首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
基于赤池信息量准则的冬小麦叶面积指数高光谱估测   总被引:5,自引:2,他引:3  
冬小麦叶面积指数(leaf area index,LAI)是描述冠层结构的重要参数之一,对评价其长势和预测产量具有重要意义。该文利用灰色关联分析(grey relational analysis,GRA)对植被指数进行排序,用偏最小二乘法(partial least squares regression,PLS)选择不同的植被指数个数作为自变量进行回归建模,通过赤池信息量准则(Akaike’s information criterion,AIC)选择AIC值最小的模型作为冬小麦LAI最优估算模型,即GRA、PLS和AIC 3种方法整合建立冬小麦LAI最优估算模型。使用2008-2009年在中国北京通州区和顺义区获取的整个生育期冬小麦LAI和配套的光谱数据进行建模,利用2009-2010相关数据进行验证。研究表明:采用GRA评价标准与冬小麦LAI关联度最大的植被指数是VOG1,关联度最小的植被指数是SR;通过AIC建立的以8个植被指数作为自变量的冬小麦LAI模型效果最优,建模集的决定系数R2和标准误SE分别为0.76和0.009,验证集的R2和相对均方根误差RRMSE分别为0.63和0.004,预测模型和验证模型均具有较高的精度和可靠性。结果表明采用GRA-PLS-AIC方法进行冬小麦LAI反演是可行的,为提高冬小麦LAI遥感预测精度提供了一种有效的方法。  相似文献   

2.
基于无人机数码影像的冬小麦氮含量反演   总被引:9,自引:7,他引:2  
准确、快速地获取关键生育期冬小麦氮素含量,对农业管理者进行田间氮素施肥有重要的决策作用。利用无人机(unmannedaerialvehicle,UAV)搭载数码相机,可以短时间内获取冬小麦长势信息,实现对冬小麦氮素含量动态监测。该研究利用2015年北京市小汤山冬小麦无人机数码影像,采用3种阈值分割方法,将田间植株作物与土壤背景分离。对比影像分割方法的时效性与准确性,最终确定可见光波段差异植被指数VDVI(visible-band difference vegetation index)提取植被信息。按照试验方案要求,在不同的氮肥与水分胁迫管理下,将冬小麦3次重复试验分成48个试验小区,依据小区边界提取小区的红、绿和蓝通道的平均DN(digitalnumber)值,选取25个植被指数,同时与各个试验小区冬小麦不同器官氮含量进行相关性分析,筛选数码影像变量。由于植被指数之间耦合度较高,因此采用主成分分析对原始数据进行成分提取,提取特征向量参与建模,最后利用多元线性回归分析建立氮素反演模型,通过决定系数(R2)、均方根误差(RMSE)和归一化的均方根误差(nRMSE)3个指标筛选出最佳模型,探究各器官氮素含量与数码变量的相关性。结果表明,实验室实测氮素含量与UAV数码影像氮素反演结果及基本一致。在反演模型构建精度方面,3种数据处理结果整体部分植被指数,反演效果叶氮植株氮茎氮。以冬小麦挑旗期为例,叶片氮含量整体信息提取验证模型的R2、RMSE和nRMSE分别为0.85、0.235和6.10%,比部分信息提取验证模型的R2高0.14,RMSE和nRMSE分别降低0.068和1.77个百分点;比植被指数信息提取验证模型的R2高0.43,RMSE和nRMSE分别降低0.141和3.67个百分点。研究表明,基于UAV数码影像利用多元线性回归构建冬小麦氮素含量反演模型,对试验小区整体提取作物信息的方式反演冬小麦叶氮含量效果最好,相比传统反演方法,模型稳定性更高,可为冬小麦田间水肥决策管理提供参考。  相似文献   

