首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sustainability of mined‐land reclamation is of growing importance, with over 600,000 ha of the Appalachian coal region disturbed since 1977. Long‐term evaluation of soil under various reclamation strategies is also important. Aggregation and organic matter (OM) influence both soil structure and function and can be of use in evaluating reclaimed systems. The objective of this study was to examine these two parameters in a long‐term experiment (27 years) where various types (control‐CON, topsoil‐TS, sawdust‐SD and biosolids‐BS) and rates of soil amendments (biosolids: BS‐22, BS‐56, BS‐112 and BS‐224 Mg ha−1) have been applied. Macroaggregates (>250 µm) comprised >95% of total aggregation across all treatments, indicating the importance of this size class for soil development. Macroaggregate carbon (C) and nitrogen (N) pools contributed more to stabilization of OM in these soils than microaggregate pools. All BS treatments contained higher concentrations of aggregate C (96·8–127 g C kg−1 aggregate) and N (6·80–8·22 g N kg−1 aggregate) relative to CON; however, mass of C and N did not vary among application rates. Though few differences were expressed in C and N pool sizes among treatments, there was some indication that amendments impact reclaimed sites early in soil development (~ < 10 years), while vegetation may exert more dominance in subsequent years. It is important to select appropriate management strategies to favor not only the establishment of desirable vegetation but also preservation of soil macroaggregate structure to improve long‐term nutrient supply, physical soil properties and potential C‐sequestration in reclaimed soils. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
Addition of organic matter (OM) to flooded soils stimulates reductive dissolution of Fe(III) minerals, thereby mobilizing associated phosphate (P). Hence, OM management has the potential to overcome P deficiency. This study assessed if OM applications increases soil or mineral fertilizer P availability to rice under anaerobic (flooded) condition and if that effect is different relative to that in aerobic (nonflooded) soils. Rice was grown in P‐deficient soil treated with combinations of addition of mineral P (0, 26 mg P/kg), OM (0, ~9 g OM/kg as rice straw + cattle manure) and water treatments (flooded vs nonflooded) in a factorial pot experiment. The OM was either freshly added just before flooding or incubated moist in soil for 6 months prior to flooding; blanket N and K was added in all treatments. Fresh addition of OM promoted reductive dissolution of Fe(III) minerals in flooded soils, whereas no such effect was found when OM had been incubated for 6 months before flooding. Yield and shoot P uptake largely increased with mineral P addition in all soils, whereas OM addition increased yield and P uptake only in flooded soils following fresh OM addition. The combination of mineral P and OM gave the largest yield and P uptake. Addition of OM just prior to soil flooding increased P uptake but was insufficient to overcome P deficiency in the absence of mineral P. Larger applications of OM are unlikely to be more successful in flooded soils due to side effects, such as Fe toxicity.  相似文献   

3.
An essential prerequisite for a sustainable soil use is to maintain a satisfactory soil organic‐matter (OM) level. This might be achieved by sound fertilization management, though impacts of fertilization on OM have been rarely investigated with the aid of physical fractionation techniques in semiarid regions. This study aimed at examining changes in organic C (OC) and N concentrations of physically separated soil OM pools after 26 y of fertilization at a site of the semiarid Loess Plateau in China. To separate sensitive OM pools, total macro‐OM (> 0.05 mm) was obtained from bulk soil by wet‐sieving and then separated into light macro‐OM (< 1.8 g cm–3) and heavy macro‐OM (> 1.8 g cm–3) subfractions; bulk soil was also differentiated into light OM (< 1.8 g cm–3) and mineral‐associated OM (> 1.8 g cm–3). Farmyard manure increased concentrations of total macro‐OC and N by 19% and 25%, and those of light fraction OC and N by 36% and 46%, compared to no manuring; both light OC and N concentrations but only total macro‐OC concentration responded positively to mineral fertilizations compared to no mineral fertilization. This demonstrated that the light‐fraction OM was more sensitive to organic or inorganic fertilization than the total macro‐OM. Mineral‐associated OC and N concentrations also increased by manuring or mineral fertilizations, indicating an increase of stable OM relative to no fertilization treatment, however, their shares on bulk soil OC and N decreased. Mineral fertilizations improved soil OM quality by decreasing C : N ratio in the light OM fraction whereas manuring led to a decline of the C : N ratio in the total macro‐OM fraction, with respect to nil treatment. Further fractionation of the total macro‐OM according to density clarified that across treatments about 3/4 of total macro‐OM was associated with minerals. Thus, by simultaneously applying particle‐size and density separation procedures, we clearly demonstrated that the macro‐OM differed from the light OM fraction not only in its chemical composition but also in associations with minerals. The proportion of the 0.5–0.25 mm water‐stable aggregates of soil was higher under organic or inorganic fertilizations than under no manure or no mineral fertilization, and increases in OC and N concentrations of water‐stable aggregates as affected by fertilization were greater for 1–0.5 and 0.5–0.25 mm classes than for the other classes. Results indicate that OM stocks in different soil pools can be increased and the loose aggregation of these strongly eroded loess soils can be improved by organic or inorganic fertilization.  相似文献   

