首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Field experiments (established in autumn 1979, with monoculture barley from 1980 to 1990 and barley/wheat–canola–triticale–pea rotation from 1991 to 2008) were conducted on two contrasting soil types (Gray Luvisol [Typic Haplocryalf] loam soil at Breton; Black Chernozem [Albic Agricryoll] silty clay loam soil at Ellerslie) in north-central Alberta, Canada, to determine the influence of tillage (zero tillage and conventional tillage), straw management (straw removed [SRem] and straw retained [SRet]), and N fertilizer rate (0, 50 and 100 kg N ha?1in SRet, and only 0 kg N ha?1in SRem plots) on seed yield, straw yield, total N uptake in seed + straw (1991–2008), and N balance sheet (1980–2008). The N fertilizer urea was midrow-banded under both tillage systems in the 1991 to 2008 period. There was a considerable increase in seed yield, straw yield, and total N uptake in seed + straw with increasing N rate up to 100 kg N ha?1 under both tillage systems. On the average, conventional tillage produced greater seed yield (by 279 kg ha?1), straw yield (by 252 kg ha?1), and total N uptake in seed + straw (by 6.0 kg N ha?1) than zero tillage, but the differences were greater at Breton than Ellerslie. Compared to straw removal treatment, seed yield, straw yield, and total N uptake in seed + straw tended to be greater with straw retained at the zero-N rate used in the study. The amounts of applied N unaccounted for over the 1980 to 2008 period ranged from 1114 to 1846 kg N ha?1 at Breton and 845 to 1665 kg N ha?1 at Ellerslie, suggesting a great potential for N loss from the soil-plant system through denitrification, and N immobilization from the soil mineral N pool. In conclusion, crop yield and N uptake were lower under zero tillage than conventional, and long-term retention of straw suggests some gradual improvement in soil productivity.  相似文献   

2.
Soil, crop, and fertilizer management practices may affect quality of organic carbon (C) and nitrogen (N) in soil. A long-term field experiment (growing barley, wheat, or canola)was conducted on a Black Chernozem (Albic Argicryoll) loam at Ellerslie, Alberta, Canada, to determine the influence of 19 years (1980 to 1998) of tillage [zero tillage (ZT) and conventional tillage (CT)], straw management [straw removed (SRem) and straw retained (SRet)], and N fertilizer rate (0, 50, and 100 kg N ha?1 in SRet and 0 kg N ha?1 in SRem plots) on macro-organic matter C (MOM-C) and N (MOM-N), microbial biomass C (MB-C), and mineralizable C (Cmin) and N (Nmin) in the 0- to 7.5-cm and 7.5- to 15-cm soil layers. Treatments with N fertilizer and SRet generally had a greater mass of MOM-C (by 201 kg C ha?1 with 100 kg N ha?1 rate and by 254 kg C ha?1 with SRet), MOM-N (by 12.4 kg N ha?1 with 100 kg N ha?1 rate and by 8.0 kg N ha?1 with SRet), Cmin(by 146 kg C ha?1 with 100 kg N ha?1 rate and by 44 kg C ha?1 with SRet), and Nmin(by 7.9 kg N ha?1 with 100 kg N ha?1 rate and by 9.0 kg N ha?1 with SRet)in soil than the corresponding zero-N and SRem treatments. Tillage, straw, and N fertilizer had no consistent effect on MB-C in soil. Correlations between these dynamic soil organic C or N fractions were strong and significant in most cases, except for MB-C, which had no significant correlation with MOM-C and MOM-N. Linear regressions between crop residue C input and mass of MOM-C, MOM-N, Cmin, and Nmin in soil were significant, but it was not significant for MB-C. The effects of management practices on dynamic soil organic C and N fractions were more pronounced in the 0- to 7.5-cm surface soil layer than in the 7.5- to 15-cm subsoil layer. In conclusion, the findings suggest that application of N fertilizer and retention of straw would improve soil quality by increasing macro-organic matter and N-supplying power of soil.  相似文献   