3.
基于无人机数码影像的冬小麦株高和生物量估算   总被引:4,自引:4,他引:0  
高效、快速地获取作物的株高和生物量信息,对农业生产有重要意义。该文利用2015年4月-6月获得了冬小麦拔节期、挑旗期和开花期的高清数码影像。首先基于无人机高清数码影像生成冬小麦的作物表面模型(crop surface model,CSM),利用CSM提取出冬小麦的株高(Hcsm),然后利用提取的21种数码影像图像指数,构建了拔节期、挑旗期和开花期混合的多生育期生物量估算模型,并进行单生育期和多生育期模型对比分析;最后选择逐步回归(stepwise regression,SWR)、偏最小二乘(partial least square,PLSR)、随机森林(random forest,RF)3种建模方法对多生育期估算模型进行对比,挑选出冬小麦生物量估算的最优模型。结果表明,提取的Hcsm和实测株高(H)具有高度拟合性(R2=0.87,RMSE=6.45 cm,NRMSE=11.48%);与仅用数码影像图像指数构建的生物量估算模型相比(R2=0.721 2,RMSE=0.137 2 kg/m2,NRMSE=26.25%),数码影像图像指数融入H和Hcsm所得模型效果更佳,其中融入Hcsm的模型精度和稳定性(R2=0.819 1,RMSE=0.110 6 kg/m2,NRMSE=21.15%)要优于加入株高H所构建的估算模型(R2=0.794 1,RMSE=0.117 9 kg/m2,NRMSE=22.56%);SWR生物量估算模型(R2=0.7212)效果优于PLSR(R2=0.677 4)和RF(R2=0.657 1)生物量估算模型。该研究为冬小麦生长状况高效、快速监测提供参考。  相似文献   

4.
结合SPA和PLS法提高冬小麦冠层全氮高光谱估算的精确度   总被引:3,自引:1,他引:2  
【目的】 冠层高光谱全波段信息可以在小麦拔节期快速无损地估算叶片的氮含量。本研究结合连续投影算法 (SPA) 和偏最小二乘 (PLS) 技术,筛选了冬小麦拔节期冠层光谱对叶片氮含量的敏感特征波段,以期为冬小麦关键生育期氮素含量的遥感估算提供理论依据和技术支持。 【方法】 以陕西关中地区2015—2016年冬小麦小区试验为基础,基于连续投影算法 (SPA) 提取冬小麦叶片全氮含量的冠层光谱敏感波段,并结合偏最小二乘 (PLS) 回归法建立基于敏感特征波段的冬小麦拔节期叶片氮含量估算模型。 【结果】 SPA算法从冬小麦338~2510 nm的冠层光谱中优选出了1985 nm、2474 nm、1751 nm、1916 nm、2507 nm、1955 nm、2465 nm和344 nm共计8个叶片全氮含量的敏感特征波段,波段数目下降了98.9%,有效降低了光谱信息的冗余;基于敏感特征波段构建的叶片氮含量偏最小二乘回归模型的决定系数和均方根误差分别为0.82和0.28,模型验证方程的决定系数和均方根误差分别为0.84和0.21,模型的相对预测偏差大于2,具有较高的精度和良好的预测能力。 【结论】 与常用植被指数的叶片氮含量估算模型相比,连续投影算法 (SPA) 结合偏最小二乘 (PLS) 方法的叶片氮含量估算精度更高,稳定性更强,可以作为冬小麦拔节期叶片氮含量的高光谱估算方法。   相似文献   

