首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
基于探地雷达的典型喀斯特坡地土层厚度估测   总被引:1,自引:0,他引:1  
土层厚度是坡地水文过程的一个重要控制因素。使用瑞典MALA公司生产的Pro Ex系统探地雷达,分别采用100和500 MHZ频率的天线对土层厚度进行探测,然后通过开挖探槽实测土层厚度,同时调查了影响探地雷达结果的因素——土石交界面处的基岩风化度,并建立了不同自变量下的线性回归模型和GEP模型,对探地雷达在喀斯特坡地土层厚度估测中的适用性进行了探讨。结果表明,喀斯特坡面土层浅薄且含有较多碎石,使用频率较高的天线可以提高探测精度;以100、500 MHZ频率天线的探测结果和基岩风化度这3个自变量的组合作为输入变量,较仅使用一种频率天线的探测结果为输入变量的模拟精度高;相同输入变量条件下,受限于实际探测情况,基于GEP算法建立的土层厚度模型较经典统计的线性回归模型预测精度的提升空间有限,因此采用线性回归模型即可,以100、500 MHZ频率天线的探测值和基岩风化度为自变量的线性模型的决定系数和均方根差分别能达到0.660和15.0 cm。  相似文献   

2.
网纹红土层的识别对于土壤学和第四纪环境等研究均具有重要意义。以位于南方红壤区的江西省鹰潭市孙家流域为例,通过多频率探地雷达图像解译、钻井探测和土壤含水量分析等方法相结合,研究使用不同天线频率雷达对网纹红土层的识别效果及最佳的雷达探测方法。结果表明:共中心点法(CMP)能够准确地计算出电磁波在不同土地利用类型、不同深度的传播速度,电磁波在网纹红土层的传播速度在0.052 m·ns~(-1)~0.065 m·ns~(-1)之间,平均速度为0.058 m·ns~(-1);剖面深度上的含水量变化特征与土壤层次的分布具有协同性,网纹红土层内土壤含水量逐渐递增,至网纹红土层下界面出现最大值,风化层以下土壤含水量随着深度的增加不断减小;应用60 MHz和120 MHz天线的雷达均可识别网纹红土层的上、下界面,深度拟合结果的R~2分别为0.93和0.86;相比较于60 MHz单天线探测网纹红土层厚度的结果,采用组合天线的方法,即200 MHz和60 MHz天线分别获得网纹红土层上、下界面的深度,能够提高探测准确度,试验平均相对误差由16.2%缩小至6.8%;探地雷达技术不仅可以提高野外调查效率,还有利于推进土壤三维制图的发展。  相似文献   

3.
土壤盐渍化问题严重制约着农业经济发展,快速准确地掌握农田土壤的盐渍化信息是盐渍化防治的前提。为准确快速地了解滴灌棉田土壤盐分含量情况,该研究采用探地雷达(Ground Penetrating Radar,GPR)多频天线(250 MHz和1 000 MHz)对典型滴灌棉田土壤进行探测,通过GPR振幅包络平均值法(Average Envelope Amplitude,AEA)获取土壤视在介电常数,以Dobson盐渍土介电模型(Dobson dielectric model of saline soil,Dobson)为理论工具,估算滴灌棉田土壤的盐分含量。同时,将视在介电常数、土壤容重、含水率和土壤黏粒含量5个参数设置为模型输入变量,采用多元线性回归方法(Multiple Linear Regression,MLR),建立膜下滴灌棉田土壤盐分反演模型,并使用BP神经网络(Back Propagation neural network,BP)进行模拟预测。最终,以实测盐分为基准,评价MLR模型、BP模型和Dobson模型反演盐分含量的效果。结果表明:1)探地雷达250 MHz和1 000 MHz频率天线AEA法探测的有效深度均为0~30 cm。2)1 000MHz频率天线AEA法获取的介电常数与实测含水量有较好的多项式关系,且实测含水量和反演含水量拟合效果和精度较好,决定系数R~2为0.96,均方根误差RMSE为1.61%,平均误差率MER为7.25%。3)3种盐分反演模型中,Dobson盐渍土介电模型反演精度明显高于其他2种方法,R~2达到0.91,RMSE为0.313 g/kg。因此,利用GPR多频天线AEA法估算滴灌棉田土壤盐分含量是可行且可靠的。该法为反演土壤盐分含量提供新途径,丰富了盐分含量探测的方法及手段。  相似文献   

