associated with commercial manufacturing. The objectives of this research were to examine the effect of B. coagulans on stool quality, nutrient digestibility, and intestinal health markers in healthy adult dogs. Extruded diets containing graded levels of B. coagulans applied either to the base ration before extrusion or to the exterior of the kibble as a topical coating after extrusion were randomly assigned to 10 individually housed adult beagle dogs (7 castrated males and 3 spayed females) of similar age (5.75 ± 0.23 yr) and body weight (12.3 ± 1.5 kg). The study was designed as a 5 × 5 replicated Latin square with 16-d adaptation followed by 5-d total fecal collection for each period. Five dietary treatments were formulated to deliver a dose of 0-, 6-, 7-, 8-, and 9-log10 colony-forming units (CFU) per dog per day for the control (CON), extruded B. coagulans (PEX), and low, moderate, and high B. coagulans coating levels (PCL, PCM, and PCH), respectively. Food-grade TiO2 was added to all diets at a level of 0.4% to serve as an indigestible dietary marker for digestibility calculations. Data were analyzed using a mixed model through SAS (version 9.4, SAS Institute, Inc., Cary, NC) with treatment as a fixed effect and room (i.e., replicate), period, and dog(room) as random effects. Apparent total tract digestibility of organic matter, crude protein, crude fat, and gross energy calculated by the marker method were numerically greatest for dogs fed the 9-log10 dose treatment with increases (P < 0.05) observed in gross energy and organic matter digestibility compared with the negative control. No significant differences were observed in food intake, stool quality, fecal pH, fecal ammonia, fecal short-chain fatty acids, or branched-chain fatty acids for the extruded B. coagulans treatment (PEX) or the coated B. coagulans treatments (PCL, PCM, and PCH) compared with CON. These results suggest that B. coagulans has a favorable impact on nutrient digestibility and no apparent adverse effects when added to extruded diets at a daily intake level of up to 9-log10 CFU in healthy adult dogs.  相似文献   

16.
The meat quality is influenced by many factors, among which intramuscular fat (IMF) is one of the most prominent factors. IMF content is closely related to the tenderness and flavor of meat. Numbers of studies suggested that gut microbiota and its functional metabolites (such as short fatty acids, bile acids, lipopolysaccharides, trimethylamines, tryptophan and their derivatives) played an important role in host fat metabolism. In this review, we present the role of gut microbiota and its functional metabolites in regulating fat metabolism and IMF deposition. This paper would provide new insights and feasible ways through nutrition regulation to increase IMF deposition and improve meat quality.  相似文献   

17.
Corn is a commonly used ingredient in dry pet foods because there is a stable supply and it is a relatively inexpensive source of nutrients. Corn hybrids are available that are higher in CP and amylose and lower in phytate concentration than conventional hybrids. Approximately 500 mg of high-protein (HP), high-protein, low-phytate (HPLP), and high-amylose (HA) corn were compared with conventional (CONV) corn and amylomaize starch (AM) in triplicate and exposed to pepsin/hydrochloric acid and pancreatin to simulate hydrolytic digestion. Substrate remaining after this was used to determine in vitro colonic fermentation. Organic matter disappearances as a result of hydrolytic digestion were >80% for CONV, HP, and HPLP, whereas HA (60.7%) and AM (43.7%) were lower (P < 0.05). Total digestion (TD) values after hydrolytic digestion and 8 h of fermentation using canine fecal inoculum were greater (P < 0.05) for CONV, HP, and HPLP vs. HA and AM. The residue left after hydrolytic digestion of all substrates was poorly fermented. Five ileal-cannulated dogs were fed each corn hybrid at approximately 31% of the diet in a 5 x5 Latin square design. Dogs fed diets containing HP corn had higher (P < 0.05) ileal OM digestibility (70.3%) and tended (P < 0.10) to have higher DM digestibility (64.6%). Ileal starch digestibilities were lower (P < 0.05) for dogs fed HA (64.0%) and AM (63.0%). Ileal digestibilities of essential (71.2%), nonessential (67.4%), and total (69.0%) AA tended to be higher (P < 0.10) for HP diets compared with CONV (66.4, 62.4, and 64.0%, respectively). Total-tract DM, OM, CP, and GE digestibilities (77, 82, 77, and 84%, on average, respectively) were higher (P < 0.05) for dogs fed CONV, HP, and HPLP than for those fed AM (66.9, 71.6, 72.6, and 76.5%) and HA (60.6, 65.7, 69.7, and 71.5%). Total-tract fat digestibilities were lower (P < 0.05) for dogs fed HA diets (86.6%) than for all other treatments (91.0%, on average). Total-tract starch digestibilities were higher (P < 0.05) for dogs fed CONV, HP, and HPLP (98%, on average) compared with HA (72.8%) and AM (76.5%). No differences were detected among treatments in fecal bifidobacteria, lactobacilli, or Clostridium perfringens concentrations. The experiments demonstrated that HP and HPLP corn had hydrolytic digestion and fermentation characteristics similar to those of CONV corn, whereas HA resulted in similar responses to AM, a well-established resistant starch ingredient.  相似文献   

