首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lipid separation from cheddar cheese whey allows a better valorization of protein fractions. In this study, bipolar membrane electroacidification (BMEA) was used to obtain precipitates with a high level of lipids. Whey samples with normal and low (by way of electrodialysis) mineral salt levels have been treated by a BMEA process and centrifuged. The composition of flocs and precipitation yields were determined. The BMEA process increased lipid precipitation rates by almost 50% in comparison with a centrifugation step only whereas a demineralization step prior to electroacidification had a limited effect on the precipitation level. Precipitates obtained were mainly composed of lipids (probably phospholipids) but also contained proteins. BMEA of cheddar cheese whey would allow the production of a lipid-enriched fraction and of a protein-enriched whey.  相似文献   

2.
Bipolar membrane electroacidification of demineralized skim milk.   总被引:1,自引:0,他引:1  
The aim of this study was to evaluate the effect of decreasing the mineral content of skim milk by electrodialysis (ED) prior to electroacidification with bipolar membrane (BMEA) on the performance of the process, the chemical composition, and the physicochemical and functional properties of the isolates produced. ED used to demineralize the skim milk solution was very efficient. However, the electroacidification parameters were influenced by the demineralization level of the skim milk solution: the energy efficiency was decreased with an increase in demineralization, but it was still possible to perform BMEA at a very low conductivity level. Moreover, the isolates produced by BMEA after electrodialysis demineralization at different rates showed similar chemical composition, except on potassium and lactose contents for 75% demineralized isolate. These isolates, except on protein load for 75% demineralization rate, showed similar physicochemical and functional properties, whatever the demineralization rate.  相似文献   

3.
Bipolar membrane electroacidification (BMEA) uses the property of bipolar membranes to split water and the demineralization action of cation-exchange membranes (CEM). As milk mineral salt content is very sensitive to ionic strength and pH changes, the aim of this study was to better understand the effect of changes in mineral content during pH decrease and demineralization of skim milk. The objectives were to investigate the effect of different cationic permselective membranes (CSV and CMX membranes) on skim milk cation migration and protein precipitation during BMEA. The permselectivity of both membranes tested does not influence the final efficiency of BMEA. The purity of the bovine milk casein isolates produced was similar to or higher (97-98% versus 93.4-96.7) than those of commercial isolates, due to a reduced ash content (1.2 versus 2.0-3. 8%) resulting from the CEM demineralizing phenomenon. For both membranes, the main ionic species to migrate was the potassium ions.  相似文献   

4.
Bipolar membrane electroacidification to produce bovine milk casein isolate   总被引:4,自引:0,他引:4  
Bipolar membrane electroacidification (BMEA) has been developed previously (Bazinet et al., Report for the Canadian Electricity Association 9326 U 987, 1996; Bazinet et al., J. Agric. Food Chem. 1997, 45, 2419-2425, 3788-3794) and has been used for isoelectric precipitation of soybean proteins. The purpose of this study was to validate the feasibility of BMEA for the precipitation of milk casein and to investigate the effect of flow rate. High-purity isolates containing 1.23 and 2.00% ash and 85.4 and 91.6% total protein were obtained with flow rates of 0.2 and 1.2 gal/min. The molecular composition profiles of the isolates obtained by HPLC showed that only caseins were precipitated. However, except for protein precipitation curves, the flow rate did not influence the final composition and purity of the isolates. These results showed that BMEA is a new alternative process for the production of high-purity bovine milk casein isolate.  相似文献   

5.
Since the limiting factor of the bipolar membrane electroacidification (BMEA) process at 20% WPI (whey protein isolate) was hypothesized to be the lack of mobile ion inherent to the protein solution at pH 5.0, the aim of the present work is to study the effect of the conductivity control on the precipitation behavior of whey protein. BMEA performances were evaluated by measuring electrodialytic parameters, protein kinetic precipitation, molecular profiles, and isolate chemical composition and purity. The highest protein precipitation with 10% WPI solution was obtained at pH 4.6 and at a conductivity level of 200 microS/cm maintained with many 0.4-mL additions of 1.0 M KCl (200 microS[+]), with a 46% precipitation of the total protein, beta-lg composing the main part of the precipitated protein. With a 20% WPI solution, it was possible to reach pH 4.65 with conductivity control at 350 microS/cm. However, the 27% protein precipitation was still low. The changes in viscosity as pH decreases observed at 20% WPI would decreased the final precipitation rate of beta-lg, since the viscosity of the 20% WPI dispersion was very different.  相似文献   