5.
为研究不同氮磷水平下冬小麦籽粒蛋白质含量高光谱遥感监测模型,提高模型精度,本文通过连续5年定位试验研究不同氮磷耦合水平下,不同生育时期冬小麦冠层光谱反射率、植株氮含量以及成熟期籽粒蛋白质含量,以相关、回归等统计分析方法,建立基于不同生育时期植株氮含量的籽粒蛋白质含量监测模型;然后通过灰色关联度分析,筛选植株氮含量的最佳植被指数,以偏最小二乘回归法,建立基于植被指数的植株氮含量监测模型;最后以植株氮含量为链接点,按照"植被指数—植株氮含量—籽粒蛋白质含量"之间的联系,建立融合植被指数与植株氮含量的冬小麦成熟期籽粒蛋白质含量监测模型。结果表明:在拔节期、孕穗期、抽穗期、灌浆期、成熟期基于植株氮含量建立的成熟期籽粒蛋白质含量监测模型,具有较好的监测精度;拔节期、孕穗期、抽穗期、灌浆期、成熟期分别基于修正叶绿素吸收反射率指数(MCARI_1)、归一化差值叶绿素指数(NDCI)、修正归一化差异指数(mNDVI)、MCARI_1、NDCI植被指数建立植株氮含量监测模型,监测精度(R~2)分别为0.826、0.854、0.867、0.859和0.819;以植株氮含量为链接点,通过"植被指数—植株氮含量—籽粒蛋白质含量"的间接联系,建立基于拔节期、孕穗期、抽穗期、灌浆期、成熟期植被指数且融合植株氮含量的籽粒蛋白质含量监测模型,R~2分别为0.935、0.972、0.990、0.979和0.936;以独立数据对模型进行验证,模型预测值与实测值间相对误差(RE)分别为11.26%、10.74%、8.41%、10.25%和11.36%,均方根误差(RMSE)分别为2.221 g×kg~(-1)、1.825 g×kg~(-1)、1.214 g×kg~(-1)、1.767 g×kg~(-1)和2.137 g×kg~(-1)。说明基于不同生育时期植被指数链接植株氮含量可以对成熟期籽粒蛋白质含量进行有效监测,且模型具有较好的年度间重演性和品种间适应性。  相似文献   

6.
冬小麦叶片氮含量与叶片光合作用和营养状况密切相关,直接影响植株生长发育,而茎秆中的氮含量与茎秆中纤维素、半纤维素和木质素的比例和含量密切相关,直接影响茎秆质量及植株的抗倒伏能力。然而,有关对冬小麦茎秆氮含量估算研究较为有限,限制了从氮含量角度判断茎秆质量及对倒伏的预测能力。为精准估算冬小麦不同器官(叶片、茎秆)氮含量,该研究通过2年田间试验,获取冬小麦4个关键生育期(拔节期、抽穗期、开花期、灌浆期)和3种施氮水平条件下(N1、N2和N3)的冠层光谱反射率、叶片、茎秆氮含量及叶片SPAD (soil and plant analyzer development, SPAD)值。分析了不同生育期和施氮水平条件下高光谱植被指数对叶片和茎秆氮含量的敏感性,并结合5种常用的机器学习算法:随机森林回归(random forest regression,RFR)、支持向量回归(support vector regression,SVR)、偏最小二乘回归(partial least squares regression,PLSR)、高斯过程回归(gaussian process regression,GPR)、深度神经网络回归(deep neural networks,DNN)构建冬小麦叶片和茎秆氮含量估算模型。结果表明:高光谱植被指数对叶片和茎秆氮含量的敏感性受到生育期和施氮水平的影响。在灌浆期,最佳植被指数双峰冠层植被指数 DCNI(double-peak canopy nitrogen index)对叶片氮含量的敏感性最高,R2为0.866。对茎秆氮含量,在抽穗期的敏感性最高,最佳植被指数归一化叶绿素比值指数 NPQI(normalized phaeophytinization index)与氮含量相关系数R2=0.677。施氮水平的提升增加了光谱植被指数对茎秆氮含量的敏感性。结合SPAD值的机器学习算法提升了氮含量的估算精度,对叶片氮含量,在不同生育期和施氮水平条件下估算精度提升了1%~7%,其中在全生育期的归一化均方根误差NRMSE从0.254提升到0.214,抽穗期的NRMSE提升最大,从0.201提升到0.128。对茎秆氮含量,全生育期的NRMSE从0.443提升到0.400,抽穗期的NRMSE提升最大,从0.323提升到0.268。在全生育期,结合SPAD值的DNN模型对叶片(R2=0.782、NRMSE=0.214)和茎秆(R2=0.802、NRMSE=0.400)氮含量的估算精度最佳。研究说明,SPAD值与光谱植被指数结合有利于提升冬小麦不同生育期和施氮水平条件下叶片和茎秆氮含量的估算精度。  相似文献   