4.
探地雷达地波法测定红壤区土壤水分的参数律定研究   总被引:1,自引:1,他引:0  
《土壤通报》2020,(2):332-342
探地雷达地波法是一种农田尺度快速测量土壤体积含水量的有效技术,能够弥补传统方法和卫星遥感方法在含水量监测上的不足。但地波法在红壤地区进行含水量反演的最佳参数仍未确定,相关研究鲜有报道。本研究以位于南方红壤区江西省鹰潭市孙家流域为例,采用地波法对区域土壤体积含水量进行了探测:先使用共中心点法确定所用雷达的系统延时、有效反演深度,并利用Topp、Roth、Ferre和朱安宁四种常用的经验模型由介电常数ε反演土壤含水量;然后通过固定间距法进行区域性的土壤体积含水量测量,确定雷达测量时的最佳天线间距。这一系列过程中,土壤含水量实测值是用烘干法校正的管式时域反射仪(time domain reflectometry,TDR)测定的土壤体积含水量。研究的目的是为了律定地波法在红壤区测定土壤含水量的有效反演深度、最优模型和最佳天线间距等参数。结果表明:60 MHz探地雷达地波法反演0~40 cm土层的土壤体积含水量时精度最高,误差最小;Roth经验模型更适合于红壤地区0~40 cm土层土壤含水量的反演,均方根误差(root mean square error,RMSE)为0.022 m3m-3;地波法的最佳天线间距为1.0 m,能够准确地反演土壤体积含水量;土地利用类型对雷达的探测精度具有一定影响,在1.0 m天线间距下,旱地上的反演精度优于果园,旱地和果园的RMSE分别为0.004和0.020 m3m-3。  相似文献   

5.
基于探地雷达的喀斯特峰丛洼地土壤深度和分布探测   总被引:3,自引:0,他引:3  
[目的]研究喀斯特土壤的深度和分布,为利用探地雷达(GPR)技术开展喀斯特地区峰丛洼地土壤分布的研究提供理论依据。[方法]通过室内模拟试验,建立喀斯特地区3种典型质地土壤(砂质黏壤土、黏壤土、粉(砂)质黏土)中探地雷达电磁波波速和土壤含水量的关系式。通过实地测定土壤质地和含水量,选择合适的关系式,对探地雷达图像进行校准、解译,获得土壤深度,并采用开挖法进行验证。[结果]得到了3种质地土壤中电磁波波速(ν)与含水量(θ)关系的三次多项式。利用该关系式探测的喀斯特土壤理论深度与实地开挖的结果相符,误差为0—10cm。利用探地雷达软件生成了反映测线下不同位置土壤深度的二维图像和样方内土壤深度分布的三维图像,表明土壤主要分布在0—50cm。[结论]利用探地雷达技术探测喀斯特地区土壤深度和分布是切实可行的。  相似文献   

6.
探地雷达功率谱模型在砂壤含水率和紧实度探测中的应用   总被引:4,自引:3,他引:1  
为了快速、高效地探测中国西部地区土地整治后砂壤的物理特性,该研究使用探地雷达对砂壤进行探测,利用自回归移动平均(auto regressive and moving average,ARMA)功率谱估计方法处理数据,建立砂壤物理模型,分析对比不同含水率和紧实度砂壤的功率谱分布特征,分别建立与含水率和紧实度具有最优拟合度的关系模型。结果表明:在频率670 MHz时,低频功率谱能量占全部功率谱能量比值(L/(H+L))与砂壤含水率相关性最强,相关系数达0.952;频率为1 000 MHz时,高频功率谱能量占全部功率谱能量比值(H/(H+L))与紧实度倒数的相关性最强,相关系数达到0.947。通过实际探测验证,该模型可以获得连续、准确、高效的砂壤含水率和紧实度数据,为土地整治工程的质量检测提供技术支持。  相似文献   