3.
The application of density fractionation is an established technique, but studies on short‐term dynamics of labile soil fractions are scarce. Objectives were (1) to quantify the long‐term and short‐term dynamics of soil C and N in light fraction (LFOC, LFON, ρ ≤ 2.0 g cm–3) and microbial biomass C (Cmic) in a sandy Cambisol as affected by 28 y of different fertilization and (2) to determine the incorporation of C4‐C into these labile fractions during one growing season of amaranth. The treatments were: straw incorporation plus application of mineral fertilizer (MSI) and application of farmyard manure (FYM) each at high (MSIH, FYMH, 140–150 kg N ha–1 y–1) and low (MSIL, FYML, 50–60 kg N ha–1 y–1) rates at four field replicates. For all three sampling dates in 2008 (March, May, and September), stocks of LFOC, LFON and Cmic decreased in the order FYMH > FYML > MSIH, MSIL. However, statistical significance varied markedly among the sampling dates, e.g., with LFOC being significantly different (p ≤ 0.05) in the order given above (sampling date in March), significantly different depending on the fertilizer type (May), or nonsignificant (September). The high proportion of LFOC on the stocks of soil organic C (45% to 55%) indicated the low capacity of soil‐organic‐matter stabilization on mineral surfaces in the sandy Cambisol. The incorporation of C4‐C in the LFOC during one growing season of amaranth was small in all four treatments with C4‐LFOC ranging from 2.1% to 3.0% of total LFOC in March 2009, and apparent turnover times of C3‐derived LFOC ranged from 21 to 32 y for the sandy soils studied. Overall, our study indicates that stocks of LFOC and LFON in a sandy arable soil are temporarily too variable to obtain robust significant treatment effects of fertilizer type and rate at common agricultural practices within a season, despite the use of bulked six individual cores per plot, a common number of field replicates of four, and a length of treatments (28 y) in the order of the turnover time (21–32 y) of C3‐derived LFOC.  相似文献   

4.
A field experiment was conducted over 9?years (1999 to 2007 growing seasons) in northeastern Saskatchewan on a S-deficient Gray Luvisol (Typic Haplocryalf) soil. The objective was to determine the relative effectiveness of N alone versus combined annual application of N (120?kg N?ha?1) and S (15?kg S?ha?1) fertilizers to a wheat–canola rotation on storage of total organic C (TOC) and N (TON) and on the light fraction organic C (LFOC) and N (LFON) in soil. Compared to N alone, annual applications of S fertilizer in spring in a combination with N resulted in an increase in soil of TOC (by 2.18?Mg C?ha?1), TON (by 0.138?Mg N?ha?1), LFOC (by 1,018?kg C?ha?1), and LFON (by 42?kg N?ha?1). The relative increases in organic C or N due to S fertilizer application were much higher for the light organic fractions (36.9% for LFOC and 27.5% for LFON) than for the total organic fractions (9.2% for TOC and 7.3% for TON). The findings demonstrate the importance of a balanced/combined application of N and S fertilizers to crops in storing more organic C and N in this S-deficient soil.  相似文献   

5.
Summary Dynamics of barley N, mineral N, and organic N were compared at Ellerslie (Black Chernozem, Typic Cryoboroll) and Breton (Gray Luvisol, Typic Cryoboralf) in central Alberta, using 15N-urea. On average, shoot N and shoot 15N recoveries at Ellerslie (14.1 g m–2, 36%) were greater than at Breton (4.5 g m–2, 17%). Root N (g m–2) did not significantly differ between sites (0–30 cm) but root 15N recovery was greater at Breton (3.4%) than Ellerslie (1.8%). Low levels of shoot N and shoot 15N at Breton were partly due to very wet soil conditions in July, which resulted in premature shoot senescence and low plant N uptake. Although the total 15N recoveries from the system (to 30 cm depth) at Ellerslie (63%) and Breton (56%) were similar, soil 15N was greater at Breton (35%) than at Ellerslie (26%). There were no differences in mineral N between sites but the average 15N recovery in the mineral-N pool was significantly greater at Ellerslie (3.3%) than at Breton (1.6%). There was no difference in 15N recovery in the microbial biomass (3%) between sites, although non-microbial organic 15N was greater at Breton (31 %) than at Ellerslie (20%). The two soils showed differences in the relative size of kinetically active N pools and in relative mineralization rates. Microbial N (0–30 cm) was greater at Ellerslie (13.3 g m–2) than at Breton (9.9 g m–2), but total microbial N made up a larger proportion of total soil N at Breton (1.6%) than at Ellerslie (0.9%). In the 0–10 cm interval, microbial N was 1.7-fold greater and non-microbial active N was 3-fold greater at Breton compared to Ellerslie, when expressed as a proportion of total soil N. Net N mineralization in a 10-day laboratory incubation was 1.4-fold greater in the Black Chernozem (0–10 cm interval) from Ellerslie, compared to the Gray Luvisol from Breton, when expressed per gram of soil. Net N mineralization in the soil from Breton was double that of the soil from Ellerslie, when expressed as a proportion of soil N. Although soil N (g m–2) was 2.5-fold greater at Ellerslie compared to Breton, it was cycled more rapidly at Breton.  相似文献   