4.
Soil microbial biomass interactions influencing the mineralisation of N in biosolids‐amended agricultural soil were investigated under field conditions in two soil types, a silty clay and a sandy silt loam, with contrasting organic matter contents. Soil treatments included: dewatered raw sludge (DRAW); dewatered and thermally dried, mesophilic anaerobically digested biosolids (DMAD and TDMAD, respectively); lime‐treated unstabilised sludge cake (LC); and NH4Cl as a mineral salt control for measuring nitrification kinetics. Soil mineral N and microbial biomass N (MBN) concentrations were determined over 90 days following soil amendment. Despite its lower total and mineral N contents, TDMAD had a larger mineralisable pool of N than DMAD, and was an effective rapid release N source. Increased rates of mineralisation and nitrification of biosolids‐N were observed in the silty clay soil with larger organic matter content, implying increased microbial turnover of N in this soil type compared with the sandy silt loam, but no significant difference in microbial immobilisation of biosolids‐N was observed between the two soil types. Thus, despite initial differences observed in the rates of N mineralisation, the overall extent of N release for the different biosolids tested was similar in both soil types. Therefore, the results suggest that fertiliser guidelines probably do not need to consider the effect of soil type on the release of mineral N for crop uptake from different biosolids products applied to temperate agricultural soils.  相似文献   

5.
Soil test indicators are needed to predict the contribution of soil organic N to crop N requirements. Labile organic matter (OM) fractions containing C and N are readily metabolized by soil microorganisms, which leads to N mineralization and contributes to the soil N supply to crops. The objective of this study was to identify labile OM fractions that could be indicators of the soil N supply by evaluating the relationship between the soil N supply, the C and N concentrations, and C/N ratios of water extractable OM, hot‐water extractable OM, particulate OM, microbial biomass, and salt extractable OM. Labile OM fractions were measured before planting spring wheat (Triticum aestivum L.) in fertilized soils and the soil N supply was determined from the wheat N uptake and soil mineral N concentration after 6 weeks. Prior to the study, fertilized sandy loam and silty clay soils received three annual applications of 90 kg available N (ha · y)?1 from mineral fertilizer, liquid dairy cattle manure, liquid swine manure or solid poultry litter, and there was a zero‐N control. Water extractable organic N was the only labile OM fraction to be affected by fertilization in both soil types (P < 0.01). Across both test soils, the soil N supply was significantly correlated with the particulate OM N (r = 0.87, P < 0.001), the particulate OM C (r = 0.83, P < 0.001), and hot‐water extractable organic N (r = 0.81, P < 0.001). We conclude that pre‐planting concentrations of particulate OM and hot‐water extractable organic N could be early season indicators of the soil N supply in fertilized soils of the Saint Lawrence River Lowlands in Quebec, Canada. The suitability of these pre‐planting indicators to predict the soil N supply under field conditions and in fertilized soils from other regions remains to be determined.  相似文献   

