首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
The influence of moisture content (MC) on the orthotropic viscoelasticity of Chinese fir wood (Cunninghamia lanceolata [Lamb.] Hook.) has been examined in low temperature environment. Storage modulus E′ and loss modulus E″ of wood with six different levels of MC ranging from 0.6 to 22.0% were determined from ??120 to 40 °C and at multi-frequency range of 0.5, 1, 2, 5, and 10 Hz using a TA instruments® Dynamic Mechanical Analyzer (DMA 2980). The results showed that a distinct moisture dependency is exhibited by the orthotropic viscoelastic behaviour of Chinese fir wood. With the exception of some apparent activation energy (ΔE) for β-relaxation process, the E′ decreased and the E″ peak temperatures moved towards lower temperature and the ΔE for α-relaxation process became lower with MC increasing in all orthotropic directions, whereby individual decline of E′ and the E″ peak temperatures were affected by MC to different degrees. Besides, a little E″ peak at around 0 °C was only seen in L direction, which could be attributed to the melting of frozen water. Furthermore, the dynamic viscoelastic behavior of wood is also dependent on the measurement frequency. The findings suggest that the orthotropic structure and moisture content have an important influence on the viscoelastic performance in low temperature environment.  相似文献   

2.
Thermal modification of wood is an environment-friendly alternative method for improving several properties of wood without the use of chemicals. This paper deals with the examination of color and chemical changes in spruce (Picea abies L.) and oak wood (Quercus robur F.) that occur due to thermal treatment. The thermal modification was performed at 160, 180, and 210 °C according to thermowood process. The color changes were measured by the spectrophotometer and described in the L*a*b* color system. Chemical changes were examined by wet chemistry methods, infrared spectroscopy and liquid chromatography. During the experiment, oak samples showed smaller color changes than spruce samples at all temperature values. During thermal modification, the content of cellulose, lignin, and extractives increases; however, the hemicellulose content drops by 58.85% (oak) and by 37.40% (spruce). In addition to deacetylation, new carbonyl and carboxyl groups are formed as a result of oxidation. Bonds in lignin (mainly β-O-4) and methoxyl groups are cleaved, and lignin is condensed at higher temperatures.  相似文献   

3.
This study examined the temperature distribution during rotation welding process using birch (Betula spp.) wood dowel and Chinese larch (Larix gmelinii) substrates. Wood dowels were divided into two categories including an untreated group and a group pretreated with cupric chloride. The mechanics test results indicated that the pullout resistance of the pretreated group with welded time 3 s showed the best performance. As a fitting analyses result, both the untreated group and pretreated group showed a significant nonlinear relationship among temperature, welded depth and welded time. In the untreated group case, a linear regression relationship was found between the highest temperature of the welding interface and the depth. However, two-stage fitting was used to fit the regression for the pretreated group. Compared with the untreated group, thermogravimetric (TG) analysis of the pretreated group welding interface presented two pyrolytic peaks, and it illustrated that the pretreatment promoted the depolymerization and pyrolysis of wood constituents.  相似文献   

4.
We evaluated the antifungal and antitermite activities of wood vinegars produced from oil palm trunk. The wood vinegars were produced at three different pyrolysis temperatures, 350, 400, and 450 °C. Antifungal activities of vinegars were evaluated using a Petri dish bioassay with 0.5, 1.0, and 1.5% (v/v) against a white-rot fungus, Trametes versicolor, and a brown-rot fungus, Fomitopsis palustris. Antitermite activities were tested using a no-choice bioassay method for Coptotermes formosanus with 2.5, 5.0, 7.5, and 10.0% (v/v). All the wood vinegars exhibited antifungal activities against T. versicolor. In particular, the wood vinegar produced at 350 °C resulted in complete inhibition of T. versicolor growth at 1.0 and 1.5%. However, higher concentrations were required to obtain growth inhibition of F. palustris. All the wood vinegars exhibited antitermite activity to C. formosanus workers in the no-choice experiment at relatively high concentrations. For instance, 10% concentration was required to achieve 100% mortality against C. formosanus at all production temperatures. The lowest mass loss of the treated filter paper of 11.75% was obtained with a 350 °C—10.0% combination.  相似文献   