7.
准确掌握黑土层厚度分布信息对于黑土资源评价和保护具有重要意义。然而,传统土层厚度测定方法包括土壤剖面法、插钎法和钻孔法等对于大范围的土壤厚度测定效率较低且连续性较差。本研究利用探地雷达探测了东北黑土区直型、凸型和凹型3种坡型坡面的黑土层厚度。室内模拟试验对黑土及黄土母质土壤分别设置不同的容重和含水量,探究土壤含水量和容重对土壤介电常数的影响以及探地雷达测定黑土厚度的可行性。野外试验通过开挖剖面和预埋标识物,验证了探地雷达测量黑土厚度的准确性。结果表明:土壤介电常数随容重的增大而增大,随土壤含水量的增加而减小;黑土和黄土母质层土壤含水量、容重和介电常数之间的关系可以用两个对数方程来描述,其精确度为95.26%~99.66%。探地雷达测量黑土厚度与剖面实测厚度相比,精确度为87.05%~95.58%。3个坡面的黑土厚度空间分布不同,且坡脚发生沉积处的黑土厚度较大,坡肩和坡背土壤侵蚀较严重处的黑土厚度较薄。本研究可为进一步探明和保护黑土资源提供一种高效、准确的土壤厚度调查方法。  相似文献   

8.
针对目前土地复垦工程质量验收与评定工作中的不足,利用 GR-Ⅲ高频探地雷达系统,对重庆市赶水镇部分已完成的土地复垦工程中的覆土工程厚度、农渠衬砌厚度以及生产路路面厚度等进行了无损探测,揭示了它们在雷达信号方面的响应特征;并设计了雷达剖面层位识别算法,实现分层界面特征点的重采样,利用不同的电磁波估算方法,实现了覆土、沟渠衬砌以及生产道路水泥路面等厚度信息的获取;并基于此,构建了复垦工程质量评价模型,对已探测的3个单项工程进行了科学整体的评价.探测结果表明,对于土地复垦工程,探地雷达可以实现工程质量的无损检测,获取更加全面的数据,且750 MHz特高频天线系统探测效果更佳.评价结果表明,覆土工程、生产道路工程质量评价等级分别为Ⅱ、Ⅰ,而农渠防渗工程的质量评价等级为Ⅲ,后期需要加厚处理.该研究可为土地复垦工程质量的验收提供一个新的途径和科学依据.  相似文献   

9.
基于低频GPR的土壤累积入渗量的探测方法研究   总被引:1,自引:0,他引:1  
农田尺度上土壤累积入渗量的准确获取是目前土壤入渗研究中的难题.通过土工模拟和灌水实验,探讨利用低频探地雷达(GPR)技术探测土壤累积入渗量的方法.在分析灌水前后GPR剖面特征的基础上,分别构建和对比了基于波速法和振幅法的土壤累积入渗量计算模型.结果表明,基于振幅的探测模型在精度和稳定性方面均优于波速法,反射波振幅模型精度高于地面波模型,利用反射波波谷1构建的累积入渗量的GPR探测模型的决定系数达到0.96.因此,使用低频探地雷达可以实现对土壤累积入渗量的准确探测.研究结果为农田尺度上土壤累积入渗量的探测方法提供了一种新思路,同时,也为GPR在土壤学领域中的进一步应用提供了科学依据.  相似文献   

10.
基于低频探地雷达的土壤累积入渗量的探测方法研究   总被引:1,自引:0,他引:1  
农田尺度上土壤累积入渗量的准确获取是目前土壤入渗研究中的难题。通过土工模拟和灌水实验,探讨利用低频探地雷达(GPR)技术探测土壤累积入渗量的方法。在分析灌水前后GPR剖面特征的基础上,分别构建和对比了基于波速法和振幅法的土壤累积入渗量计算模型。结果表明,基于振幅的探测模型在精度和稳定性方面均优于波速法,反射波振幅模型精度高于地面波模型,利用反射波波谷1构建的累积入渗量的GPR探测模型的决定系数达到0.96。因此,使用低频探地雷达可以实现对土壤累积入渗量的准确探测。研究结果为农田尺度上土壤累积入渗量的探测方法提供了一种新思路,同时,也为GPR在土壤学领域中的进一步应用提供了科学依据。  相似文献   

11.
复垦土壤盐分污染的微波频谱分析   总被引:4,自引:3,他引:4  
复垦工程完成后,复垦土壤的结构、层次等受到破坏,易发生盐碱化,微波的穿透性为土地质量的监测提供可能。该试验通过对复垦土壤在不同水分条件下,不同盐分污染程度的探地雷达探测,旨在揭示盐分污染下,微波信号的变化规律。结果表明:中心频率为400 MHz的天线在不同程度的盐分污染下,主频发生偏移,出现在250 MHz。随着盐分污染的加重,出现双峰现象,次主频出现在530 MHz,且随着盐分污染的加重次主频的相对振幅逐渐加强,不同的水分含量系列下,出现相同的现象。由于探地雷达可以快速、大面积的无损探测,因此,能够及时提供复垦土壤盐分变化的信息,可以对复垦土地的质量实时监测、及时治理。  相似文献   