6.
Aggregation often provides physical protection and stabilisation of soil organic carbon (C). No tillage (NT) coupled with stubble retention (SR) and nitrogen (N) fertiliser application (90 N, 90 kg N ha−1 application) can help improve soil aggregation. However, information is lacking on the effect of long‐term NT, SR and N fertiliser (NT, SR + N) application on soil aggregation and C distribution in different aggregates in vertisols. We analysed the soil samples collected from 0‐ to 30‐cm depth from a long‐term (47 years) experiment for soil aggregation and aggregate‐associated C and N. This long‐term field experiment originally consisted of 12 treatments, having plot size of 61·9 × 6·4 m, and these plots were arranged in a randomised block design with four replications, covering an area of 1·9 ha. Soil organic C concentrations as well as stocks were significantly higher under the treatment of NT, SR + N only in 0–10 cm compared with other treatments such as conventional tillage, stubble burning + 0 N (no N application) and conventional tillage, SR + 0 N. Mineral‐associated organic C (MOC) of <0·053 mm was 5–12 times higher (r  = 0·68, p  < 0·05, n  = 32) compared with particulate organic C (POC) (>0·053 mm) in the 0‐ to 30‐cm layer. We found that NT, SR + N treatment had a positive impact on soil aggregation, as measured by the mean weight diameter (MWD) through wet sieving procedure, but only in the top 0‐ to 10‐cm depth. MWD had significant positive correlation with water stable aggregates (r  = 0·67, p  < 0·05). Unlike MWD, water stable aggregates were not affected by tillage and stubble management. Large macroaggregates (>2 mm) had significantly higher organic C and N concentrations than small macroaggregates (0·25–2 mm) or microaggregates (0·053–0·25 mm). We also found that N application had a significant effect on MWD and soil organic C in vertisols. It is evident that better soil aggregation was recorded under NTSR90N could have a positive influence on soil C sequestration. Our results further highlight the importance of soil aggregation and aggregate‐associated C in relation to C sequestration. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
Although freshly formed or unaltered biogenic aggregates are easily recognized, identifying the origin of aggregates altered by physical and biological processes remains empirical and prone to error. The aim of this study was to distinguish between biogenic (BIO) and physicogenic (PHYS) aggregates in various states of fragmentation or size classes using visual, physical and chemical characteristics. Casts produced by Amynthas khami (BIO) and surrounding soil aggregates without visible biological activity (PHYS) were left to disaggregate by natural rainfall events and then separated into five size classes of >10, 10–5, 5–2, 2–0.5 and <0.5 mm. We then analysed aggregate morphology, elemental and stable isotope composition and soil stability, and used near‐infrared spectroscopy (NIRS) to determine their chemical characteristics. Although visual assessment is the method most commonly used in the field to distinguish between BIO and PHYS, our study found that the results obtained were always prone to error and that the classification was arbitrary for BIO and PHYS aggregates smaller than 5 and 2 mm in size, respectively. Soil structural stability was only useful for identifying BIO aggregates larger than 2 mm. While C content and δ13C in BIO were always different from PHYS, regardless of soil aggregate size, N content and δ15N were similar. NIRS was the most effective method because it clearly discriminated soil aggregates on the basis of size and origin. The NIRS characteristics of BIO were also more uniform than those of PHYS, suggesting that BIO aggregates have a simpler organization and as a consequence more homogeneous ecological functions. Thus, our findings suggest that information may be lost when only the physical aspect of aggregates is used to quantify the activity of ecosystem engineers in soil. After fragmentation, BIO aggregates become hidden and although it may be impossible to distinguish them visually from PHYS aggregates they retain some of their specific chemical characteristics.  相似文献   

8.
This study is aimed at quantifying organic carbon (C) and total nitrogen (N) dynamics associated with physically separated soil fractions in a grassland-cultivation sequence in the Qinghai-Tibetan plateau. Concentrations of organic C and N of soil, free and occluded particulate organic matter (OM), and aggregate- and mineral-associated OM in different land uses are increased in the following order: 50 years cultivation < 12 years cultivation ≤ native grassland. The prolonged cropping of up to 50 years markedly affected the concentrations of free and occluded particulate OM and mineral-associated OM. After wet-sieving, 43% of native grassland soil mass was found in >1−10 mm water-stable aggregates that stored 40% of bulk soil organic C and N; only 16% and 7% of soil mass containing 16% and 7% of bulk soil organic C and N was >1−10 mm water-stable aggregates of soils cultivated for 12 years and 50 years, respectively. This indicated that losses of soil organic C and N following cultivation of native grassland would be largely related to disruption of >1–10 mm size aggregates and exposure of intra-aggregate OM to microbial attack. Organic C and N concentrations of soil aggregates were similar among aggregate size fractions (>0.05−10 mm) within each land use, suggesting that soil aggregation process of these soils did not follow the hierarchy model. The increase of the C-to-N ratio of free and occluded particulate fractions in the cultivated soils compared to the grassland soil indicated a greater loss of N than C.  相似文献   