6.
Summary This study compared the dynamics of shoots, roots, microbial biomass and faunal populations in two different soils cropped to barley. The dynamics of microbial C, protozoa, nematodes, acari, collembola, shoot and root mass were measured between July and October under barley at Ellerslie (Black Chernozem, Typic Cryoboroll) and Breton (Gray Luvisol, Typic Cryoboralf) in central Alberta. Very wet soil conditions in early July reduced the barley yield at Breton. The peak shoot mass was greater at Ellerslie (878 g m–2) compared to Breton (582 g m–2), but the root mass did not differ significantly between sites. Microbial C at 0–30 cm depth was greater at Ellerslie (127 g m–2) than Breton (68 g m–2). The average protozoa population (no. m–2) did not differ significantly between sites. The average nematode population at 0–20 cm depth was greater at Ellerslie (5.1 × 106 no. m–2) compared to Breton (1.0 × 106 no. m–2) Acari and collembola populations at 0–10 cm depth at Ellerslie (43 × 103 and 43 × 102 no. m–2), respectively) were greater than at Breton (2 × 104 and 9 × 102 no. m–2) respectively). Tenday laboratory incubations of 0–10 cm soil samples from Ellerslie evolved more CO2-C (120 g g–1 soil) compared to samples from Breton (97 g g–1 soil), but the CO2-C evolution did not differ when expressed on an area basis (g m–2) due to the greater soil bulk density at Breton. The soil from Breton respired twice as much CO2-C when expressed as a proportion of soil C and 1.5 times as much CO2-C when expressed as a proportion of microbial C, compared to the soil from Ellerslie. The greater CO2-C: microbial C ratio, lower flush C:N ratio, and greater protozoa population: soil C ratio at Breton compared to Ellerslie suggest that the food web was relatively more active at Breton and was related to greater C availability and water availability at Breton.  相似文献   

7.
Long-term effects of mineral fertilization on microbial biomass C (MBC), basal respiration (R B), substrate-induced respiration (R S), β-glucosidase activity, and the rK-growth strategy of soil microflora were investigated using a field trial on grassland established in 1969. The experimental plots were fertilized at three rates of mineral N (0, 80, and 160 kg ha−1 year−1) with 32 kg P ha−1 year−1 and 100 kg K ha−1 year−1. No fertilizer was applied on the control plots (C). The application of a mineral fertilizer led to lower values of the MBC and R B, probably as a result of fast mineralization of available substrate after an input of the mineral fertilizer. The application of mineral N decreased the content of C extracted by 0.5 M K2SO4 (C ex). A positive correlation was found between pH and the proportion of active microflora (R S/MBC). The specific growth rate (μ) of soil heterotrophs was higher in the fertilized than in unfertilized soils, suggesting the stimulation of r-strategists, probably as the result of the presence of available P and rhizodepositions. The cessation of fertilization with 320 kg N ha−1 year−1 (NF) in 1989 also stimulated r-strategists compared to C soil, probably as the result of the higher content of available P in the NF soil than in the C soil.  相似文献   

