首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
弹齿滚筒式捡拾器捡拾性能试验   总被引:3,自引:0,他引:3  
在弹齿滚筒式捡拾器试验台上,以紫花苜蓿为捡拾对象,滚筒转速、机器前进速度和牧草含水率为试验因素,功率消耗与捡拾损失率作为性能检测指标,进行了正交试验和弹齿端部加速度试验,旨在探索弹齿滚筒式捡拾器的工作参数、结构参数与牧草收获条件对捡拾性能的影响。试验结果表明:凸轮廓线对捡拾器工作性能有较大影响;滚筒转速和牧草含水率均对捡拾器工作性能影响极显著,机器前进速度对工作性能影响显著;捡拾器工作性能的影响因素主次顺序为滚筒转速、牧草含水率、机器前进速度,最佳性能参数组合为滚筒转速42 r/min、机器前进速度4.0 km/h、牧草含水率15.1%。弹齿端部加速度频谱分析表明:在滚筒转速、机器前进速度保持一定的情况下,随着牧草含水率的增加,弹齿端部加速度呈上升趋势,捡拾器功率消耗增加,捡拾效率下降。  相似文献   

2.
油菜分段收获齿带式捡拾器的设计与试验   总被引:2,自引:0,他引:2  
根据我国油菜生产特点和技术需求,应适当发展分段收获,为此,设计了一种齿带式油菜分段收获装置。本文对齿带式捡拾收获装置的结构和工作原理进行了分析,重点研究了齿带捡拾装置的仿形、输送和捡拾等装置的优化配置,以探索新的工作原理和新的结构设计。进行了齿带式油菜捡拾装置参数优选试验,得到机组前进速度、齿带输送速度和齿带输送倾角与损失率的关系。采用正交试验的方法进行试验,并对试验数据进行极差分析,找出适合齿带捡拾器收获油菜的最佳参数组合。三个影响因素按重要性排序为:机组作业速度>输送带速>输送倾角。确定了一组最优的参数组合:机组前进速度0.71m/s,输送带速0.9m/s,输送倾角12°。  相似文献   

3.
花生捡拾联合收获机捡拾装置参数优化及试验   总被引:1,自引:0,他引:1  
为了提高花生捡拾收获机捡拾机构的作业质量,提高捡拾率,降低落果率,在已有研究基础上,以机器前进速度、弹齿回转速度、齿尖弯曲角度为影响因素,以捡拾率和落果率为考察指标,运用Box-Benhnken中心组合试验方法对捡拾收获机捡拾机构的工作参数进行了试验研究,建立响应面数学模型,分析了各影响因素对作业质量的影响,对相关参数进行了综合优化。结果表明:各因素对捡拾率影响显著顺序依次为回转速度、前进速度、弯曲角度;对落果率影响显著顺序依次为前进速度、回转速度、弯曲角度;最优参数组合为前进速度为0.8 m/s、回转速度5.0 rad/s、弯曲角度1 6 5°,捡拾率为9 9.3 6%,落果率为0.5 8%。  相似文献   

4.
受复杂作业环境及多目标参考系影响,花生联合收获机捡拾机构存在捡拾落果率高、荚果破损率高、功耗比率过大等问题。通过开展不同秧蔓条件下的捡拾力学特性试验,确定了捡拾机构的结构参数与工作参数。基于Box-Benhnken的中心组合设计理论,以机构转速、机具前进速度、弹齿间距三因素为影响因子进行响应面试验,分析各因素对捡拾落果率、荚果破损率和功耗比率的影响,并对影响因素进行优化。试验结果表明,对捡拾落果率的影响由大到小为弹齿转速、机具前进速度、弹齿间距,对荚果破损率的影响由大到小为弹齿转速、弹齿间距、机具前进速度,对功耗比率的影响由大到小为机具前进速度、弹齿转速、弹齿间距;最优参数组合为弹齿转速63.62r/min、弹齿间距75.23mm及机具前进速度1.07m/s,对应的捡拾落果率为2.15%,荚果破损率为3.53%,捡拾功耗比率为7.92%,比优化前分别提高了1.0、1.2、3.4个百分点。  相似文献   