12.
改善根系结构提高作物的抗逆特性是保障粮食安全的有效途径。但传统破坏性取样根系测量方法费时费力,且破坏了根系的原位状态。为满足栽培和育种对根系信息的需求,亟需发展原位无损的根系测量方法。因此,该研究综述了相关技术的研究现状,以目前能够在田间应用的作物根系原位无损测量技术-探地雷达和电容法为例,系统分析总结了两者技术原理、当前应用情况、存在的关键问题以及未来研究方向等,研究认为,提高探地雷达测量作物根系的精度和证实电容法测量根系的可行性是未来研究主要的着力点。  相似文献   

13.
Forest soil properties must be observed with the appropriate resolution by depth and landscape area to understand biogeomorphological controls on soil carbon (C). These observations, particularly in boreal forests, have been limited because of the poor resolution and unavailability of physical soil sampling results, especially for soil bulk density measurements. Ground penetrating radar (GPR) has been demonstrated to non-destructively and continuously estimate forest soil properties required in Cstock estimates, such as soil horizon thickness and soil bulk density, across small spatial scales and shallow depths. Yet, successful small-scale forest GPR approaches represent a potential opportunity to obtain soil property estimates at relevant resolution and depth across forest landscapes, enabling improvement to much needed soil mapping and stock estimates. This review discusses the existing soil property studies that utilize ground penetrating radar (GPR) and explores how the adaptation of GPR methodology can contribute to investigating soils in forest landscapes. We have identified common GPR surveying practices, data processing steps and interpretation methods employed in multiple studies. These approaches have proven effective in obtaining higher-resolution estimates of important soil properties, such as bulk density and horizon thickness, within small-scale forest plots. By applying relevant findings in this review to our own boreal forest investigation across an 80 m hillslope transect, we provide recommendations on how to tailor GPR methodology for landscape-scale estimates of soil horizon thickness and bulk density to examine forest soil property distribution. These findings should enable the future collection of soil datasets informing the distribution of soil C stocks and their relationship to landscape features, and thus their controls and responses to climate and environmental change.  相似文献   

14.
Soil depth plays a decisive role in determining soil properties in mountainous regions for ecological site assessment. To evaluate the use of ground‐penetrating radar (GPR) for fast and high‐resolution mapping within mountainous regions, we examined the possibilities and limitations of GPR to determine soil depth over bedrock and to delineate individual substrate layers formed during the Pleistocene in a periglacial environment (Pleistocene periglacial slope deposits, PPSD). Selected catenae in representative subregions of the study area (Dill catchment, SE Rhenish Massif, Germany) have been successfully mapped using GPR. A practicable method was developed using a 400 MHz antenna to reach a mean penetration depth of 1.5 m and to map different substrates and layers of PPSD based on calibrations of the GPR at soil pits along 12 catenae. Colluvium, the three types of PPSD layers, as well as the in situ bedrock could be distinguished in most sections of the GPR surveys. Characteristic GPR facies caused by intrinsic material properties of the different substrates, such as stone content and soil moisture content, could be distinguished in different geomorphologic and lithological settings. A layer‐based velocity distribution was determined for characteristic substrate layers at soil pits enabling us to considerably enhance the accuracy of soil‐depth prediction. Compared to traditionally surveyed soil profiles, our results demonstrate an accuracy of layer thickness surveying within a standard deviation of approx. 0.1 m. It is demonstrated that the combination of GPR with conventional soil‐pit mapping is an efficient and valid method to produce high‐resolution data of substrate distribution.  相似文献   