8.
The objective of this study was to evaluate plant-available N pools and the role of N management index (NMI) in the surface (0–20 cm) of a fluvo-aquic soil after 18 years of fertilization treatments under a wheat–maize cropping system in the North China Plain. The experiment included seven treatments: (1) NPK, balanced application of chemical fertilizer NPK; (2) OM, application of organic manure; (3) 1/2OMN, application of half organic manure plus chemical fertilizer NPK; (4) NP, application of chemical fertilizer NP; (5) PK, application of chemical fertilizer PK; (6) NK, application of chemical fertilizer NK; and (7) CK, unfertilized control. Total organic N (TON), microbial biomass N (MBN), labile N (LN), inorganic N (ION, including ammonium (NH4+)–N and nitrate (NO3)–N) contents, net ammonification rate (NAR), net nitrification rate (NNR), net N mineralization rate (NNMR), and NMI in the fertilized treatments were higher than in the unfertilized treatment. Application of chemical fertilizer N (NPK, NP, and NK) increased ION in soils, compared with application of organic N or control. Nitrate N prevailed over exchangeable NH4+–N in all treatments. Nitrogen storage of the OM- and 1/2OMN-treated soils increased by 50.0% and 24.3%, respectively, over the NPK-treated soil, which had 5.4–22.5% more N than NP-, PK-, and NK-treated soils. The MBN, LN, and ION accounted for 1.7–2.4%, 25.7–34.2%, and 1.4–2.9% of TON, respectively, in different fertilization treatments. The surface soils (0–20-cm layer) in all treatments mineralized 43.6–152.9 kg N ha–1 year–1 for crop growth. Microbial biomass N was probably the better predictor of N mineralization, as it was correlated significantly (P < 0.01) with NNMR. The OM and 1/2OMN treatments were not an optimal option for farmers when the crop yield and labor cost were taken into consideration but an optimal option for increasing soil N supply capacity and N sequestration in soil. The NPK treatment showed the highest crop yields and increased soil N fractions through crop residues and exudates input, and thus, it may be considered as a sustainable system in the North China Plain.  相似文献   

9.
Management of N is the key for sustainable and profitable wheat production in a low N soil. We report results of irrigated crop rotation experiment, conducted in the North West Frontier Province (NWFP), Pakistan, during 1999–2002 to evaluate effects of residue retention, fertilizer N application and mung bean (Vigna radiata) on crop and N yields of wheat and soil organic fertility in a mung bean–wheat sequence. Treatments were (a) crop residue retained (+residue) or (b) removed (−residue), (c) 120 kg N ha−1 applied to wheat, (d) 160 kg N ha−1 to maize or (e) no nitrogen applied. The cropping system was rotation of wheat with maize or wheat with mung bean. The experiment was laid out in a spit plot design. Postharvest incorporation of crop residues significantly (p < 0.05) increased the grain and straw yields of wheat during both years. On average, crop residues incorporation increased the wheat grain yield by 1.31 times and straw yield by 1.39 times. The wheat crop also responded strongly to the previous legume (mung bean) in terms of enhanced grain yield by 2.09 times and straw yield by 2.16 times over the previous cereal (maize) treatment. Application of fertilizer N to previous maize exerted strong carry over effect on grain (1.32 times) and straw yield (1.38 times) of the following wheat. Application of N fertilizer to current wheat produced on average 1.59 times more grain and 1.77 times more straw yield over the 0 N kg ha−1 treatment. The N uptake in wheat grain and straw was increased 1.31 and 1.64 times by residues treatment, 2.08 and 2.49 times by mung bean and 1.71 and 1.86 times by fertilizer N applied to wheat, respectively. The soil mineral N was increased 1.23 times by residues, 1.34 times by mung bean and 2.49 times by the application of fertilizer N to wheat. Similarly, the soil organic C was increased 1.04-fold by residues, 1.08 times by mung bean and 1.00 times by the application of fertilizer N. We concluded that retention of residues, application of fertilizer N and involvement of legumes in crop rotation greatly improves the N economy of the cropping system and enhances crop productivity in low N soils.  相似文献   

10.
Field experiments were conducted over 5 years (2000–2004) at two sites (Star City and Birch Hills) in the Saskatchewan Parkland region to determine the effects of tillage and crop residue burning on soil total organic C (TOC), total organic N (TON), light fraction organic matter (LFOM), light fraction organic C (LFOC), light fraction organic N (LFON) and dry aggregation. Two tillage (ZT, zero tillage; CT, conventional tillage, with one tillage in autumn and another in spring) and two burning (B, residue burnt in autumn; NB, residue not burnt and returned to the soil) treatments were combined in a barley (Hordeum vulgare L.)–canola (Brassica napus L.) rotation. After five crop seasons, the mass of TOC and TON in the 0–15 cm soil tended to be greater, whereas mass of LFOM, LFOC and LFON was significantly greater in NB than B treatments at both sites. Zero tillage resulted in greater TOC, TON, LFOM, LFOC and LFON in soil than CT, in both B and NB treatments. The mass of TOC, TON, LFOM, LFOC and LFON in soil was the highest in the ZT–NB treatment, and lowest in the CT–B treatment. Zero tillage had a lower proportion of fine aggregates (<0.83 mm diameter) and a greater proportion of large aggregates (>6.4 mm diameter) at both sites, but the mean weight diameter (MWD) was greater under ZT than CT only at Birch Hills. Although the tillage × burning interaction was not significant in most cases, the ZT–NB treatment usually had the lowest proportion (22.6%) of fine aggregates and the greatest proportion (47.1%) of large aggregates, compared to the highest (34.9%) and the lowest proportion (35.6%) of these aggregates, respectively, in CT–B treatment. This indicated reduced potential for wind erosion when tillage was omitted (ZT) and crop residues were returned to the soil (NB). Returning crop residue to soil rather than burning usually increased soil organic C and N, and aggregation, but the differences between treatments were of greater magnitude between tillage treatments (ZT versus CT) than between burning treatments (B versus NB). Overall, returning crop residues along with ZT improved soil organic C and N, and aggregation, while burning in combination with CT resulted in the deterioration of these soil properties.  相似文献   