7.
利用一次寒潮降温过程,以苗期12个品种的冬小麦为研究对象,测定其低温逆境下叶片光谱反射率和SPAD(Soil and Plant Analyzer Development,SPAD)值。以2020年12月28日(最高/最低温为15℃/3℃)的观测值为胁迫前数据,12月31日(最高/最低温为1℃/−9℃)的观测值为低温胁迫后数据,分析低温胁迫前后小麦叶片原始光谱和SPAD值的变化规律。在多种光谱参数中,采用相关分析方法遴选出5个与SPAD值密切相关的特征变量,分别建立低温胁迫前、后以原始光谱数据、一阶光谱导数和三种植被指数为自变量的小麦叶片叶绿素含量反演模型,并进行交互验证,筛选出低温胁迫后小麦叶绿素含量的最优反演模型。结果表明:(1)与胁迫前相比,低温胁迫后小麦叶片SPAD整体呈上升趋势,光谱反射率在叶绿素吸收较好的可见光区域有所降低,叶片表现出受冻特征;(2)构建的低温胁迫前后两种混合模型,交互验证后精度较低,表明常温下小麦叶绿素含量估算模型并不适用于遭受低温胁迫后的小麦叶绿素估算,需单独建立低温胁迫后的估算模型;(3)利用光谱数据构建冬小麦低温胁迫下叶绿素含量反演混合模型中,以一阶光谱导数在694nm处建立的模型估算效果最优,拟合度(R2)为0.694,均方根误差(RMSE)为3.191,说明利用小麦叶片光谱特征波段建立低温胁迫下叶片叶绿素含量反演模型的方法是可行的。研究结果可为多品种冬小麦叶片叶绿素含量无损监测提供参考。  相似文献   

8.
基于GF-1卫星数据的冬小麦叶片氮含量遥感估算   总被引:5,自引:4,他引:1  
以陕西关中地区大田和小区试验下的冬小麦为研究对象,探讨基于国产高分辨率卫星GF-1号多光谱数据的冬小麦叶片氮含量估算方法和空间分布格局。基于GF-1号光谱响应函数对地面实测冬小麦冠层高光谱进行重采样,获取GF-1号卫星可见光-近红外波段的模拟反射率,并构建光谱指数,利用与叶片氮含量在0.01水平下显著相关的8类光谱指数,分别建立叶片氮含量的一元线性、一元二次多项式和指数回归模型。通过光谱指数与叶片氮含量的敏感性分析,以及所建模型的综合对比分析,获取适合冬小麦叶片氮含量估算的最佳模型。结果表明:模拟卫星宽波段光谱反射率和卫星实测光谱反射率间的相关系数高于0.95,具有一致性;改进型的敏感性指数综合考虑了模型的稳定性、敏感性和变量的动态范围,敏感性分析表明比值植被指数对叶片氮含量的变化响应能力最强;综合模拟方程决定系数、模型敏感性分析、精度检验和遥感制图的结果,认为基于比值植被指数建立的叶片氮含量估算模型适用性最强,模拟结果与实际空间分布格局最为接近,为基于GF-1卫星数据的区域性小麦氮素营养监测提供了理论依据和技术支持。  相似文献   

9.
小波法反演条锈病胁迫下冬小麦冠层叶片全氮含量   总被引:1,自引:3,他引:1  
为监测条锈病胁迫下冬小麦的氮素营养状况,该文通过野外试验测量了感染条锈病的冬小麦冠层光谱数据和相应叶片全氮(leaf total nitrogen,LTN)含量,分析了冬小麦条锈病病情指数(disease index,DI)与LTN之间的关系,对冠层光谱进行了连续小波变换(continuous wavelet transform,CWT)处理得到小波系数,并选择一些高光谱指数,分别利用支持向量机(support vector machine,SVM)回归方法构建了小波系数、高光谱指数与冬小麦LTN含量之间的反演模型。研究表明,随着冬小麦DI增大,LTN含量逐渐减小,相关系数为-0.784;CWT处理得到的小波系数为自变量构建的反演冬小麦LTN含量的模型精度普遍高于高光谱指数为自变量的模型精度,其中以Mexican Hat小波函数处理得到的小波系数423(4)建立的反演模型为最优模型,RMSE为0.315,RE为7.62%。因此,该研究表明可以联合应用CWT与SVM方法对条锈病胁迫下冬小麦LTN含量进行反演,且具有较高的估测精度。该研究成果对小麦作物病害预防、指导作物施肥具有重要现实应用意义。  相似文献   