5.
The natural resistance of Erythrophleum fordii Oliver wood to degradation by Phanerochaete sordida and Phanerochaete chrysosporium white-rot fungi was investigated. In this study, Fagus crenata Blume (Japanese beech) was selected as reference species. The results showed that both fungi caused less than 2% mass loss in E. fordii wood, while the degradation of beech wood produced by P. chrysosporium and P. sordida was approximately 12 and 14%, respectively. Microscopic observations revealed high structural rigidity of E. fordii timber. Hyphae were only observed in the lumen of vessels and parenchymal cells, while the fibers were not affected. The E. fordii wood fiber consisted of highly lignified thick-walled fibers with the fiber lumina almost completely closed. Two-dimensional heteronuclear single-quantum coherence nuclear magnetic resonance evaluation revealed the E. fordii wood to have a highly condensed-lignin structure that reflected by the durability classes. These unique parameters are likely to be critical for the high natural resistance of E. fordii.  相似文献   

6.
Heterotrophic components of biofilms on wood artefacts were studied at the Conservation Laboratory for Wood Artefacts of the University Suor Orsola Benincasa of Naples, Italy. The aim of the study was to add new information on the micro-habitats represented by biofilms formed by wood-dwelling organisms. Light and electron microscopy of histological features of woods used to make the artefacts showed that the woods belonged to species of lime (Tilia sp.), poplar (Populus sp.) and pear (Pyrus sp.). A Denaturing Gradient Gel Electrophoresis analysis performed on heterotrophic microorganisms colonizing the artefacts led to identify four species of bacteria, namely Bacillus cereus, B. mycoides, B. subtilis and Microbacterium oleivorans, and seven species of fungi, namely Alternaria alternata, Aspergillus fumigans, A. versicolor, Cladosporium cladosporioides, C. oxysporum, Fusarium oxysporum and Penicillium chrysogenum. Based on its morphological features, an insect found on some artefacts was identified as the xylophagous beetle Nicobium castaneum (Anobiidae). The influence of wood type and environmental conditions on the diversity of microorganisms was discussed.  相似文献   

7.
Aging is the irreversible change of mechanical, physical, and chemical properties of materials; the main objective of this work was to study the photochemical degradation and structural changes of three major Algerian wood species. For this, we evaluated the photodegradation mechanism for Maritime Pine (Pinus pinaster), zeen oak (Quercus canariensis), and afares oak (Quercus afares) by accelerated aging in a Xenon test chamber. Degradation of the samples was established by an initial color change (after 30 h exposure), followed by roughening and cracking (120 h exposure) as translated by scanning electron microscopy and Fourier transform infrared spectroscopy. The discoloration of irradiated wood samples was primarily related to the decomposition of lignin which is the key structure in wood photodegradation. As expected, a decrease in mechanical properties was observed; for all samples, the modulus of elasticity decreased after aging, indicating that the wood specimens loss some of their stiffness.  相似文献   

8.
Ammonia pretreatment is a promising technique for enhancing enzymatic saccharification of lignocellulosic biomass. However, an enzymatic cocktail suitable for the breakdown of pretreated biomass samples is still being developed. The basidiomycete Phanerochaete chrysosporium is a well-studied fungus with regard to bioconversion of lignocellulosic biomass. In the present work, we analyzed proteins secreted by P. chrysosporium grown on untreated and ammonia-treated birch wood meal. Fungal growth, xylanase activity, and extracellular protease activity increased in the media containing the ammonia-treated biomass; however, cellulase production decreased compared to that observed in the untreated biomass. Secreted extracellular proteins were separated by two-dimensional electrophoresis and identified by liquid chromatography ion–trap mass spectrometry. Fifty-five spots corresponding to secreted proteins were chosen for further analysis. In the culture with ammonia-treated biomass, the relative concentration of a xylanase belonging to glycoside hydrolase (GH) family 11 increased, while acetyl xylan esterases belonging to carbohydrate esterase family 1 decreased. Moreover, GH family 10 xylanases were promoted proteolysis in the culture of ammonia-treated biomass, leading to the loss of family 1 carbohydrate-binding modules. These results indicated that P. chrysosporium produced enzymes related to the recognition of structural changes on xylan with de-acetylation and introduction of nitrogen by ammonia pretreatment of birch wood meal.  相似文献   

9.

Context and aim

This study aimed to examine the effect of the tension wood G‐layer on the viscoelastic properties of wood.