5.
齿带式油菜捡拾器仿形减振装置设计与试验   总被引:1,自引:0,他引:1  
针对现有油菜捡拾器在复杂田块作业时作业稳定性低的问题,设计了一种用于铰接式齿带捡拾器的地面仿形减振装置。通过建立仿形减振系统动力学模型,确定了影响地面仿形稳定性的关键结构与作业参数。以仿形弹簧刚度、系统阻尼比和捡拾器前进速度为试验因素,以铰接点处的峰值角度均差和仿形稳定性变异系数为评价指标,进行了基于响应面法的三因素三水平Box-Benhnken组合试验,得到影响峰值角度均差的因素影响力由大到小依次为阻尼比、弹簧刚度、前进速度,影响仿形稳定性变异系数的因素影响力由大到小依次为前进速度、弹簧刚度、阻尼比。通过软件寻优得到角度均差和仿形稳定性变异系数最小条件下的最佳参数组合为:弹簧刚度9.7N/mm、阻尼比0.38、前进速度0.95m/s,对应的理论角度均差为2.3°、仿形稳定性变异系数为6.2%。田间对比试验表明,挂接仿形减振装置的捡拾器平均捡拾损失率4.53%,平均含杂率3.22%,分别比未挂接减振装置的同一捡拾器降低了30.73%和27.64%,作业效果提升明显。  相似文献   

6.
玉米籽粒收获机清选装置参数优化试验   总被引:6,自引:0,他引:6  
针对玉米籽粒直收过程中清选作业损失率高、籽粒含杂率高的问题,开展玉米籽粒收获机清选作业参数优化试验,探究整机作业工况下清选装置作业参数对籽粒损失率和含杂率的影响规律,得到清选作业参数最优组合,并进行田间验证试验。玉米籽粒收获机清选作业参数较优水平区间为风机转速800~1 000 r/min,振动频率6~8 Hz,上清选筛筛孔开度15~25 mm。清选作业籽粒含杂率最优作业参数组合为风机转速1 000 r/min,振动频率7 Hz,上清选筛筛孔开度20 mm;籽粒损失率最优作业参数组合为风机转速900 r/min,振动频率6 Hz,上清选筛筛孔开度20 mm;清选作业综合指标最优作业参数组合为风机转速900 r/min,振动频率7 Hz,上清选筛筛孔开度20 mm。得到玉米籽粒收获机清选作业籽粒含杂率、籽粒损失率和综合指标的回归模型,田间验证试验表明,籽粒含杂率相对误差为5. 56%,籽粒损失率相对误差为5. 10%,综合指标相对误差为4. 60%,最优作业参数组合表现良好,且回归模型可靠。  相似文献   

7.
籽用瓜联合收获机捡拾器试验研究   总被引:1,自引:0,他引:1  
为提高籽瓜机械化收获作业质量,满足农艺要求,改进设计了籽瓜联合收获机的捡拾器,阐述分析了捡拾器总体结构及工作原理,优化了活动机架底板、捡拾弹齿和弹齿座杆总成结构参数。为研究捡拾器最佳工作参数,以行走速度、捡拾装置转速和座杆间距为试验因素,捡拾破损率和漏捡率为试验指标,进行了三因素三水平的正交试验,通过极差分析找出各性能指标影响因素的主次顺序和较优组合。试验结果表明:当行驶速度为1.5 km/h、捡拾装置转速为1 5 0 r/min、座杆间距为5 0 8.0 mm时,捡拾作业性能最优,其捡拾破损率为6.7%,漏捡率为3.2%。田间适应性收获试验表明:捡拾器对不同大小类型籽瓜品种均具有良好的适应性。  相似文献   