11.
Seasonal drought in tropical agroecosystems may affect C and N mineralization of organic residues. To understand this effect, C and N mineralization dynamics in three tropical soils (Af, An1, and An2) amended with haricot bean (HB; Phaseolus vulgaris L.) and pigeon pea (PP; Cajanus cajan L.) residues (each at 5 mg g−1 dry soil) at two contrasting soil moisture contents (pF2.5 and pF3.9) were investigated under laboratory incubation for 100–135 days. The legume residues markedly enhanced the net cumulative CO2–C flux and its rate throughout the incubation period. The cumulative CO2–C fluxes and their rates were lower at pF3.9 than at pF2.5 with control soils and also relatively lower with HB-treated than PP-treated soil samples. After 100 days of incubation, 32–42% of the amended C of residues was recovered as CO2–C. In one of the three soils (An1), the results revealed that the decomposition of the recalcitrant fraction was more inhibited by drought stress than easily degradable fraction, suggesting further studies of moisture stress and litter quality interactions. Significantly (p < 0.05) greater NH4+–N and NO3–N were produced with PP-treated (C/N ratio, 20.4) than HB-treated (C/N ratio, 40.6) soil samples. Greater net N mineralization or lower immobilization was displayed at pF2.5 than at pF3.9 with all soil samples. Strikingly, N was immobilized equivocally in both NH4+–N and NO3–N forms, challenging the paradigm that ammonium is the preferred N source for microorganisms. The results strongly exhibited altered C/N stoichiometry due to drought stress substantially affecting the active microbial functional groups, fungi being dominant over bacteria. Interestingly, the results showed that legume residues can be potential fertilizer sources for nutrient-depleted tropical soils. In addition, application of plant residue can help to counter the N loss caused by leaching. It can also synchronize crop N uptake and N release from soil by utilizing microbes as an ephemeral nutrient pool during the early crop growth period.  相似文献   

12.
A 56-day aerobic incubation experiment was performed with 15-nitrogen (N) tracer techniques after application of wheat straw to investigate nitrate-N (NO3-N) immobilization in a typical intensively managed calcareous Fluvaquent soil. The dynamics of concentration and isotopic abundance of soil N pools and nitrous oxide (N2O) emission were determined. As the amount of straw increased, the concentration and isotopic abundance of total soil organic N and newly formed labeled particulate organic matter (POM-N) increased while NO3-N decreased. When 15NO3-N was applied combined with a large amount of straw at 5000 mg carbon (C) kg?1 only 1.1 ± 0.4 mg kg?1 NO3-N remained on day 56. The soil microbial biomass N (SMBN) concentration and newly formed labeled SMBN increased significantly (P < 0.05) with increasing amount of straw. Total N2O-N emissions were at levels of only micrograms kg?1 soil. The results indicate that application of straw can promote the immobilization of excessive nitrate with little emission of N2O.  相似文献   