9.
Given their organic matter (OM) depletion, agricultural soils can act as carbon (C) sinks if adequate management practices are implemented. OM stabilisation in highly OM‐depleted agricultural soils may depend upon the allocation of OM inputs among particle size fractions that differ in their capacity to stabilise OM. In a set of vegetable garden fields, we determined the magnitude of the differences in soil C and N content between organically and conventionally managed fields and the incorporation of the increased C and N pools to the fine fractions as an indication of the stability of the soil OM accrual. It was carried out in a stockless scenario in which exogenous OM was only used in organically managed fields for the last 20 years (as opposed to conventional management only using mineral fertilisers). Organic fertilisation caused a notable increase in soil organic C and N stocks compared with mineral‐fertilised soils. Such increase remained significant below the plough depth. C and N content increased at all fractions, but the relative contribution of the fine‐silt‐plus‐clay fraction to total C and N decreased at all depths. We concluded that organic management increases soil OM storage, but overall, the stability of the increased OM stocks decreases slightly. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
生物炭及炭基肥改良棕壤理化性状及提高花生产量的作用   总被引:5,自引:1,他引:4  
【目的】炭基复合肥是生物炭农用的另一种方式,生物炭作为土壤改良剂对土壤改良研究的报道较多,但大多为短期培养或模拟试验。目前更缺乏生物炭与传统土壤培肥方式的比较研究。本研究旨在通过4年的田间微区定位试验,开展生物炭及炭基复合肥对棕壤理化性质及花生产量的影响研究,以期为生物炭的培肥改土及合理农用提供理论依据。【方法】定位试验于2009年开始连续4年进行了花生微区田间试验(2 m~2)。试验设4个处理分别为秸秆还田+NPK(CS)、施用猪厩肥+NPK(PMC)、生物炭+NPK(BIO)和基于生物炭的炭基复合肥(BF)所有处理均为等氮磷钾养分,BIO处理与PMC处理为等碳量,BIO处理相当于CS处理所施用的玉米秸秆量制备得到的生物炭量,BF处理碳含量低于BIO碳含量每个处理重复3次,随机排列。分析试验前和2012年收获后土壤理化性质,比较各处理4年的花生产量。【结果】连续施用4年后,与试验前相比,BIO处理的土壤有机碳提高了27.6%全氮含量提高了75.6%,显著高于其他各处理,土壤pH提高了0.14个单位,显著高于CS处理,与PMC处理相近;土壤碱解氮、速效磷、速效钾和CEC值与CS或PMC处理相近;BIO处理的土壤毛管孔隙度和田间持水量显著高于其他处理容重和土壤总孔隙度与CS和PMC处理差异不显著;4年中花生产量均居首位,从3198.5 kg/hm~2提高到4818.0 kg/hm~2,但与PMC处理差异不显著。连续施用4年后,BF处理土壤pH较试验前提高了0.57个单位显著高于其他各处理,优势显著;土壤有机碳和全氮含量较试验前分别提高了4.4%和27.9%显著低于BIO处理对土壤物理性质的调节作用也不及BIO处理其他指标差异不显著但总体上与CS或PMC处理相近;BF处理的花生产量在试验的前3年与BIO处理差异不显著,第4年较BIO处理降低了317.1 kg/hm2,差异显著介于PMC和CS处理之间。【结论】各处理作物产量随施用年限增加而提高。生物炭和炭基复合肥对土壤的理化性质的改良作用与秸秆还田和施用猪厩肥相近,生物炭在提高土壤有机碳和全氮含量方面,炭基复合肥在改善土壤pH方面优势突出对作物具有持续增产作用。  相似文献   