6.
Chitosan, a partially deacetylated derivative of chitin, was solubilized by bipolar membrane electroacidification (BMEA). Bipolar/monopolar (anionic or cationic) configuration and chitosan addition mode (single step or stepwise) were examined. Chitosan solubility and electroacidification parameters were monitored during the process to determine the optimal conditions. Bipolar/anionic configuration and stepwise feeding mode led to chitosan solubilization yield of 91% in 60 min at 20 mA/cm(2). In this configuration, chitosan solution had a pH of 2.5, a conductivity of 8.5 mS/cm, and an ash content of 0.2%. Relative energy consumption was 0.05 kWh/L of 1% chitosan solution prepared. Although some chitosan particles were aggregated in the electrodialysis stack, limiting chitosan solubilization, BMEA allowed complete solubilization of chitosan circulating in the system.  相似文献   

7.
A procedure developed for soybean protein precipitation which was based on electrodialysis was tested for the production of acid casein from reconstituted skim milk. In a previous paper, the performance of bipolar membrane electroacidification (BMEA) was evaluated under different conditions of ionic strength (micro(added) = 0, 0.25, 0.5, or 1.0 M) and added salt (CaCl(2), NaCl, or KCl) (1). The aim of this study, which is the complement of the work on evaluation of BMEA performance, was to evaluate the functionality of the protein isolates produced by BMEA and to compare the BMEA isolates to commercial isolates and an isolate produced by chemical acidification. It was not possible to show differences between the functional properties of isolates produced by BMEA, except at 1 M CaCl(2) micro(added), due to the variability of the isolates. However, the results showed that it is possible to obtain isolates similar to commercial isolates and that the addition of salt during the process does not induce variations in functional properties. From results on mineral concentrations, it appeared that the addition of monovalent cations did not influence the retention of monovalent or divalent cations in the BMEA isolates, while addition of divalent cations (CaCl(2)) influenced the retention of magnesium. According to previous results on evaluation of BMEA performances under different conditions of ionic strength and added salt, the difference observed for the BMEA isolate produced at 1.0 M CaCl(2) was confirmed.  相似文献   

8.
Soy protein concentrates produced by combining electroacidification and dead-end ultrafiltration with a membrane of 100 kDa (pH 7 and 6) were compared with concentrates produced by ultrafiltration (pH 9) and a traditional acid precipitation procedure at pH 4.5. Mineral removal during ultrafiltration (mainly potassium, phosphorus, and calcium) was enhanced for the pH 6 electroacidified extract, compared to the extract at pH 9. This yielded a concentrate with improved solubility characteristics. The solubility for the concentrate prepared at pH 6 was enhanced by as high as 45% when compared to the concentrate at pH 9. The concentrate produced according to the traditional acid precipitation process showed mineral contents and solubility profile similar to those of the pH 6 concentrate, but required twice as much water during the process. The effect of electroacidification treatments on ultrafiltration permeate flux was quantified through the measurement of the different hydraulic resistances. Cake resistance was the main resistance to the permeate flux, and it was minimum at pH 9, maximum at pH 7, and intermediate at pH 6.  相似文献   

9.
In this work, soy protein isolates were produced by a combination of electroacidification and high shear tangential flow hollow fiber ultrafiltration with a 100 kDa membrane under constant pressure. The filtration performance was evaluated by comparing the filtration time and the final product composition for an electroacidified (pH 6) and a non-electroacidified (pH 9) soy protein extract. The removal of carbohydrates during the filtration was always consistent with the theoretical predictions (based on free permeability assumption) for both the electroacidified and the non-electroacidified feeds. A higher removal of calcium, magnesium, and phytic acid was achieved during the filtration of the electroacidified feed compared to the non-electroacidified feed. However, the electroacidification pretreatment had a negative impact on the permeate flux and resulted in more significant membrane fouling with correspondingly longer filtration times. A discontinuous diafiltration enhanced the removal of carbohydrates and minerals, thus yielding a product with higher protein content but was unable to improve the permeate flux for the electroacidified feed.  相似文献   