13.
Crop residues with high C/N ratio immobilize N released during decomposition in soil, thus reducing N losses through leaching, denitrification, and nitrous oxide (N2O) emission. A laboratory incubation experiment was conducted for 84 days under controlled conditions (24°C and moisture content 55% of water-holding capacity) to study the influence of sugarcane, maize, sorghum, cotton and lucerne residues, and mineral N addition, on N mineralization–immobilization and N2O emission. Residues were added at the rate of 3 t C ha−1 to soil with, and without, 150 kg urea N ha−1. The addition of sugarcane, maize, and sorghum residues without N fertilizer resulted in a significant immobilization of soil N. Amended soil had significantly (P < 0.05) lower NO3–N, which reached minimum values of 2.8 mg N kg−1 for sugarcane (at day 28), 10.3 mg N kg−1 for maize (day 7), and 5.9 mg N kg−1 for sorghum (day 7), compared to 22.7 mg N kg−1 for the unamended soil (day 7). During 84 days of incubation, the total mineral N in the residues + N treatments were decreased by 45 mg N kg−1 in sugarcane, 34 mg kg−1 in maize, 29 mg kg−1 in sorghum, and 16 mg kg−1 in cotton amended soil compared to soil + N fertilizer, although soil NO3–N increased by 7 mg kg−1 in lucerne amended soil. The addition of residues also significantly increased amended soil microbial biomass C and N. Maximum emissions of N2O from crop residue amended soils occurred in the first 4–5 days of incubation. Overall, after 84 days of incubation, the cumulative N2O emission was 25% lower with cotton + N fertilizer, compared to soil + N fertilizer. The cumulative N2O emission was significantly and positively correlated with NO3–N (r = 0.92, P < 0.01) and total mineral N (r = 0.93, P < 0.01) after 84 days of incubation, and had a weak but significant positive correlation with cumulative CO2 in the first 3 and 5 days of incubation (r = 0.59, P < 0.05).  相似文献   

14.
Long‐term applications of inorganic fertilizers and farmyard manure influence organic matter as well as other soil‐quality parameters, but the magnitude of change depends on soil‐climatic conditions. Effects of 22 annual applications (1982–2003) of N, P, and K inorganic fertilizers and farmyard manure (M) on total organic carbon (TOC) and nitrogen (TON), light‐fraction organic C (LFOC) and N (LFON), microbial‐biomass C (MB‐C) and N (MB‐N), total and extractable P, total and exchangeable K, and pH in 0–20 cm soil, nitrate‐N (NO ‐N) in 0–210 cm soil, and N, P, and K balance sheets were determined using a field experiment established in 1982 on a calcareous desert soil (Orthic Anthrosol) at Zhangye, Gansu, China. A rotation of irrigated wheat (Triticum aestivum L.)‐wheat‐corn (Zea mays L.) was used to compare the control, N, NP, NPK, M, MN, MNP, and MNPK treatments. Annual additions of inorganic fertilizers for 22 y increased mass of LFON, MB‐N, total P, extractable P, and exchangeable K in topsoil. This effect was generally enhanced with manure application. Application of manure also increased mass of TOC and MB‐C in soil, and tended to increase LFOC, TON, and MB‐N. There was no noticeable effect of fertilizer and manure application on soil pH. There was a close relationship between some soil‐quality parameters and the amount of C or N in straw that was returned to the soil. The N fertilizer alone resulted in accumulation of large amounts of NO ‐N at the 0–210 cm soil depth, accounting for 6% of the total applied N, but had the lowest recovery of applied N in the crop (34%). Manure alone resulted in higher NO ‐N in the soil profile compared with the control, and the MN treatment had the highest amount of NO ‐N in the soil profile. Application of N in combination with P and/or K fertilizers in both manured and unmanured treatments usually reduced NO ‐N accumulation in the soil profile compared with N alone and increased the N recovery in the crop as much as 66%. The N that was unaccounted for, as a percentage of applied N, was highest in the N‐alone treatment (60%) and lowest in the NPK treatment (30%). In the manure + chemical fertilizer treatments, the unaccounted N ranged from 35% to 43%. Long‐term P fertilization resulted in accumulation of extractable P in the surface soil. Compared to the control, the amount of P in soil‐plant system was surplus in plots that received P as fertilizer and/or manure, and the unaccounted P as percentage of applied P ranged from 64% to 80%. In the no‐manure plots, the unaccounted P decreased from 72% in NP to 64% in NPK treatment from increased P uptake due to balanced fertilization. Compared to the control, the amount of K in soil‐plant system was deficit in NPK treatment, i.e., the recovery of K in soil + plant was more than the amount of applied K. In manure treatments, the recovery of applied K in crop increased from 26% in M to 61% in MNPK treatment, but the unaccounted K decreased from 72% in M to 37% in MNPK treatment. The findings indicated that integrated application of N, P, and K fertilizers and manure is an important strategy to maintain or increase soil organic C and N, improve soil fertility, maintain nutrients balance, and minimize damage to the environment, while also improving crop yield.  相似文献   