Methods

Tension wood and opposite wood samples were obtained from six French Guianese tropical rainforest species (Sextonia rubra, Ocotea guyanensis, Inga alba, Tachigali melinoni, Iyranthera sagotiana and Virola michelii); the tension wood of the former three of these species had a G‐layer, whilst the tension wood from the latter three had no G‐layer. Tensile dynamic mechanical analysis (DMA) was performed on green never dried wood samples in the longitudinal direction with samples submerged in a water bath at a temperature (30°C) and frequency (1 Hz) representative of the conditions experienced by wood within a living tree. Then, DMA was repeated with samples conditioned to an air-dried state. Finally, samples were oven-dried to measure longitudinal shrinkage.

Results

Tension wood did not always have a higher longitudinal storage (elastic) modulus than opposite wood from the same tree regardless of the presence or absence of a G‐layer. For the species containing a G‐layer, tension wood had a higher damping coefficient and experienced a greater longitudinal shrinkage upon drying than opposite wood from the same species. No difference was found in damping coefficients between tension wood and opposite wood for the species that had no G‐layer.

Conclusion

It is proposed that the different molecular composition of the G-layer matrix has an influence on the viscoelasticity of wood, even if a biomechanical gain is not yet clear. This study shows that rheological properties and longitudinal shrinkage can be used to detect the presence of a G‐layer in tension wood.
  相似文献   

10.
Four strains of the termite mushroom Termitomyces eurrhizus collected in Japan were surveyed for their wood decaying properties in three softwood and two hardwood species, in comparison with the white-rot fungus Trametes versicolor and the brown-rot fungus Fomitopsis palustris. All strains of T. eurrhizus degraded only the surfaces of the wood samples, and differences in mass-loss rates between heartwood and sapwood were generally not significant. Higher mass-loss rates were generally obtained in softwood than in hardwood. The results of chemical analyses of decayed wood samples indicated that T. eurrhizus does not have high lignin-degradation ability, even though it is categorized as a white-rot fungus. These results clearly suggest the unique physiological characteristics of T. eurrhizus.  相似文献   

11.
The study investigated and compared the behaviour of four wood species, originating from Europe and China, in terms of temperature-induced artificial ageing. It was conducted at 100 °C for a total period of 288 h. Ageing effects were evaluated by colour measurements in the CIE Lab system and by FTIR analysis. Colour changes were then related to chemical changes in the wood. The investigated wood species were European ash (Fraxinus excelsior), European walnut (Juglans regia), Chinese ash (Fraxinus mandshurica) and Chinese walnut (Juglans mandshurica). Colour changes were maximum for European ash and minimum for Chinese ash, while European walnut and Chinese walnut evolved quite similarly. Main chemical changes due to temperature ageing were reduction of hydroxyl groups, increase of the unconjugated carbonyl groups and an apparent slight increase of lignin, more evident for European ash and delayed for European walnut. Formation of aromatic carbonyl conjugated groups as quinoid structures as a result of oxidative reactions was revealed especially for European ash. The different behaviour of the studied wood species may be explained by their different chemical composition, especially hemicelluloses, lignin and extractives content.  相似文献   

12.
In this work, pretreatment of wood meals using a recycled ionic liquid (IL), 1-ethyl-3-methylimidazolium acetate ([Emim]Ac), enhanced glucose liberation by enzymatic saccharification, without dissolution of cellulose and lignin. In contrast, previous studies on IL pretreatment have mostly focused on lignocellulosic dissolution to regenerate cellulose and removing lignin. Softwood (Cryptomeria japonica) was pretreated with [Emim]Ac at 60–100 °C for 2–8 h without collecting regenerated cellulose. The pretreatment did not have a strong effect on wood component dissolution (weight of residues: 91.7–98.8%). The residues contained relatively high amounts of lignin (26.6–32.6%) with low adsorption of [Emim]Ac (0.9–2.7%). Meanwhile, the crystallinity index (C r I) of cellulose in the wood was significantly reduced by pretreatment, from 50.9% to 28.4–37.1%. In spite of the high lignin contents in the residues, their glucose liberation values by enzymatic saccharification using a cellulase mixture were 3–16 times greater than that of untreated wood. A good correlation was found between the saccharification effectiveness of pretreated samples and the C r I. Although lignin dissolved in [Emim]Ac continued to accumulate after repeated use of [Emim]Ac, the pretreatment was found to be effective for three consecutive cycles without the need to remove the dissolved materials.  相似文献   