10.
基于高光谱图像的茶树LAI与氮含量反演   总被引:5,自引:4,他引:1  
为了对茶树进行实时、快速、无损的叶面积指数LAI和氮含量检测,该文以英红九号茶树为试验对象,利用便携式高光谱成像仪采集光谱数据、人工破坏性采摘叶片进行叶面积指数的计算以及传统化学方法测量叶片氮含量,比较不同高光谱特征变换形式与LAI和氮含量之间的相关性,并选择其中相关系数较高的高光谱特征变量作为自变量,分别采用线性、指数、对数和抛物线表达式建立LAI和氮含量的回归模型。结果显示:在多种高光谱数据变量建立的模型中,以绿峰反射率R_g为自变量的对数拟合模型最佳,其拟合样本的决定系数R~2和验证样本的均方根误差RMSE值分别为0.9和0.087 6。以植被指数变量VI_4(红边面积/黄边面积)与氮含量建立的指数模型为最佳建模效果,拟合样本的决定系数R~2和验证样本的均方根误差RMSE值分别为0.830 3和0.102 9,研究结果可为茶树叶面积指数LAI和营养成分的无损检测提供参考。  相似文献   

11.
冬小麦生物量高光谱遥感监测模型研究   总被引:7,自引:2,他引:5  
【目的】高光谱遥感能快速、实时、无损监测作物长势。研究不同氮磷水平下冬小麦不同生育时期地上部生物量高光谱遥感监测模型,可提高地上部生物量高光谱监测精度。【方法】在西北农林科技大学连续进行了 5 年田间定位试验,设置 5 个施氮水平 (N, 0, 75, 150, 225 和 300 kg/hm2) 和 4 个磷施用水平 (P2O5, 0, 60, 120 和 180 kg/hm2),选用不同抗旱类型冬小麦品种,测定了从拔节期至成熟期生物量与冠层光谱反射率,通过相关分析、回归分析等统计方法,建立并筛选基于不同植被指数的冬小麦不同生育时期生物量分段遥感监测模型。【结果】冬小麦生物量与光谱反射率在 670 nm 和 930 nm 附近具有较高相关性,在可见光和近红外波段处均有敏感波段;在拔节期、孕穗期、抽穗期、灌浆期、成熟期,生物量与归一化绿波段差值植被指数 (GNDVI)、比值植被指数 (RVI)、修正土壤调节植被指数 (MSAVI)、红边三角植被指数 (RTVI) 和修正三角植被指数Ⅱ (MTVIⅡ) 均达极显著相关性 (P < 0.01),相关系数 (r) 范围为 0.923~0.979;在不同生育时期,分别基于 GNDVI、RVI、MSAVI、RTVI 和 MTVIⅡ 能建立较好的生物量分段监测模型,决定系数 (R2) 分别为 0.987、0.982、0.981、0.985、0.976;估计标准误差 SE 分别为 0.157、0.153、0.163、0.133、0.132;预测值与实测值间相对误差 (RE) 分别为 8.47%、7.12%、7.56%、8.21%、8.65%;均方根误差 (RMSE), 分别为 0.141 kg/m2、0.113 kg/m2、0.137 kg/m2、0.176 kg/m2、0.187 kg/m2。【结论】在拔节期、孕穗期、抽穗期、灌浆期、成熟期可以用 GNDVI、RVI、MSAVI、RTVI 和 MTVIⅡ 监测冬小麦生物量,具有较好的年度间重演性和品种间适用性。同时,分段监测模型较统一监测模型具有较好的监测效果及验证效果,能有效改善高光谱遥感监测模型精度。  相似文献   