11.
After decades of searching for a practical method to estimate the N mineralization capacity of soil, there is still no consistent methodology. Indeed it is important to have practical methods to estimate soil nitrogen release for plant uptake and that should be appropriate, less time consuming, and cost effective for farmers. We fractionated soil organic matter (SOM) to assess different fractions of SOM as predictors for net N mineralization measured from repacked (disturbed) and intact (undisturbed) soil cores in 14 weeks of laboratory incubations. A soil set consisting of surface soil from 18 cereal and root‐cropped arable fields was physically fractionated into coarse and fine free particulate OM (coarse fPOM and fine fPOM), intra‐microaggregate particulate OM (iPOM) and silt and clay sized OM. The silt and clay sized OM was further chemically fractionated by oxidation with 6% NaOCl to isolate an oxidation‐resistant OM fraction, followed by extraction of mineral bound OM with 10% HF (HF‐res OM). Stepwise multiple linear regression yielded a significant relationship between the annual N mineralization (kg N/ha) from undisturbed soil and coarse fPOM N (kg N/ha), silt and clay N (kg N/ha) and its C:N ratio (R2 = 0.80; P < 0.01). The relative annual N mineralization (% of soil N) from disturbed soils was related to coarse fPOM N, HF‐res OC (% of soil organic carbon) and its C:N ratio (R2 = 0.83; P < 0.01). Physical fractions of SOM were thus found to be the most useful predictors for estimating the annual N mineralization rate of undisturbed soils. However, the bioavailability of physical fractions was changed due to the disturbance of soil. For disturbed soils, a presumed stable chemical SOM fraction was found to be a relevant predictor indicating that this fraction still contains bio‐available N. The latter prompted a revision in our reasoning behind selective oxidation and extraction as tools for characterizing soil organic N quality with respect to N availability. Nonetheless, the present study also underscores the potential of a combined physical and chemical fractionation procedure for isolating and quantifying N fractions which preferentially contribute to bulk soil N mineralization. The N content or C:N ratio of such fractions may be used to predict N mineralization in arable soils.  相似文献   

12.
To improve soil structure and take advantage of several accompanying ecological benefits, it is necessary to understand the underlying processes of aggregate dynamics in soils. Our objective was to quantify macroaggregate (> 250 μm) rebuilding in soils from loess (Haplic Luvisol) with different initial soil organic C (SOC) contents and different amendments of organic matter (OM) in a short term incubation experiment. Two soils differing in C content and sampled at 0–5 and 5–25 cm soil depths were incubated after macroaggregate destruction. The following treatments were applied: (1) control (without any addition), (2) OM1 (addition of OM: preincubated wheat straw [< 10 mm, C : N 40.6] at a rate of 4.1 g C [kg soil]–1), and (3) OM2 (same as (2) at a rate of 8.2 g C [kg soil]–1). Evolution of CO2 released from the treatments was measured continuously, and contents of different water‐stable aggregate‐size classes (> 250 μm, 250–53 μm, < 53 μm), microbial biomass, and ergosterol were determined after 7 and 28 d of incubation. Highest microbial activity was observed in the first 3 d after the OM application. With one exception, > 50% of the rebuilt macroaggregates were formed within the first 7 d after rewetting and addition of OM. However, the amount of organic C within the new macroaggregates was ≈ 2‐ to 3‐fold higher than in the original soil. The process of aggregate formation was still proceeding after 7 d of incubation, however at a lower rate. Contents of organic C within macroaggregates were decreased markedly after 28 d of incubation in the OM1 and OM2 treatments, suggesting that the microbial biomass (bacteria and fungi) used organic C within the newly built macroaggregates. Overall, the results confirmed for all treatments that macroaggregate formation is a rapid process and highly connected with the amount of OM added and microbial activity. However, the time of maximum aggregation after C addition depends on the soil and substrate investigated. Moreover, the results suggest that the primary macroaggregates, formed within the first 7 d, are still unstable and oversaturated with OM and therefore act as C source for microbial decomposition processes.  相似文献   

13.
We investigated whether the long‐term application of compost from agricultural waste improved soil physical structure, fertility and soil organic matter (SOM) storage. In 2006, we began a long‐term field experiment based on a rice–wheat rotation cropping system, having a control without fertilizer (NF) and three treatments: chemical fertilizers (CF), pig manure compost (PMC) and a prilled mixture of PMC and inorganic fertilizers (OICF). Following the harvest of wheat in 2010, the mean‐weight diameter (MWD) of water‐stable aggregates and the concentration of C and N in bulk soil (0–20 cm; <2 mm fraction) were significantly greater (P < 0.05) in PMC and NF plots than in CF or OICF plots. Pig manure compost significantly increased the proportion of >5‐mm aggregates, whereas CF significantly increased the proportion of 0.45‐ to 1‐mm aggregates. The C and N contents of all density fractions were greater in PMC than in other treatments with levels decreasing in the following order: free particulate organic matter (fPOM) >occluded particulate organic matter (oPOM) > mineral‐combined SOM (mineral–SOM). Solid‐state 13C CPMAS NMR spectra showed that alkyl C/O‐alkyl C ratios and aromatic component levels of SOM were smaller in PMC and OICF plots than in CF plots, suggesting that SOM in PMC and OICF plots was less degraded than that in CF plots. Nevertheless, yields of wheat in PMC and NF plots were smaller than those in CF and OICF plots, indicating that conditions for producing large grain yields did not maintain soil fertility.  相似文献   