13.
To investigate the affinity of acetylated wood for organic liquids, acetylated yezo spruce wood specimens were soaked in various liquids, and their swellings were compared to those of untreated specimens. The acetylated wood was rapidly and remarkably swollen in liquids having low hydrogen bonding power such as benzene and toluene in which the untreated wood was swollen only slightly or very slowly. On the other hand, the swollen volume of wood in water, ethylene glycol, and alcohols remained unchanged or slightly decreased after the acetylation. The effect of acetylation was greater in liquids having smaller solubility parameters. The easier penetration of aprotic organic liquids into the acetylated wood was considered to be due to the reduction of polarity and the scission of hydrogen bonds in the amorphous wood constituents where the hydrophilic hydroxyl groups were substituted by hydrophobic acetyl groups.  相似文献   

14.
Transmittance and reflectance of visible light by sugi wood (Cryptomeria japonica) were investigated in the longitudinal (L) and tangential (T) directions. Transmittance was the highest in the L direction and reflectance was the highest in the T direction, suggesting that structural anisotropy influences transmittance and reflectance. Intra-ring variations observed with a microspectrometer indicated that T transmittance was higher for latewood than for earlywood, but there was no such trend in for L transmittance in which the highest levels occurred near the annual ring boundaries, on either the earlywood or latewood side, and the lowest at the transition from earlywood to latewood. Dependence of L transmittance on wavelength also showed variations according to the intra-ring position. The increasing of transmittance of earlywood at wavelengths?<?500 nm with increasing wavelength was observed, but this was not confirmed for latewood because of absorption by lignin. These observations supported a previously published finding, which was based on measurements in the radial direction, that the number of internal cell wall reflections, rather than density, determines wood lightness. Indeed, in the L direction, most of the incident light passes through lumens in earlywood and through cell walls in latewood, while it is subjected to numerous internal reflections at the interface between lumens and cell walls. This was further confirmed by the transmittance of earlywood being greatly decreased by radial compression.  相似文献   

15.

? Key message

Intensive measurements of basic specific gravity and relative water content of lumens show that within-stem variations strongly depend on species and cannot be summarised through the typical patterns reported in the literature; breast height measurements are not always representative of the whole stem.

? Context

Knowledge of the distribution of wood properties within the tree is essential for understanding tree physiology as well as for biomass estimations and for assessing the quality of wood products.

? Aims

The radial and vertical variations of basic specific gravity (BSG) and relative water content of lumens (RWC L ) were studied for five species: Quercus petraea/robur, Fagus sylvatica, Acer pseudoplatanus, Abies alba and Pseudotsuga menziesii. The observations were compared with typical patterns of variations reported in the literature.

? Methods

Wood discs were sampled regularly along tree stems and X-rayed in their fresh and oven-dry states.

? Results

At breast height, BSG was found to clearly increase radially (pith to bark) for two species and to decrease for one species. For F. sylvatica and A. alba, the radial variations of BSG were rather U-shaped, with in particular inner wood areas showing respectively lower and higher BSG than the corresponding mature wood. RWC L increased generally from inner to outer area but wet sapwood was clearly distinguishable only for the coniferous species. Vertical variations of BSG and RWC L were strongly dependant on the species with usually non-linear patterns.

? Conclusion

The observed variations of BSG were only partially in agreement with the reported typical radial patterns. Despite the vertical variations, the mean BSG of a cross-section at breast height appeared to be a good estimator of the mean BSG of the whole stem (although the difference was statistically significant for coniferous species), whereas breast height measurement of RWC L was not representative of the whole stem.
  相似文献   

16.
  • ? It is essential to understand how characteristics are related to each other in breeding programmes to select wood properties, in order to avoid that, in selecting for one trait, we are negatively affecting another. Moreover, measuring wood properties is time consuming and expensive.
  • ? This study assesses genetic and phenotypic correlations between wood density components and spiral grain of 46 half-sib families of Pinus pinaster in seventeen-year-old trees.
  • ? Results showed that genetic correlations for all wood density components were higher than corresponding phenotypic correlations. Furthermore, all wood density components were highly genetically correlated with ring density, and also closely associated among themselves. Results showed a higher genetic correlation of ring density with earlywood density (r g = 0.96) than with latewood density r g = 0.79). A moderate to high positive genetic correlation was found between spiral grain and wood density characteristics (0.29–0.61).
  • ? We conclude that ring density (overall wood density) can be improved by increasing either earlywood density, latewood percent, or both of these traits, and spiral grain can be modify in future plantations.
  相似文献   