12.
基于综合指标的冬小麦长势无人机遥感监测   总被引:10,自引:7,他引:3  
作物长势监测可以及时获取作物的长势信息,该文尝试建立新型长势指标,监测小麦总体长势情况。将反映小麦长势的叶面积指数(leaf area index,LAI)、叶片叶绿素含量、植株氮含量、植株水分含量和生物量5个指标按照均等权重综合成一个指标,综合长势指标(comprehensive growth index,CGI)。利用450~882 nm范围内单波段和任意两个波段构建归一化光谱指数(normalized difference spectral index,NDSI),比值光谱指数(ratio spectral index,RSI)和简单光谱指数(simple spectral index,SSI),计算CGI与光谱指数的相关性,筛选出相关性好的光谱指数,结合偏最小二乘回归(partial least squares regression,PLSR)建立反演模型。以CGI为指标,运用无人机高光谱影像对2015年小麦多生育期的长势监测。结果表明:1)冬小麦各生育期,总体上CGI与光谱指数的决定系数R~2均好于各项单独指标与相应光谱指数的R~2。仅孕穗期CGI和RSI(754,694)的R~2比叶绿素和RSI(486,518)的R~2低,开花期的CGI和R570的R~2比生物量和R834的R~2低以及灌浆期CGI和SSI(582,498)的R~2比植株含水量和SSI(790,862)的R~2低。2)拔节期,孕穗期,开花期,灌浆期和全生育期PLSR模型的建模R~2分别为0.70,0.72,0.78,0.78和0.61。拔节期,孕穗期和开花期的无人机CGI影像验证模型的均方根误差RMSE(root mean square error)分别为0.050,0.032和0.047。CGI与相应光谱指数的R~2高于单独各项指标与相应光谱指数的R~2,光谱指数能够很好反映CGI包含的信息。无人机高光谱影像反演CGI精度较高,能够判断出小麦总体的长势差异,可为监测小麦长势提供参考。  相似文献   

13.
不同水氮条件下冬小麦生育期NDVI和光合速率的变化   总被引:1,自引:0,他引:1  
在不同水氮条件下,分析了冬小麦生育期归一化植被指数(Normalized difference vegetable index:NDVI)和光合速率的变化及两者和籽粒产量的关系,结果表明:(1)灌水对拔节期与孕穗期的NDVI值以及扬花期与灌浆期的光合速率有显著影响(p<0.05);起身水+孕穗水+灌浆水处理(I3)的孕穗期NDVI值和灌浆期光合速率平均比起身水处理(I1)分别显著增高6.7%和8.0%,起身水+扬花水处理(I2)的扬花期光合速率平均比起身水处理(I1)显著增高5.5%。(2)施氮对NDVI值和光合速率的影响均达到极显著水平;0~270 kg/hm2范围内,增加施氮能显著提高拔节期NDVI值以及灌浆期光合速率,但随着生育期的推进,增加施氮对NDVI值的提高作用逐渐下降。(3)拔节期NDVI值和光合速率与冬小麦籽粒产量相关性最高,相关系数分别达到0.968和0.864。  相似文献   

14.
夜间增温对小麦干物质积累、转运、分配及产量的影响   总被引:1,自引:0,他引:1  
为明确夜间增温对小麦产量形成的影响,于2019—2020和2020—2021年两个小麦生长季,以苏麦188和安农0711为试验材料,采用被动式夜间增温方法,以不增温为对照,对小麦生育前期3个阶段(分蘖期至拔节期、拔节期至孕穗期、孕穗期至开花期)进行夜间增温处理,研究不同阶段夜间增温处理对小麦干物质积累、分配、转运以及产量的影响。结果表明,分蘖期至拔节期与拔节期至孕穗期夜间增温处理均能提高小麦孕穗期和开花期的旗叶叶面积,且分蘖期至拔节期夜间增温处理与对照差异显著,孕穗期至开花期夜间增温处理的旗叶叶面积较对照有所降低;在小麦拔节期和孕穗期时,分蘖期至拔节期与拔节期至孕穗期夜间增温处理较对照均提高了小麦的株高,开花期各增温处理的株高与对照无显著差异;分蘖期至拔节期与拔节期至孕穗期夜间增温处理均提高了小麦干物质的积累量和产量,在分蘖期至拔节期夜间增温处理下,苏麦188和安农0711的两年平均产量较对照分别提高了5.63%和6.77%。综上,分蘖期至拔节期夜间增温处理提高了小麦的叶面积和株高,使其获得更多的光能用于光合作用,最终增加了小麦的干物质积累量和产量。本研究结果为制定未来气候变化背景下的农业适应战略提供了理论依据。  相似文献   