8.
针对花生全喂入捡拾收获过程捡拾率低、荚果损失率高、生产率低等问题,基于花生生物学特点、荚柄脱离特性及荚果破损机理,设计了一种轴流式花生捡拾收获机。整机采用自走式底盘驱动,配套动力120 kW,主要由捡拾装置、输送装置、摘果装置、清选装置、底盘系统、集果装置等组成,可一次完成对田间条铺花生植株的捡拾、输送、果蔓脱离、果杂清选、提升集果等功能。在分析整机工作原理的基础上,进行了关键部件结构设计及参数确定,通过动量守恒原理和赫兹接触理论建立捡拾过程的碰撞模型和摘果装置关键参数方程,并对荚果破损和荚柄分离力学模型进行了定量分析,确定以弹齿转速、摘果滚筒转速、机具前进速度为主要影响因素,并针对“开农61”品种花生进行试验研究。结果表明,最优参数组合为弹齿转速68 r/min、摘果滚筒转速447 r/min、机具前进速度1.4 m/s,对应的捡拾率为98.62%、荚果损失率为2.11%、生产率为0.61 hm^2/h,捡拾率、生产率比优化前分别提高了2.1、4.5个百分点,荚果损失率比优化前降低了0.9个百分点,综合性能明显提高。  相似文献   

9.
捡拾率和功率消耗是捡拾器两大性能指标,影响捡拾器性能的工作参数很多,如弹齿离地高度、滚筒转速、机器前进速度及草条密度。为此,对改进前后的实验台性能做了对比分析,试验发现,滚筒转速、前进速度、草条密度对捡拾器工作性能参数影响最为明显。应用正交试验方法,在相同工作参数下对改进前后试验台进行对比试验,通过IBM SPSS软件对正交实验数据进行方差分析,结果表明:改进后试验台性能优于改进前试验台。  相似文献   

10.
油菜分段收获捡拾脱粒机捡拾损失响应面分析   总被引:11,自引:1,他引:10  
为降低捡拾脱粒机捡拾损失,采用响应面分析方法对捡拾部件的参数进行试验.试验结果和分析表明:影响捡拾损失的重要因素是机组前进速度、输送带速和输送倾角;3个影响因素按重要性排序为:机组作业速度、输送带速、输送倾角.确定了一组最优的参数组合:机组前进速度0.80 m/s,输送带速0.78 m/s,输送倾角11.19°,优化后捡拾损失率的理论值为2.91%.考虑实际机械作业过程中的参数调整问题,推荐参数组合为:机组前进速度0.71 m/s,输送带速0.80 m/s,输送倾角12°.  相似文献   

11.
针对胡麻分离清选过程高损失率、高含杂率问题,设计了风筛式胡麻清选装置。利用EDEM-Fluent耦合方法,对胡麻清选装置清选过程进行仿真分析,探究清选装置作业参数对胡麻籽粒含杂率和清选损失率的影响规律,确定最优的组合参数。基于清选装置气流场胡麻脱粒物料的运动分析,建立了胡麻清选装置简化模型;对风机风速、气流倾角、清选筛振动频率和振幅4个参数进行单因素试验和正交试验。结果表明,风机风速、气流倾角、清选筛振动频率和振幅是影响清选装置清选性能的显著因素。应用Design-Expert软件建立了籽粒含杂率和清选损失率的数学回归模型,获得最佳工作参数组合:风机风速4.5 m/s、气流倾角4°、清选筛频率6 Hz、清选筛振幅9 mm,最优工作参数组合下胡麻籽粒含杂率为2.97%,清选损失率为2.39%。该研究结果可为胡麻清选装置的设计和优化提供参考。   相似文献   

12.
基于ANSYS的鸡毛菜收获机割台部分振动模态分析   总被引:2,自引:0,他引:2  
为了进一步降低鸡毛菜有序收获机收获过程中对鸡毛菜造成的损失率及损失率,以割台部分为研究对象,采用有限元分析方法建立鸡毛菜有序收获机割台部分振动方程,通过求解割台部分振动方程对其受力和振动模态进行分析,得出鸡毛菜有序收获机割台部分振动系统的固有频率和主振型,并将求解得到的的6阶固有频率值与割台部分的直流无刷电机传递转速进行比较分析。仿真结果表明:鸡毛菜有序收获机割台在3阶、5阶和6阶模态的振动变形较大,且割台电机在额定转速范围内工作时并不会导致割台共振现象发生。研究分析结果不仅为鸡毛菜有序收获机割台部分动力传递过程中是否发生共振现象提供了理论依据,而且对机具割台部分相关参数的优化设计具有一定参考价值。  相似文献   