17.
To improve interfacial adhesion between wood veneer and high-density polyethylene (HDPE) film, wood veneer was thermally modified in an oven or chemically modified by vinyltrimethoxysilane. The wood veneers were used to prepare plastic-bonded wood composites (PBWC) in a flat-press process using HDPE films as adhesives. The results showed that both modifications reduced veneer hydrophilicity and led to enhancement in shear strength, wood failure, and water resistance of the resulting PBWC. The thermal treatment significantly decreased the storage modulus close to 130 °C (the melting temperature of plastic). Thermal-treated wood veneer maintains mechanical interlocking for bonding and veneer strength which then declined under thermal treatment due to hemicellulose degradation and cellulose de-polymerization. In the silane-treated PBWC, enhanced interlocking and a stronger bonding structure resulted from the reaction between the silane-treated veneer and HDPE. This strong bonding structure allowed thermal stability improvement demonstrated by high modulus and low tanδ values. However, the strength of silane-treated PBWC was still much lower than thermosetting resin-bonded composites at higher temperatures due to the melting behavior of thermoplastic polymer, precluding its use in certain applications.  相似文献   

18.
This paper evaluated the density and biological resistance of pinewood samples modified with thermo-mechanical densification and thermal post-treatment. The samples were densified with 20 and 40% compression ratios at either 110 or 150 °C. The thermal post-treatment was then applied to the pine samples at 185 and 212 °C for 2 h. These samples were exposed to white-rot (Trametes versicolor) and brown-rot (Coniophora puteana) fungi for twelve weeks and the resulting mass loss was determined. In the densified samples, the effects of the compression ratio on T. versicolor-initiated mass loss and of the compression temperature on C. puteana-initiated mass loss were found to be significant. The mass loss was less in the samples compressed at 150 °C with the 40% ratio, while the highest mass loss was observed in the undensified samples. In the thermally post-treated samples, the resistance to both decay fungi was significantly increased with the increase of the treatment temperature. The mass loss in the thermally post-treated samples at 212 °C after T. versicolor and C. puteana fungi testing was reduced by 73 and 67%, respectively. However, the effect of the densification processes on decay resistance in the thermally post-treated samples was insignificant.  相似文献   

19.
The wood–adhesive interface was analyzed using five methods with the objective of quantitatively assessing penetration of adhesive into the porous wood network. Methods included fluorescence microscopy, scanning electron microscopy, backscatter electron imaging, wavelength dispersive spectroscopy, and X-ray microtomography (XMT). Each method provided a visual inspection, and all of the analysis methods were applied to the same field of view. XMT was the primary technique of interest. Rubidium hydroxide was used in place of sodium hydroxide in the formulation of phenol–formaldehyde adhesive. Rubidium was found to increase the X-ray attenuation of the adhesive. However, rubidium migrated beyond the adhesive interphase during specimen preparation, thus reducing its effectiveness for image contrast enhancement. The wood species studied included red oak (Quercus rubra), Douglas-fir (Pseudotsuga menziesii), and hybrid poplar (Populus deltoides × Populus trichocarpa). All techniques used for this study were useful, but each presented some limitations for bondline analysis. Despite the problem with rubidium migration, XMT for this application was promising.  相似文献   

20.

Key Message

This article presents the enhancement in boron fixation as well as the improved biological resistance against fungi and termites for wood samples treated with tannin-caprolactam and tannin-PEG formulations.

Context

Although the recently developed tannin-boron wood preservatives have shown high biological protection, they presented also average resistance against weathering. The tannin-caprolactam formulations have shown improved weathering resistances and dimensional stability.

Aims

For this reason, more detailed biological tests were performed to evaluate the influence of the caprolactam and PEG on the biological resistance.

Methods

In this paper, the boron leaching of the tannin-caprolactam and tannin-PEG impregnated Scots pine specimens was observed and the biocidal effect against fungi (Antrodia spp. and Coniophora puteana) and insects (Reticulitermes flavipes and Hylotrupes bajulus) were determined according to the guidelines of EN 113, EN 117, and EN 47.

Results

The advanced formulations containing PEG have shown interesting resistance against fungal decay, but very low penetration and weak resistance against larvae while the tannin-caprolactam preservatives have shown overall improved biological performances and higher boron fixations.

Conclusion

The biocidal activity of the caprolactam-added formulations was overall enhanced and therefore these formulations are confirmed to be an interesting alternative for the wood preservation in outdoor environment.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号