15.
Soil labile organic carbon (C) oxidation drives the flux of carbon dioxide (CO2) between soils and the atmosphere. However, the impact of grazing management and the contribution soil aggregate size classes (ASCs) to labile organic C from grassland soils is unclear. We evaluated the effects of grazing intensity and soil ASC on the soil labile organic C, including CO2 production, microbial biomass C, and dissolved organic C and nitrogen (N) mineralization in topsoils (0–10 cm) in Inner Mongolia, Northern China. Soil samples were separated into ASCs of 0–630 μm [fine ASC (fASC)], 630–2000 μm [medium ASC (mASC)] and >2000 μm [coarse ASC (cASC)]. The results showed that heavy grazing (HG) and continuous grazing (CG) increased soil labile organic C significantly compared to an ungrazed site since 1999 (UG99) and an ungrazed site since 1979 (UG79). For winter grazing site (WG), no significant differences were found. CO2 production was highest in cASC, while lowest in fASC. Microbial biomass C and dissolved organic C showed the highest values in mASC and were significantly lower in fASC. Grazing increased N mineralization in bulk soils, while it exhibited complex effects in the three ASCs. The results suggest that the rate of C mineralization was related to the rate of N accumulation. To reduce CO2 emission and nutrient loss, and to improve soil quality and productivity, a grazing system with moderate intensity is suggested.  相似文献   

16.
An increasing area of oilseed rape cultivation in Europe is used to produce biodiesel. However, a large amount of straw residue is often left in the field in autumn. Straw mineralization provides both carbon (C) and nitrogen (N) sources for emission of soil nitrous oxide (N2O), which is an important greenhouse gas with a high warming potential. Some studies have focused on soil N2O emissions immediately post-harvest; however, straw mineralization could possibly last over winter. Most field studies in winter have focused on freeze-thaw cycles. It is still not clear how straw mineralization affects soil N2O emissions in unfrozen wintertime conditions. We carried out a field experiment in northern Germany in winter 2014, adding straw and glucose as a source of C with three rates of N fertilizer (0, 30, and 60 kg N ha−1). During the 26 days of observation, cumulative N2O emission in treatments without C addition was negative at all N fertilizer levels. Straw addition produced –3.2, 11.2, and 5.0 mg N2O-N m−2 at 0, 30, and 60 kg N ha−1, respectively. Addition of glucose surprisingly caused –1.5, 74.6, and 165 mg N2O–N m−2 at 0, 30, and 60 kg N ha−1, respectively. This study demonstrates that oilseed rape straw does not cause high N2O emissions in wintertime when no extreme precipitation or freeze-thaw cycles are involved, and soil organic C content is low. However, N2O emission could be intensively stimulated, when both easily available organic C and nitrate are not limited and the soil temperature between 0 and 10°C. These results provide useful information on potential changes to N2O emissions that may occur due to the increased use of oilseed rape for biodiesel combined with less severe winters in the northern hemisphere driven by global warming.  相似文献   

17.
 Improving the precision in estimating the nitrogen (N) requirement for citrus trees on sandy soils is important for increasing N efficiency by the trees and minimizing potential losses of N in commercial citrus production areas. In this study, representative Florida soils were sampled from major citrus production areas and the electro-ultrafiltration (EUF) technique was used to measure the concentrations of total EUF-extractable nitrogen (EUF-Nt), ammonium-N (EUF-NH4 +–N) and nitrate-N (EUF-NO3 –N). Available organic N (Norg) was calculated as: EUF-Nt–(NH4 +–N+NO3 –N). The N concentrations in the EUF extraction were greater than those by the KCl or CaCl2 method. The Norg fraction, estimated by the EUF method, varied from 4.4 to 40.8 mg kg–1 soil, equivalent to 10 to 91 kg N ha–1 (for the top 15 cm depth soil) and was positively correlated with the total soil N determined by the Kjeldahl method. The presence of appreciable amounts of Norg in these soils indicates that these soils contain high proportions of the total soil N in easily mineralizable Norg forms. This study demonstrates that the EUF-extractable organic bound N must be considered in developing N fertilizer recommendations for citrus. Received: 13 January 1999  相似文献   