10.
A straightforward method for the separation of milk fat globule membrane (MFGM) and production of fat-free whey protein concentrate/isolate from cheese whey has been developed. Lowering of the conductivity of the whey from its initial value of about 5600 μS cm(-1) to about 2000-500 μS cm(-1) via diafiltration with water caused selective precipitation of MFGM when incubated for 30 min at pH 4.2 and 35 °C. The whey proteins remained soluble in the supernatant under these conditions. Experimental evidence suggested that precipitation of MFGM at pH 4.2 was not due to a nonspecific effect of lowering of the conductivity of the whey but due to the specific effect of removal of Ca2+ from the whey. The lipid content of whey protein isolate obtained by this process was <0.2%, and the protein loss was <14%. The method provides an industrially feasible process for the production of fat-free whey protein concentrate/isolate. The MFGM, which is reported to contain bioactive/nutraceutical lipids and proteins, is a valuable byproduct of the process.  相似文献   

11.
The aim of this work was to study the effects of extrusion barrel temperature (70–180°C), feed moisture (18–30%), pH (3–8), different proportions of corn starch (75–95%), and whey protein concentrate (WPC, 80% protein concentration) (25–5%) on the preparation of functional blends. Expansion index (EI), bulk density (BD), compression force (CF), color, water absorption index (WAI), water solubility index (WSI), gel strength (GS), syneresis of the gel, and in vitro digestibility were evaluated. Barrel temperature and the proportion of WPC had significant effects on BD; at higher temperatures, BD was lower. Feed moisture and pH had significant effects on EI; with lower moisture and higher pH, the EI increased. An interaction of barrel temperature and feed moisture had an effect on WAI; at lower moisture content, the temperature effect was nonexistent, whereas at higher temperatures and feed moisture content, the WAI increased. The pH level had a significant effect on WSI, showing high WSI when lower pH levels were used. Color analysis showed that higher protein content and pH generated higher δE values; low feed moisture and low pH resulted in gel syneresis. Higher in vitro digestibility was obtained when a higher WPC proportion and pH were used. Extruded WPC-CS blends under alkaline and acidic conditions were affected by the preparation of diverse formulations that potentially can be used in foods to improve some functional and protein content.  相似文献   

12.
Heat-induced aggregation of whey proteins in solutions made from two commercial whey protein concentrates (WPCs), one derived from mineral acid whey (acid WPC) and the other from cheese whey (cheese WPC), was studied using polyacrylamide gel electrophoresis (PAGE), size exclusion chromatography (SEC), and transmission electron microscopy (TEM). Heat treatment (75 degrees C) of acid WPC solutions (12.0%, w/w, pH 6.9) resulted in formation of relatively small "soluble" aggregates that were predominantly disulfide-linked. By contrast, heat treatment of the cheese WPC solutions (under the same conditions) caused formation of relatively large aggregates, containing high proportions of aggregates linked by noncovalent associations. The rate of aggregation of both beta-lactoglobulin and alpha-lactalbumin at 75 degrees C, measured as the loss of native proteins by PAGE, was higher in the cheese WPC solution than in the acid WPC solution. Cross dialysis of the two WPC solutions resulted in alteration of the mineral composition of each WPC solution and reversing their heat-induced aggregation behavior. The results demonstrated that the mineral composition is very important in controlling the aggregation behavior of WPC products.  相似文献   

13.
Excessive alcohol consumption can induce apoptosis in a variety of tissues and influence the antioxidant status in peripheral blood mononuclear cells (PBMC). This paper investigates the effects of whey protein concentrate (WPC) pretreated in PBMC on the apoptosis and antioxidant status after the treatment of alcohol. The results show that the percentages of apoptotic cells in the alcohol-treated group were higher than those in the group without alcohol treatment. Additionally, there was higher glutathione (GSH) peroxidase (GPx) activity when the PBMC were treated with 300 mg/dL of alcohol. With regard to the activity of GSH reductase (GRx), there was higher activity in the group pretreated with WPC than in the group with the treatment of alcohol only. On the contrary, the levels of GSH were reduced after the treatment of alcohol, but there was a higher level of GSH in the group pretreated with WPC. In this study, it was found that the increased level of GSH in PBMC might not be attributed to the effect of GRx because there was still a higher level of GSH in the group with the treatment of WPC and BCNU (a GRx inhibitor) in this study. The results indicated that PBMC pretreated with WPC might ameliorate alcohol-induced effects such as imbalance of the antioxidant status.  相似文献   