13.
针对目前玉米籽粒收获机不能适应15kg/s以上的大喂入量清选需要,设计了一种具备预清选功能的清选装置。首先对玉米脱出物离开螺旋输送器到达预清选筛前的玉米籽粒进行受力分析,然后对曲柄连杆机构的运动模型加以简化。其次分析玉米籽粒在筛面上的运动状态;对离心风机叶轮、蜗壳进行设计计算。采用单因素试验确定风机转速、振动频率、上筛筛孔开度取值范围;以风机转速、振动频率、上筛筛孔开度为试验因素,以籽粒含杂率和清选损失率为评价指标,设计三因素三水平中心组合试验,建立各因素与指标之间的回归模型。通过响应曲面方法对试验结果进行分析,并采用Design-Expert12对回归模型进行多目标优化。玉米脱出物喂入量为16kg/s时,得出较优组合为:风机转速1202.50r/min、振动频率5.41Hz、上筛筛孔开度18mm,在此条件下籽粒含杂率为0.79%,清选损失率为1.10%;验证试验结果表明,当风机转速1200r/min、振动频率5Hz、上筛筛孔开度18mm时,籽粒含杂率为0.82%,清选损失率为1.14%,试验值与优化值相对误差小于5%,与传统双层往复振动筛清选装置相比籽粒含杂率降低2.07个百分点,清选损失率降低2.13个百分点,证明所设计合理。  相似文献   

14.
为降低大豆联合收获机割台损失率,本文通过分析收获过程得出拨禾轮作用范围、茎秆回弹、拨禾轮高度对割台损失率的影响规律;以最小割台损失率为目标,利用ANSYS-ADAMS联合仿真探究收获不同高度大豆的拨禾轮最优参数。使用ANSYS软件建立大豆植株柔性模型,在ADAMS软件中建立拨禾轮-大豆茎秆刚柔耦合模型,通过单因素预试验确定关键参数的范围,以大豆联合收获机拨禾轮高度、拨禾速比、拨禾轮前移距离和大豆植株高度为试验因素,以拨禾轮对大豆茎秆的碰撞力、拨禾轮作用程度为指标开展四因素五水平二次回归中心组合仿真试验,建立了试验因素与试验指标间的数学模型,建立以作用程度最大、拨禾碰撞力最小为目标的优化方程,确定大豆联合收获机拨禾轮最优拨禾速比、最优前移距离、最优高度与大豆植株高度之间存在线性对应关系,大豆联合收获机拔禾轮参数对碰撞力与作用程度影响主次顺序为:拨禾速比、拨禾轮高度、拨禾轮前移距离。开展以拨禾轮高度、拨禾速比、拨禾轮前移距离为因素,以拨禾轮对大豆茎秆的碰撞力、拨禾轮作用程度为指标的仿真试验和以割台损失率为指标的田间试验,模型计算与仿真的碰撞力偏差平均为1.18 N,拨禾轮作用程度偏差量平均...  相似文献   

15.
针对甘薯分段收获技术需求,结合国内外甘薯收获技术及装备,提出一种甘薯秧蔓收获方式,并设计甘薯秧蔓收获机专用割台。该甘薯秧蔓收获割台主要由拨禾切割装置和防堵防缠输送装置组成,可以实现甘薯秧蔓的切—送—归集。首先,理论分析该割台的关键部件结构参数及传动配置关系,确定拨禾切割装置上仿垄型排列的割刀和弹齿的安装高度和安装密度,以及拨禾轮、割刀和弹齿的结构参数。其次,通过对拨禾切割装置、捡拾装置和螺旋输送装置进行运动学和力学分析,明确拨禾轮、捡拾器、螺旋输送绞龙转速和结构决定秧蔓切割效果和收获质量,并确定捡拾器和螺旋输送绞龙的关键结构参数,最后进行田间试验验证该机具的切—送—归集收获效果。结果表明:当整机前进速度为0.6 m/s,拨禾轮转速为46 r/min,捡拾器转速为43 r/min,割台损失率仅为1.3%,整机作业效率为0.45 hm2/h。割台搭配48 kW拖拉机在工作过程中运行稳定,割台在工作过程中无堵塞、无缠绕,满足甘薯秧蔓联合收获机的设计需求  相似文献   