14.
Crop residue and fertilizer management practices alter some soil properties, but the magnitude of change depends on soil type and climatic conditions. Field experiments with mainly barley (and canola, wheat, triticale, or pea in a few years) under conventional tillage were conducted from 1983 to 2009 at Breton (Gray Luvisol (Typic Haplocryalf) loam) and Ellerslie (Black Chernozem (Albic Argicryoll) clay loam), Alberta, Canada, to determine the effects of straw management (straw removed (S Rem) and straw retained (S Ret)) and N fertilizer rate (0, 25, 50, and 75 kg N ha−1) on total organic C (TOC) and N (TON), light fraction organic C (LFOC), and N (LFON) in the 0–7.5 and 7.5–15 cm, pH in the 0–7.5, 7.5–15, and 15–20 cm and extractable P, ammonium-N, and nitrate-N in the 0–15, 15–30, 30–60, and 60–90 cm soil layers. The S Ret and N fertilizer treatments usually had higher mass of TOC, TON, LFOC, and LFON in soil at Breton, but only of LFOC and LFON in soil at Ellerslie compared with the corresponding S Rem and zero-N control treatments. The responses of soil organic C and N to management practices were more pronounced for N fertilization than straw management. There were significant correlations among most soil organic C or N fractions, especially at Breton. Linear regressions between crop residue C or N input, or rate of fertilizer N applied and soil organic C or N were significant in most cases at Breton, but only for LFOC and LFON at Ellerslie. At Breton, compared with zero-N rate, the C sequestration efficiency of additional crop residue C input was 5.8%, 20.1%, and 20.4% in S Ret and 17.2%, 28.0%, and 30.1% in S Rem treatments at the 25, 50, and 75 kg N ha−1 rates, respectively. The effects of crop residue management and N fertilization on chemical properties were generally similar for both contrasting soil types. There was no effect of crop residue management on soil pH, extractable P and residual nitrate-N. Extractable P and pH in the top 0–15 cm soil decreased significantly with N application in both soil types. Residual nitrate-N (though quite low in Breton soil) increased with application of N and also indicated some downward movement in the soil profile up to 90 cm depth in Ellerslie soil. There was generally no effect of any treatment on ammonium-N in soil. In conclusion, straw retention and N application improved organic C and N in soil, and generally differences were more pronounced for light fraction than total organic C and N, and between the most extreme treatments (S Rem0 vs. S Ret75). Application of N fertilizer reduced extractable P and pH in the surface soil, and showed accumulation and downward leaching of nitrate-N in the soil profile.  相似文献   

15.
Tillage with a spring tine harrow has become a recommended mechanical weeding technique for cereal crops. In this study, the impact of its use on soil mineral N content, soil aggregation and spring wheat (Triticum aestivum L.) production was investigated. The experiment was performed during 2 successive years (2005–2006) on a clay loam and on a silty loam. The two-main plot treatments consisted of a wheat crop subjected or not to intensive harrow use in a weed-free production system. Two N fertilizer treatments (mineral fertilizer and dry granular poultry manure) were also included as subplots within these main treatments and compared to a non-fertilized control. Harrowing had significant and variable effects on soil NO3 contents in the 0–5 cm soil layer. Slightly higher NO3 contents (average difference of 3.2 kg NO3 ha−1) were measured in the harrowed treatments than in the undisturbed plots in the clay loam soil in 2006. However, significantly lower mineral N contents were observed in the harrowed treatments than in the undisturbed plots in the clay loam soil in 2005 and in the silty loam soil in 2006. This apparent N immobilization amounted to 19 kg NO3 ha−1 in the clay loam soil in 2005 (for both fertilizers) and 30 kg NO3 ha−1 in the silty loam soil in 2006 (only in mineral fertilizer plots) after the successive harrowing treatments. In all cases, data of the last sampling dates in the fall indicated that residual NO3 content was not affected by the treatments. Overall harrowing had a minor decreasing and transient effect on the mean weight diameter (MWD) of soil aggregates while the dry poultry manure tended to increase MWD. The harrowing treatment had no significant effect on wheat, grain N uptake and yield. In conclusion, harrow use had variable impacts on soil NO3 content and a minor decreasing effect on the MWD of soil aggregates. Of note, significant apparent mineral N immobilization was observed on a few sampling dates following the harrow treatments.  相似文献   