14.
为探讨麦秸秆不同处理方法对其制备的聚丙烯(polypropylene,PP)复合材料耐霉菌腐蚀性能影响,采用NaOH、HAc、水热、微波4种方法对麦秸秆纤维进行表面预处理,并对未处理和4种处理麦秸秆制备的复合材料进行霉菌加速腐蚀试验,测试了5种复合材料腐蚀前后的力学性能、颜色变化和吸水性,用傅立叶红外光谱分析其官能团的变化,观察并分析复合材料表面霉菌生长情况及表面微观结构。结果表明:霉菌能腐蚀麦秸秆纤维中的纤维素、半纤维素和木质素,使复合材料表面产生裂纹和孔洞,预处理可改善麦秸秆纤维和PP基体间的界面结合,有效地阻止霉菌腐蚀复合材料中麦秸秆的纤维素、半纤维素和木质素,其中5%NaOH预处理效果最佳,其弯曲强度、拉伸和冲击强度分别比未处理的提高了1.68%、3.67%和75.28%,吸水率和色差值降低12.99%和55.25%,经预处理麦秸秆制备复合材料腐蚀后表面裂纹和较大孔洞减少。该研究结果可为提高木塑复合材料防霉效力提供试验数据和理论参考,有利于延长木塑复合材料使用寿命。  相似文献   

15.
Dairy ingredients are added to bakery products to increase nutritional and functional properties. Sodium caseinate (SC) and whey protein concentrate (WPC) were incorporated into frozen dough. WPC was subjected to heat treatment (WPCHT) to eliminate undesirable weakening of the gluten network. 2% SC or 4% SC decreased proof time, increased loaf volume, and improved texture. Effects of adding 4% SC on baking quality were similar to adding ascorbic acid (AA) and diacetyl tartaric acid esters of monoglycerides (DATEM). WPC increased proof time, decreased volume, and negatively affected texture. Heat treatment of WPC improved baking performance. Bread with WPCHT had volume similar to that of the control without dairy ingredients. Adding 4% SC decreased resistance to extension (R5cm measured with the extensigraph), while adding 4% WPC increased extensibility. Dynamic oscillation testing determined the effects of the ingredients on fundamental rheological properties. WPC decreased storage modulus (G′) and loss modulus (G″), while heat treatment of WPC increased G′ and G″. Confocal laser scanning microscopy (CLSM) showed that milk proteins affect frozen dough ultrastructure. Frozen doughs with SC had an enhanced gluten network compared with the control, while untreated WPC appeared to interfere with the gluten network.  相似文献   

16.
Protein changes in relation to solubility, Maillard reaction (MR), and protein cross-linking in whole milk powder (WMP), skim milk powder (SMP), and whey protein concentrate (WPC) stored at different relative humidities (RHs) were investigated by chemical and electrophoretic methods. WMP and SMP reached minimum solubility rapidly, while WPC showed no change in solubility. The loss of solubility corresponded with development of high-molecular-weight protein complexes observed by two-dimensional electrophoresis. The maximal MR rate occurred at 66% RH for WMP and SMP (high lactose/protein ratios) and 84% RH for WPC (low lactose/protein ratios) based on the furosine and hydroxymethylfurfural contents. However, browning was greatest at 84% RH in all powders. The minimum solubility corresponded with the casein and fat contents. The retention of solubility and minimal protein cross-linking of WPC compared to casein-containing powders suggest that the casein content and cross-linking strongly influence the decrease in the solubility of milk powder.  相似文献   