16.
青稞作物机械收获存在清选损失率和含杂率高等问题。为提高青稞作物机械收获的清选质量,测试分析了青稞作物脱粒物料各组分的相关物性和悬浮特性。采用气吹式农业物料悬浮速度测量装置,测得青稞作物脱粒物料中籽粒、麦芒和颖壳、断穗、短茎秆及碎叶的悬浮速度分别为7.07~12.51、1.29~4.08、2.23~6.32、1.82~8.16和1.18~3.65 m/s。采用风筛式清选试验装置,以离心风机风速和风向、振动筛振动频率和振幅为试验因素进行单因素和正交试验,以籽粒清洁率和清选损失率为试验指标,运用极差分析法得出试验因素最佳组合为风机风速8.5 m/s、风向35°、振动筛振幅30 mm和频率190 r/min,其试验结果为清洁率97.32%、损失率3.73%。该试验可为青稞联合收割机清选装置结构参数和工作参数设计提供参考。   相似文献   

17.
针对现有油菜薹收获机械匮乏,人工采摘效率低、成本高等问题,结合油菜薹生物学特性与农艺要求,研制了一种自走式油菜薹收获机,可实现自走、自动升降、茎叶统收,一次性完成油菜薹切割、输送与收集等工序。基于动力学与运动学分析了油菜薹收获切割、输送及收集过程,得出了影响收获效率的主要因素,开展了切割装置、拨禾装置、输送装置、割台双升降系统的设计与参数分析。以前进速度、切割线速度、输送带线速度及拨禾轮转速为因素,油菜薹收获漏割率、输送失败率及茎叶破损率为评价指标,开展了二次回归正交旋转台架试验,应用综合评分法确定了最优作业参数组合为:前进速度0.56 m/s、切割线速度0.50 m/s、输送带线速度0.79 m/s、拨禾轮转速49.70 r/min,在最优参数组合下,油菜薹收获效果较优。田间试验结果表明收获机作业后割茬整齐,在最佳参数组合下,漏割率为4.28%,输送失败率为3.42%,茎叶破损率为6.39%,可满足油菜薹实际生产需求。  相似文献   

18.
油葵联合收获机清选装置结构优化与试验   总被引:2,自引:0,他引:2  
针对油葵联合收获作业过程中存在籽粒含杂率及损失率偏高的问题,测定油葵脱粒后脱出物的尺寸特征和悬浮特性,通过机构的运动学分析与物料的受力分析,确定了油葵联合收获机清选装置主要结构参数与工作参数。以风机转速、振动频率和分风板倾角为影响因素,油葵籽粒含杂率和籽粒损失率为评价指标,开展工作参数优化试验,单因素试验结果表明,清选装置较优工作区间为:风机转速1100~1300r/min、振动频率3~5Hz、分风板倾角20°~40°;设计Box-Behnken试验,建立了响应面回归模型,并进行参数优化,结果表明:各试验因素对含杂率和损失率影响显著性大小顺序均为风机转速、振动频率、分风板倾角;当风机转速1200r/min、振动频率4Hz、分风板倾角27°时,试验结果表明平均油葵籽粒含杂率为4.25%,平均籽粒损失率为1.82%,满足油葵联合收获机清选的国家标准要求。  相似文献   

19.
韩豹  吴文福  黄新国 《农业工程》2010,(12):125-130
为进一步改善寒地超级稻霜前收获摘脱台的性能,降低梳脱损失,通过对影响摘脱台工作性能的主要参数和结构特点的分析,在4ZTL-1800型气吸式割前摘脱稻麦联合收割机研究基础上,设计了一种具有可更换3种滚筒的摘脱台。以摘脱台的总损失为评价指标,对摘脱滚筒线速度、喂入速度、喂入口开度与喂入口风速进行了单因素和多因素正交试验。单因素试验表明:摘脱滚筒线速度、喂入速度和喂入口风速三因素对摘脱损失有显著影响。正交试验表明:最佳组合为滚筒线速度23 m/s,喂入速度1.1 m/s,喂入口开度120 mm,喂入口气流速度14 m/s,此技术条件下摘脱损失不大于1%。所设计的摘脱台满足超级稻收获要求,并为超级稻割前摘脱联合收割机摘脱台的设计提供依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号