16.
Farmyard manure (FYM) and fertilizer applications are important management practices used to improve nutrient status and organic matter in soils and thus to increase crop productivity and carbon (C) sequestration. However, the long-term effects of fertilization on C, nitrogen (N) and sulfur (S) associated with aggregates, especially on S are not fully understood. We investigated the effects of more than 80 years of FYM (medium level of 40 Mg ka−1 and high level of 60 Mg ka−1) and mineral fertilizer (NPKS and NK) on the concentrations and pools of C, N, and S and on their ratios in bulk soil, dry aggregates and water stable aggregates on an Aquic Eutrocryepts soil in South-eastern Norway. A high level of FYM and NPKS application increased the proportion of small dry aggregates (<0.6 mm) by 8%, compared with the control (without fertilizer). However, both medium and high level of FYM application increased the proportion of large water stable aggregates (>2 mm) compared with mineral fertilizer (NPKS and NK). The total C and N pools in bulk soils were also increased in FYM treatments but no such increase was seen with mineral fertilizer treatments. The increased total S pool was only found under high level of FYM application. Water stable macroaggregates (>2 and 1–2 mm) and microaggregates (<0.106 mm) contained higher concentrations of C, N and S than the other aggregate sizes, but due to their abundance, medium size water stable aggregates (0.5–1 mm) contained higher total pools of all three elements. High level of FYM application increased the C concentration in water stable aggregates >2, 0.5–1 and <0.106 mm, and increased the S concentration in most aggregates as compared with unfertilized soils. Higher C/N, C/S and N/S ratios were found both in large dry aggregates (>20 and 6–20 mm) and in the smallest aggregates (<0.6 mm) than in other aggregate sizes. In water stable aggregates, the C/N ratio generally increased with decreasing aggregate size. However, macroaggregates (>2 mm) showed higher N/S ratios than microaggregates (<0.106 mm). We can thus conclude, that long-term application of high amounts of FYM resulted in C, N and S accumulation in bulk soil, and C and S accumulation in most aggregates, but that the accumulation pattern was dependent on aggregate size and the element (C, N and S) considered.  相似文献   

17.
Permafrost degradation may cause strong feedbacks of arctic ecosystems to global warming, but this will depend on if, and to what extent, organic matter (OM) is protected against biodegradation by mechanisms other than freezing and anoxia. Here, we report on the amount, chemical composition and bioavailability of particulate (POM) and mineral‐associated OM (MOM) in permafrost soils of the East Siberian Arctic. The average total organic carbon (OC) stock across all soils was 24.0 ± 6.7 kg m?2 within 100 cm soil depth. Density fractionation (density cut‐off 1.6 g cm?3) revealed that 54 ± 16% of the total soil OC and 64 ± 18% of OC in subsoil horizons was bound to minerals. As well as sorption of OM to clay‐sized minerals (R2 = 0.80; P < 0.01), co‐precipitation of OM with hydrolyzable metals may also transfer carbon into the mineral‐bound fraction. Carbon:nitrogen ratios, stable carbon and nitrogen isotopes, 13C‐NMR and X‐ray photoelectron spectroscopy showed that OM is transformed in permafrost soils, which is a prerequisite for the formation of mineral‐organic associations. Mineral‐associated OM in deeper soil was enriched in 13C and 15N, and had narrow C:N and large alkyl C:(O‐/N‐alkyl C) ratios, indicating an advanced stage of decomposition. Despite being up to several thousands of years old, when incubated under favourable conditions (60% water‐holding capacity, 15°C, adequate nutrients, 90 days), only 1.5–5% of the mineral‐associated OC was released as CO2. In the topsoils, POM had the largest mineralization but was even less bioavailable than the MOM in subsoil horizons. Our results suggest that the formation of mineral‐organic associations acts as an important additional factor in the stabilization of OM in permafrost soils. Although the majority of MOM was not prone to decomposition under favourable conditions, mineral‐organic associations host a readily accessible carbon fraction, which may actively participate in ecosystem carbon exchange.  相似文献   