15.
基于HJ-CCD数据和随机森林算法的小麦叶面积指数反演   总被引:2,自引:5,他引:2  
为给小麦长势的遥感监测提供技术支持,该文运用随机森林回归(RF,random forest)算法建立小麦叶面积指数(LAI)遥感反演模型。首先基于2010-2013年江苏地区小麦环境减灾卫星HJ-CCD的影像数据,提取拔节、孕穗和开花3个生育期的卫星植被指数,进而根据各生育期植被指数和相应实测LAI数据,利用RF算法构建各期小麦LAI反演模型,并以人工神经网络(ANN,artificial neural network)模型为参比模型进行预测精度的比较。结果表明:RF算法模型在3个生育期的预测结果均好于同期的ANN模型。拔节、孕穗和开花3个生育期RF模型预测值与地面实测值的R2分别为0.79,0.67和0.59,对应的RMSE分别为0.57,0.90和0.78;ANN模型的R2分别为0.67,0.31和0.30,对应的RMSE分别为0.82,1.94和1.43。该研究结果为提高大田尺度下的小麦LAI遥感预测精度提供了技术和方法。  相似文献   

16.
【目的】耐盐冬小麦作为盐渍化地区的先锋作物,结合适当的轮作方式,既可以提高盐碱地的当年生产力,又可以改良盐碱地土壤耕层的盐分状况,然而在施肥管理方面,耐盐冬小麦没有形成统一的管理技术模式,其营养特征尚不明确,为了探索耐盐冬小麦科学合理的氮肥施用技术模式,本文对冬小麦开展了不同氮肥施用方式对其干物质积累和氮素吸收利用的影响研究。【方法】基于冬小麦区域施肥状况调查和冬小麦不同生育阶段的氮素吸收量,设置4种施肥方式;采用田间小区试验,在不同时期采集冬小麦植物样品,收获期进行产量测定,并对采集的样品进行氮素吸收和干物质量的测定,再通过相关公式计算,获得冬小麦的氮素吸收量和干物质积累量,用SPSS统计软件做统计分析,研究处理间的差异。【结果】 1)从返青到孕穗期,各处理间干物质积累量和氮素积累量差异最大,N300/2(农民习惯施肥)和N210/3(氮肥分三次施用,基肥、拔节肥和穗肥各占1/3)处理干物质积累量和氮素积累量明显高于N150/3和不施氮(N0)处理; 2)在返青期、孕穗期和收获期,N0处理的氮素含量最低,与施氮处理间差异显著,而所有施氮处理间差异不显著; 3)N300/2与N210/3处理的干物质累积量和氮素累积量以及产量无显著差异; 4)N210/3处理的氮素利用效率最高达40.7%,显著高于N300/2处理。【结论】耐盐冬小麦干物质积累均表现为苗期返青期很慢,返青期孕穗期迅速增大,孕穗后期成熟期缓慢增加,整个过程呈现慢快慢的趋势;耐盐冬小麦的氮素积累量在返青期至孕穗期最大,对氮肥的需求最为迫切。生育期少量多次施肥方式,在不降低耐盐冬小麦产量的情况下可以减少氮肥施用量,并能够提高氮肥的利用效率。  相似文献   

17.
灌溉频率对冬小麦产量及叶片水分利用效率的影响   总被引:7,自引:3,他引:4  
为了探讨中国北方冬小麦高效节水灌溉模式,采用了3种灌溉处理:在拔节期一次灌溉120mm,在拔节期和抽穗期各灌溉60mm及在拔节期、抽穗期和灌浆期各灌溉40mm,研究了在总灌溉量为120mm的情况下,灌溉频率对冬小麦产量及叶片水分利用效率的影响.结果表明,在冬小麦的拔节期和抽穗期各灌溉60mm,显著提高乳熟期和蜡熟期旗叶...  相似文献   