18.
肌内脂肪含量是影响肉品质的重要因素之一,其含量与肌肉的嫩度和风味密切相关。大量研究表明,肠道菌群及其功能代谢物,如短链脂肪酸、胆汁酸、脂多糖、三甲胺类、色氨酸及其衍生物等影响宿主脂肪代谢。本文对肠道菌群及其产生的功能代谢物对脂肪代谢及肌内脂肪沉积的影响及其机制进行了综述,为通过营养调控提高肌内脂肪含量、改善动物肉品质提供新的研究思路。  相似文献   

19.
In this experiment, three concentrations (0.3, 0.6, and 0.9% of diet, as-fed basis) of two fructans, oligofructose (OF) and inulin, were tested against a 0% supplemental fructan control. Seven ileal-cannulated adult female dogs were fed a meat-based, kibbled diet and assigned to treatments in a 7 x 7 Latin square design. Dietary supplementation of fructans had no effect on nutrient intakes or ileal digestibilities. Total-tract digestibilities of DM, OM, and CP decreased (P < 0.05) as a result of dietary OF and inulin supplementation. Dogs fed the control diet had a DM total-tract digestibility of 83.0%. The percentages of fecal DM for dogs fed the control and 0.3, 0.6, and 0.9% OF were 36.6, 33.3, 32.8, and 31.7%, respectively. When compared with the control, OF (P < 0.01) and inulin (P < 0.01) supplementation increased fecal ammonia concentrations. Higher fecal short-chain fatty acid (SCFA; P < 0.10) and isovalerate concentrations (P < 0.01) were noted for dogs fed both fructans. Total fecal SCFA for dogs fed the control diet and 0.3, 0.6, and 0.9% OF were 406.4, 529.9, 538.3, and 568.8 micromol/g of feces (DM basis), respectively. Dogs fed 0.3, 0.6, and 0.9% inulin had total fecal SCFA of 472.2, 468.8, and 471.5 micromol/g of feces (DM basis), respectively. Linear increases were observed in putrescine (P < 0.11), cadaverine (P < 0.07), spermidine (P < 0.12), and total amines (P < 0.05) in feces of dogs fed OF. Lower fecal phenol (P < 0.08) and total phenol (P < 0.04) concentrations occurred in dogs fed inulin, along with a linear decrease (P < 0.08) in total phenols with OF supplementation. Total fecal phenols for dogs fed the control, 0.3, 0.6, and 0.9% inulin were 3.03, 1.86, 1.97, and 2.23 micromol/g of feces (DM basis), respectively. Low-level dietary inclusion of inulin and OF positively affected indices known to be associated with gut health of the dog without seriously compromising nutrient digestibility or stool quality. Overall, the 0.9% OF treatment resulted in the best responses, including no adverse effect on nutrient intakes, ileal digestibilities, or stool quality, as well as increased fecal SCFA and decreased fecal phenols. The biological responses due to inulin were more variable.  相似文献   

20.
A newly-formulated, high protein high fibre (HPHF) diet has recently been shown to improve satiety in dogs. The current study examined its performance during weight loss in client-owned dogs with naturally-occurring obesity. Fifteen dogs were fed the HPHF diet, whilst a matched ‘control’ group of 27 dogs, received a high protein medium fibre diet (HPMF), with an equivalent caloric density. Baseline characteristics (signalment, percentage overweight, and body fat percentage) were not significantly different between groups. However, percentage weight loss was greater (median [range] 31.8% [12.0–41.2%] vs. 20.0% [5.9–45.0%], P = 0.016) and mean rate of weight loss faster (median [range] 1.0%/week [0.3–1.6%] vs. 0.7%/week [0.3–1.5%], P = 0.028) on HPHF compared with HPMF. Percentage body fat mass decrease (measured by dual-energy X-ray absorptiometry) was also greater in dogs fed the HPHF diet (median (range] 58% [32–85%) vs. 37% [15–72%), P = 0.002). Thus, a diet formulated to include high levels of both protein and fibre, improves outcome during weight loss in obese dogs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号