18.
Crop residues and manure are important sources of carbon (C) for soil organic matter (SOM) formation. Crop residue return increases by nitrogen (N) fertilization because of higher plant productivity, but this often results only in minor increases of SOM. In our study, we show how N fertilization and organic C additions affected SOM and its fractions within a 32‐year‐long field‐experiment at Puch, Germany. Five organic additions, no‐addition (control), manure, slurry, straw and straw + slurry, were combined with three mineral N fertilization rates (no, medium and high fertilization), which resulted in 1·17–4·86 Mg C‐input ha‐1 y‐1. Topsoil (0–25 cm) SOM content increased with N fertilization, mainly because of the C in free light fraction (f‐LF). In contrast, subsoil (25–60 cm) SOM decreased with N fertilization, probably because of roots' relocation in Ap horizon with N fertilization at the surface. Despite high inputs, straw contributed little to f‐LF but prevented C losses from the mineral‐associated SOM fraction (ρ > 1·6 g cm‐3) with N fertilization, which was observed without straw addition. Above (straw) and belowground (roots) residues had opposite effects on SOM fractions. Root C retained longer in the light‐fractions and was responsible for SOM increase with N fertilization. Straw decomposed rapidly (from f‐LF) and fueled the mineral‐associated SOM fraction. We conclude that SOM content and composition depended not only on residue quantity, which can be managed by the additions and N fertilization, but also on the quality of organics. This should be considered for maintaining the SOM level, C sequestration, and soil fertility. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
This study was conducted to investigate the effect of inorganic nitrogen (N) and root carbon (C) addition on decomposition of organic matter (OM). Soil was incubated for 200 days with nine treatments (three levels of N (no addition (N0) = 0, low N (NL) = 0.021, high N (NH) = 0.083 mg N g−1 soil) × three levels of C (no addition (C0) = 0, low C (CL) = 5, high C (CH) = 10 mg root g−1 soil)). The carbon dioxide (CO2) efflux rates, inorganic N concentration, pH, and potential activities of β-glucosidase and oxidative enzyme were measured during incubation. At the beginning and the end of incubation, the native soil organic carbon (SOC) and root-derived SOC were quantified by using a natural labeling technique based on the differences in δ 13C between C3 and C4 plants. Overall, the interaction between C and N was not significant. The decomposition of OM in the NH treatment decreased. This could be attributed to the formation of recalcitrant OM by N because the potentially mineralizable C pool was significantly lower in the NH treatment (3.1 mg C g−1) than in the N0 treatment (3.6 mg C  g−1). In root C addition treatments, the CO2 efflux rate was generally in order of CH > CL > C0 over the incubation period. Despite no differences in the total SOC concentration among C treatments, the native SOC in the CH treatment (18.29 mg C g−1) was significantly lower than that in the C0 treatment (19.16 mg C g−1).  相似文献   

20.
Crop production must be increased in order to ensure a sustainable food supply for the growing world population. Controlled‐release urea (CRU) improves nutrient use efficiency and saves labor, but its use in crop production is limited due to its high cost. Bulk blending urea (BBU) consists of both CRU and conventional urea and could be an excellent substitute or replacement for CRU. Nevertheless, its economic benefits and soil environment impact are unknown. A 3‐year field experiment was conducted to investigate the effects of two different nitrogen management practices in terms of economic benefits, soil mineral nitrogen availability, aggregate stability, and soil microbial communities. Split applications of conventional urea (UREA) and a single application of BBU were tested on winter wheat (Triticum aestivum L.) and summer maize (Zea mays L.) in the North China Plain between 2010 and 2013. Crop yields were measured after each harvest, and soil environmental parameters were determined after the 3‐year crop sequence. Relative to UREA, BBU significantly increased net revenue, soil inorganic nitrogen concentration, and the functional diversity of the soil microbial community without adverse effects on the soil bacterial community composition. On the other hand, BBU reduced the amount of soil macro‐aggregates and the mean weight diameter value of soil water‐stable aggregates. Although BBU showed great potential for improving wheat–maize cropping systems in the North China Plain, future studies should focus on optimizing the nitrogen dosage and the CRU ratio in BBU to decrease nitrogen leaching, avoid soil aggregate deterioration, and maintain crop yield. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号