17.
Hydrolysis of whey protein concentrate (WPC) with Alcalase 2.4 L, a Bacillus licheniformis proteinase preparation, induces gelation. The aggregation behavior of WPC hydrolysates generated with Alcalase and Prolyve 1000, a Bacillus licheniformis proteinase that did not induce gelation, were studied by turbidity and particle size analysis. With the use of synthetic peptide substrates, it was shown that Alcalase contains a glutamyl endopeptidase (GE) activity not present in Prolyve. Comparison of the aggregation behavior of WPC hydrolysates generated with Alcalase, Prolyve, and combinations of Prolyve with a GE activity isolated from Alcalase showed that GE was responsible for the observed enzyme-induced peptide aggregation in Alcalase hydrolysates. Hydrolysates generated with Prolyve, having a degree of hydrolysis (DH) of 11.8% and 10.4% of peptide material greater than 10 kDa, could be induced to aggregate by the addition of GE. These results emphasize the contribution of enzyme specificity to the physicochemical and functional characteristics of proteinase hydrolysates of WPC.  相似文献   

18.
Salt solubility of pH-shift isolated herring ( Clupea harengus ) muscle proteins was studied in relation to pH exposure and microstructure using transmission electron microscopy (TEM). Using protein solubilization at pH 11.2 with subsequent precipitation at pH 5.5, salt solubility of the proteins decreased from 78 to 17%. By precipitating the alkali-solubilized proteins at the pH of native herring muscle, 6.5, salt solubility only decreased to 59%, proving that pH values between 6.5 and 5.5 affected protein salt solubility more than the pH cycle 6.5 → 11.2 → 6.5. Precipitation at pH 5.5 resulted in hydrogen bonds, hydrophobic interactions, and S-S bridges, whereas precipitation at pH 6.5 resulted only in the formation of hydrophobic interactions. The alkaline pH-shift isolation process severely rearranged the protein microstructure, with precipitation at pH 6.5 forming a finer, more homogeneous network than precipitation at pH 5.5. The former protein isolate also contained less lipid oxidation products and formed more deformable gels, without affecting protein yield.  相似文献   

19.
Surface tension, foamability, and foam stability kinetics have been measured for the pure proteins bovine serum albumin (BSA) and beta-lactoglobulin, before and after aqueous solutions of the proteins had been subjected to different drying conditions, and also for whey protein concentrate (WPC). Pure proteins were air-dried, at 78 or 88 degrees C, in the presence and absence of sucrose or trehalose, at a mass ratio of 5:1 sugar/protein. WPC was spray-dried in the presence of various sugars: trehalose, sucrose, lactose, and lactitol. Spray-drying WPC without sugars resulted in a dramatic decrease in the foam stability, whereas drying in the presence of sugars gave better retention of the original foaming properties. Trehalose in particular resulted in almost complete retention of the foam stability observed for the nondried WPC. Pure beta-lactoglobulin showed similar behavior, but trehalose did not seem to afford the same protection to BSA.  相似文献   

20.
This work demonstrated the preparation of protein-stabilized beta-carotene nanodispersions using the solvent displacement technique. The emulsifying performance of sodium caseinate (SC), whey protein concentrate (WPC), whey protein isolate (WPI), and a whey protein hydrolysate (WPH, 18% degree of hydrolysis) was compared in terms of particle size and zeta-potential of the nanodispersions. SC-stabilized nanodispersions exhibited a bimodal particle size distribution: large particles (stabilized by casein micelles) with a mean particle size of 171 nm and small particles (stabilized by casein submicelles) of 13 nm. This was confirmed with transmission electron microscopy analysis. Most of the beta-carotene precipitated (87.6%) was stabilized in the small particles. On the other hand, the nanodispersions stabilized by the whey proteins were polydispersed with larger mean particle sizes. The mean particle size of WPC and WPI was 1730 and 201 nm, respectively. The SC-stabilized nanodispersion was expected to be more stable as indicated by its higher absolute zeta-potential value (-31 mV) compared to that of WPC (-15 mV) and WPI (-16 mV). Partially hydrolyzed whey protein possessed improved emulsifying properties as shown by WPH-stabilized samples. It was interesting to note that increasing the SC concentration from 0.05 to 0.5 wt % increased the particle size of beta-carotene stabilized by casein micelles, while the reverse was true for those stabilized by SC submicelles. Microfluidization at 100 MPa of SC solution dissociated the casein micelles, resulting in a decrease in mean particle size of the casein micelle-stabilized particles when the SC solution was used to prepare nanodispersions. The results from this work showed that protein-stabilized beta-carotene nanodispersions could be prepared using the solvent displacement technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号