15.
Characterization of preferential flow at multiple spatial and temporal scales is fundamental to the understanding of complex subsurface heterogeneity and catchment hydrology. Evidence of subsurface preferential flow and the conditions under which it occurs were investigated in the Shale Hills catchment, a humid forested region in central Pennsylvania, USA. Seven monitoring sites, plus five replicates, were established along a concave hillslope, a convex hillslope and a valley floor to monitor in situ the hydrology in various soil horizons and their interfaces at half‐minute intervals. Using the indicator of a lower horizon that responded to a rainstorm earlier than an upper horizon within the same soil profile, we investigated the subsurface preferential flow processes and their dynamics in each of the five soil series mapped in the catchment. Threshold behaviour, hydrophobicity impact, influence of soil thickness and topography were observed in the spatial and temporal variation of the subsurface preferential flow, which was initiated more readily under the conditions of more intense rain, drier initial soil, shallower soil, and steeper slope. Whereas preferential flow seemed common in this catchment, its frequency during the 15 storm events from 23 September 2006 to 1 January 2007 ranged from 0 to 73.3% for the 68 soil horizons monitored at the 12 stations, with an overall average frequency of 7.5% (i.e. ~5 horizons per storm event). This preferential flow was more frequent during the drier period than that during the wetter one. Variation was observed within the same soil series, even for those profiles adjacent to one another. This was due to the differences in hillslope position, slope gradient and orientation, the underlying bedrock fracture and orientation, or some combinations. Whereas different soil series help differentiate the processes and dynamics involved in the subsurface preferential flow, a combined consideration of soil types and landscape features is important to ensure proper use of the soil data for hydrological applications.  相似文献   

16.
潮土区农田土体构型层次的探地雷达无损探测试验   总被引:2,自引:2,他引:0  
为探究探地雷达对自然土壤土体构型进行快速无损探测的可行性,该文首先利用基于时域有限差分法的Gpr Max2D软件模拟4种具有不同介电特性差异的土壤层次的土体模型,识别雷达电磁波在具有不同土壤介电特性差异的土壤层次中传播时反射波振幅和相位的客观变化规律;然后于2016年在位于黄淮海平原潮土区的河北省曲周县选择夹黏型和底漏型2种土壤层次较明显的农田土体构型进行GPR探测试验,并挖掘土壤剖面,通过雷达图像处理软件和MATLAB编程处理雷达图像并提取波形数据,根据模拟获取的规律进行土壤层次识别,对比探测层厚与实际剖面层厚。研究结果显示,雷达电磁波在不同介质分界面处发生反射,两侧介电特性差异越大,反射波振幅越大;上层介质介电常数小于下层会发生正反射,反之发生负反射;实测波形比模拟波形杂乱;通过电磁波振幅和相位变化识别层次界面清晰的夹黏型土体构型中较厚层次的厚度的相对误差(9%)要小于识别层次界面不清晰的底漏型土体构型各层厚度的相对误差(9%);可识别的层次界面反射系数均大于0.02,两侧土壤具有较大介电特性差异;通过客观判读依据可以判别农田潮土的层次结构,但层次界面的整齐清晰程度、界面两侧介电特性差异程度和相邻层次的厚度大小影响着探地雷达探测效果。该文可以为相关研究提供参考,为实现土体构型这一重要耕地质量指标的快速监测提供借鉴。  相似文献   

17.
Wide areas of the mountainous regions of Germany have rock covered by Pleistocene periglacial slope deposits (PPSD), formed by gelifluction during the cold periods of the ice ages in non‐glaciated areas. The PPSD provide the parent material for soil development, and their physical characteristics affect several stabile soil properties. Because the PPSD play a significant ecological role, we studied the spatial distribution and properties of the PPSD in order to assess the distribution of the stabile soil properties. The high stone content of the PPSD greatly hinders augering and digging. Hence, we tested the use of ground‐penetrating radar (GPR) as a potentially time‐saving, non‐destructive method to determine the thickness of the PPSD. In several study areas of the Rhenish Massif, GPR investigations of single soil profiles and soil transects along an exposed gas‐pipeline ditch were carried out. The GPR images were compared to the actual thickness of the layers of the PPSD exposed in the profiles and the ditch. In the GPR images usually at least one distinct boundary could be identified, which occurs at the transition between the loose material and the hard rock, mostly ranging between 50 and 150 cm depth. In some cases, in which stone content changed abruptly between different layers of the PPSD, also the boundaries between these layers could be identified in the GPR image. On the other hand, in areas where remnants of the Mesozoic‐Tertiary weathering mantle are preserved, the boundary between the saprolite and the overlying basal layer of the PPSD is ambiguous or not at all visible.  相似文献   