18.
As labile organic pools, soluble organic matter and soil microbial biomass are sensitive to changes in soil management and therefore good indicators of soil quality. Effects of a 17-year long-term fertilization on soil microbial biomass C (SMBC) and N (SMBN), soluble organic C, and soluble organic N during the maize growing season were evaluated in a loess soil (Eum-Orthic Anthrosol) in northwest China. The fertilization treatments included no fertilizer (CK), inorganic N, P, and K fertilizer (NPK), cattle manure plus NPK fertilizer (MNPK), and straw plus NPK fertilizer (SNPK). Our results showed that C storage in the 0–20 cm soil layer was 28% to 81% higher in the fertilized treatments compared to the unfertilized treatment. In the 0–10 cm soil layer, SMBC and SMBN in the three fertilized treatments were higher than in the unfertilized treatment on all sampling dates, while microbial biomass C and N in the 0−10 cm soil layers were the highest at grain filling. In the same soil layer, soil-soluble organic C generally decreased in the order MNPK > SNPK > NPK > CK, while soluble organic N was the highest in the MNPK followed by the SNPK treatment. There was no significant difference in soluble organic N in the NPK and CK treatments throughout most of the maize growing season. Changes in soluble organic N occurred along the growing season and were more significant than those for soluble organic C. Soluble organic N was the highest at grain filling and the lowest at harvest. Overall, our results indicated that microbial biomass and soluble organic N in the surface soil were generally the highest at grain filling when maize growth was most vigorous. Significant positive relationships were found between soluble organic C and SMBC and between soluble organic N and SMBN.  相似文献   

19.
Effects of application of rice straw (RS), farmyard manure (FYM), municipal biowaste compost (MBCom), and municipal biowaste charcoal (MBCha) on soil microbial biomass N, mineral N, and nitrogen-fixing activity (NFA) of a model paddy microcosm were examined in comparison with urea fertilizer. When microcosms were added with urea, NFA decreased with increasing rates of fertilization, and it was negligible (less than 4% of the control, no urea fertilization) in the soils treated with more than 60 mg kg−1 urea–N. The addition of RS, with the highest C/N ratio among the organic wastes used, stimulated N2 fixation most effectively (40% increase compared to the control). MBCom, with the lowest C/N ratio and a comparable mineral N content to 60 mg kg−1 urea–N, decreased N2 fixation (50% decrease), but it was not markedly suppressed unlike urea. In spite of the fact that FYM contained a relatively large N, expressed as low C/N ratio, its effect on N2 fixation was small (14% decrease). FYM and MBCom did not stimulate NFA as RS did. This may be explained by the fact that N concentrations of microbial biomass N and available N were higher in the soils than in soil treated with RS. The effect of MBCha addition on N2 fixation was small (14% decrease). The present study demonstrated that organic wastes might affect N2 fixation depending upon the amount of available N in the waste-treated soils, but that organic-waste-treated soils generally support higher N2 fixation than chemical-fertilizer-treated soils.  相似文献   

20.
Consumer demand for cleaned squid generates a substantial amount of waste that must be properly disposed of, creating an economic burden on processors. A potential solution to this problem involves converting squid by-products into an organic fertilizer, for which there is growing demand. Because fertilizer application to lawns can increase the risk of nutrient contamination of groundwater, we quantified leaching of NO3–N and PO4–P from perennial ryegrass turf (Lolium perenne L.) amended with two types of fertilizer: squid-based (SQ) and synthetic (SY). Field plots were established on an Enfield silt loam, and liquid (L) and granular (G) fertilizer formulations of squid and synthetic fertilizers were applied at 0, 48, 146, and 292 kg N ha−1 year−1. Levels of NO3–N and PO4–P in soil pore water from a depth of 60 cm were determined periodically during the growing season in 2008 and 2009. Pore water NO3–N levels were not significantly different among fertilizer type or formulation within an application rate throughout the course of the study. The concentration of NO3–N remained below the maximum contaminant level (MCL) of 10 mg L−1 until midSeptember 2009, when values above the MCL were observed for SQG at all application rates, and for SYL at the high application rate. Annual mass losses of NO3–N were below the estimated inputs (10 kg N ha−1 year−1) from atmospheric deposition except for the SQG and SYL treatments applied at 292 kg N ha−1 year−1, which had losses of 13.2 and 14.9 kg N ha−1 year−1, respectively. Pore water PO4–P levels ranged from 0 to 1.5 mg P L−1 and were not significantly different among fertilizer type or formulation within an application rate. Our results indicate that N and P losses from turf amended with squid-based fertilizer do not differ from those amended with synthetic fertilizers or unfertilized turf. Although organic in nature, squid-based fertilizer does not appear to be more—or less—environmentally benign than synthetic fertilizers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号