18.
施磷量对不同磷效率小麦氮、磷、钾积累与分配的影响   总被引:6,自引:0,他引:6  
在土培盆栽条件下,以磷高效小麦(CD1158-7、省A3宜03-4)和磷低效小麦(渝02321)为材料,研究了不施磷、施磷(P)10、20和30mg/kg对小麦不同生育时期生物量、籽粒产量及氮、磷、钾的积累与分配的影响。结果表明:(1)随施磷量的减少,不同磷效率品种小麦籽粒产量和生物量均减少;同一施磷处理,磷高效品种籽粒产量和生物产量高于磷低效基因型。不施磷、施磷10mg/kg,高效品种CD1158-7、省A3宜03-4的籽粒产量为低效品种渝02321 的1.84 倍和1.74倍、1.64倍和1.27倍。(2)低磷处理,磷高效品种小麦植株能够积累较多的氮素;扬花期之前,磷高效品种氮素积累量占小麦全生育期积累量的比例高于低效品种。拔节期、孕穗期氮素分配比例为叶>茎>根,扬花期为叶>茎>穗>根,而成熟期为籽粒、颖壳>茎>叶>根。拔节期和孕穗期磷高效品种根的氮素分配比例高于低效品种,而扬花期和成熟期磷高效品种穗(籽粒)氮素分配比例较高。(3)小麦植株磷素积累量主要集中在拔节期以后的生育时期,占全生育期的82.32%~94.23%。低磷处理,高效品种在拔节期和孕穗期磷素积累量高于低效品种,孕穗期尤为突出。扬花期之前,不施磷处理下,磷高效品种根的磷素分配比例较高。(4)不同施磷处理下,拔节期、孕穗期及扬花期,磷高效品种小麦的钾积累量高于低效品种。不同器官钾素分配比例拔节期和孕穗期均为叶>茎>根,扬花期为茎>叶>穗>根,成熟期为茎>叶>籽粒、颖壳>根。磷高效品种在颖壳和籽粒的钾素分配比例高于低效品种。  相似文献   

19.
基于遥感和AquaCrop作物模型的多同化算法比较   总被引:1,自引:0,他引:1  
为了研究不同数据同化方法在AquaCrop(FAO Crop model to simulate yield response to water)模型模拟作物地上生物量(above ground biomass,AGB)、冠层覆盖度(canopy cover,CC)和产量过程的效率,以冬小麦为研究对象,利用2012-2013、2013-2014和2014-2015年冬小麦田间试验数据,将标定的Aqua Crop生长模型与遥感光谱信息相结合开展同化技术分析,应用粒子群优化(particle swarm optimization,PSO)、模拟退火(simulated annealing,SA)和复合型混合演化(shuffled complex evolution,SCE-UA)3种数据同化算法,以不同生育期、不同水分处理和不同氮肥水平的AGB和CC为双变量开展多同化算法的模拟分析,对3种数据同化算法的运算效率和同化结果进行对比分析。结果表明:1)3种数据同化算法达到的应度值0.26时,SCE-UA同化算法用时最少(833 s),SA数据同化算法用时最多(1433 s),表明SCE-UA同化算法效率最优,SA数据同化算法效率最低;2)不同生育期的同化结果,AGB的同化精度随着生育期的推进而降低,AGB的模拟值在拔节期和挑旗期高于实测值,被高估,在开花期和灌浆期被低估,总的AGB被低估;CC在拔节期和挑旗期被低估,在开花期和灌浆期被高估,总的CC被低估;3)不同水分处理的同化结果,AGB普遍被低估,CC在雨养(W0)条件下被高估,在正常灌溉(W1)和过量灌溉(W2)条件下被低估;产量均被低估;4)不同氮肥水平,AGB的模拟精度随着施N量的增加而降低,并且普遍被低估,CC普遍被高估,产量均被低估。以上结果表明,PSO、SA和SCE-UA 3种数据同化算法均能有效模拟冬小麦的AGB、CC和产量,其中SCE-UA数据同化算法无论在运算效率还是同化结果的精度上均优于PSO和SA数据同化算法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号