18.
Bedrock depth provides important information for many environmental and agricultural applications, such as shallow groundwater monitoring, the determination of soil water availability, and the estimation of crop production potential. Direct estimates of bedrock depth from destructive soil observations are discontinuous and too expensive to be used in large areas. Geophysical methods are often cited as possible alternatives. However, their ability to provide reliable estimations of bedrock depth is known to depend greatly on local site characteristics. Therefore, combining geophysical methods based on different physical parameters may help to provide better predictions. This study examines the ability of the Spectral Analysis of Surface Waves (SASW) method combined with the classical high resolution Electrical Resistivity Tomography (ERT) method to predict soil depths in a 500 m ranged Mediterranean hillslope (Southern France) with increasing soil depths along the slope. SASW was performed using the data measured in the field with classical seismic equipment (impulse source and geophones distributed along a line). In the same place, eight transects of ERT (Wenner–Schlumberger array, 1 m electrode spaced) were measured under wet and dry conditions. To calibrate the geophysical measurements, 81 boreholes (from two to 5 m deep) were interpreted to determine the bedrock depth, which was defined as the occurrence in the depth of heterogeneous marine Miocene loose sandstone with centimetric laminations. ERT and SASW were found to have highly variable performances for predicting separately the bedrock depth along the hillslope. SASW correctly predicted the bedrock depth in the lower part of the hillslope, whereas the data from ERT were disrupted by shallow permanent groundwater. Conversely, ERT correctly predicted bedrock depth within the upper part of the hillslope, whereas a high variability of SASW data near the topsoil caused difficulties for bedrock depth prediction. From these results, it was possible to define an estimator of bedrock depth according to the presence of shallow groundwater, which varies along the slope, such that more importance is given to ERT estimates in the upper part of the hillslope and more importance is given to SASW in the lower part. This study shows the usefulness of such a sensor combination to estimate soil properties when the uncertainties of making predictions vary according to the geophysical methods.  相似文献   

19.
基于探地雷达波振幅包络平均值确定土壤含水率   总被引:4,自引:3,他引:4  
为了评估探地雷达探测地表土壤含水率的准确性,该研究使用雷达波振幅包络平均值(average envelope amplitude,AEA)方法在室内对含水率为0.05、0.15及0.25 cm3/cm3的砂质土壤进行了探测,并与时域反射仪(time domain reflectometry,TDR)所得土壤含水率进行了对比。结果表明,在实验室内,在0.05、0.15及0.25 cm3/cm3的土壤含水率条件下,使用AEA方法探测所得土壤含水率均比TDR所得含水率大,均方根误差分别为0.026、0.015及0.01 cm3/cm3,这3个含水率条件下,AEA方法探测土壤水分的有效深度分别为0.9、0.6和0.3 m。利用AEA方法在野外进行地表含水率探测,并与TDR和钻孔取样探测的地表含水率进行对比。野外探测结果表明,AEA方法所得含水率与TDR探测所得含水率的均方根误差为0.020 cm3/cm3,与取样实测所得含水率的均方根误差为0.031 cm3/cm3,使用AEA方法能够得到与TDR及钻孔取样精度相近的土壤含水率分布图。研究表明利用探地雷达AEA方法在探测浅部地层土壤含水率是可行的。  相似文献   

20.
基于探地雷达早期信号振幅包络值的黏性土壤含水率探测   总被引:3,自引:3,他引:0  
为了验证探地雷达探测黏性土壤含水率的精确性,利用探地雷达早期信号振幅包络法平均值方法(average amplitude envelope, AEA)对降雨前后野外农田表层(0.3 m)土壤含水率进行探测,并利用TDR探测土壤含水率以作对比。研究结果显示,土壤水分含量与黏粒含量具有一定相关性。在大面积范围内(1 000 m长测线),TDR2次探测土壤平均含水率分别为14.16、16.91 cm~3/cm~3;AEA方法 2次探测土壤平均含水率分别为14.62、17.88 cm~3/cm~3,与TDR实测含水率差值分别为0.46、0.97 cm~3/cm~3,2种方法探测所得含水率具有极显著的相关性(P0.01),相关系数分别为0.825、0.814。小范围内(40 m×40 m)降雨前后TDR 2次探测黏性土壤含水率分别为14.11、16.77 cm~3/cm~3。AEA 2次探测土壤平均含水率分别为14.86 cm、17.46 cm~3/cm~3,比TDR实测含水率分别大0.74、0.69 cm~3/cm~3。AEA与TDR探测所得含水率相关系数分别为0.701、0.827(P0.01),研究结果表明利用探地雷达AEA方法能够获得与TDR实测精度相近的黏性土壤含水率。利用常规探地雷达共中心点法及共偏移距方法对研究区黏性土壤含水率探测结果显示,这2种方法均不能有效地探测黏性土壤含水率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号