首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
An 8‐wk feeding trial was conducted to evaluate the effects of varying dietary protein and lipid levels with different protein‐to‐energy (P/E) ratios on growth, feed utilization, and plasma biochemical parameters of Sinocyclocheilus graham. Nine experimental diets were formulated to contain three protein levels (35, 40, and 45%), and each with three lipid levels (4, 8, and 12%), to produce a range of P/E ratios from 71.31 to 98.64 mg protein/kcal. Each diet was randomly assigned to triplicate groups of 25 fish. Fish grew best when fed the diet containing 45% protein and 12% lipid. However, fish fed the diet with 40% protein and 8% lipid had similar weight gain and specific growth rate as those fed the above diet but showed relatively better feed conversion ratio, protein efficiency ratio, and protein and energy retentions. Additionally, plasma total amino acids and blood urea nitrogen contents and γ‐glutamyltransferase, aspartate aminotransferase, and alanine aminotransferase activities in fish fed the diet containing 40% protein and 8% lipid were relatively low among the dietary treatments. These results may indicate that a diet containing 40% protein and 8% lipid with P/E ratio of 84.05 mg protein/kcal would be suitable for the optimal growth, feed utilization, and health of S. graham.  相似文献   

2.
A 30‐day feeding trial was conducted to investigate the effects of dietary lipid levels on growth performance, activities of digestive enzymes, fatty acid composition and some lipogenesis‐related gene expression of half‐smooth tongue sole (Cynoglossus semilaevis) larvae. Five isoproteic diets were formulated with graded lipid levels (6.68%, 9.84%, 13.47%, 17.89% and 21.88% dry weight) using fish oil as the main lipid source. Each diet was randomly allocated to triplicate groups of 150 larval tongue sole (35 DAH, 54 ± 1 mg). Fish were fed five times daily to apparent satiation during the feeding experiment. Results showed that, the survival rate (SR) of larvae increased significantly firstly, and thereafter decreased significantly. The specific growth rates (SGR) of larvae fed the diet with 13.47% lipid were significantly higher than other treatments. Larvae fed 9.84% or 13.47% dietary lipid showed higher trypsin, lipase, leucine aminopeptidase and alkaline phosphatase (AP) activities than other treatments, whereas amylase activity nearly showed reverse trend with them. The fatty acid composition of the tongue sole larvae was well correlated with dietary fatty acid profile. Expression of acetyl‐CoA carboxylase alpha (ACC1) was found to be slightly negatively correlated with dietary lipid level, and high dietary lipid level depressed the expressions of acetyl‐CoA carboxylase beta (ACC2) and fatty acid synthase (FAS) mRNA expression significantly, implying that larvae may cope with high dietary lipid mainly through down‐regulating lipogenesis‐related gene expression of FAS and ACC2. Besides, on the basis of SGR, the optimal dietary lipid level for larval tongue sole was estimated to be 13.56% using second‐order polynomial curve.  相似文献   

3.
Optimum dietary protein and lipid levels for juvenile rockfish were determined. Eight hundred and ten juvenile fish averaging 3.22 g were randomly chosen and distributed into 27 flow‐through tanks of 50 L (30 fish per tank). Nine experimental diets were prepared according to a 3 × 3 factorial experimental design: three crude protein levels (45%, 50% and 55%) × three crude lipid levels (11%, 15% and 19%). Crude protein and crude lipid levels increased at the expense of dextrin and cellulose in the experimental diets. Survival of fish was not affected by either dietary protein or lipid level. Weight gain of fish was affected by dietary protein level, but not by dietary lipid level. Weight gain of fish fed the 50P‐15L (50% protein and 15% lipid) diet was higher than that of fish fed the 45% protein diets regardless of lipid level, but not different from that of fish fed the 50P‐11L (50% protein and 11% lipid), 50P‐19L (50% protein and 19% lipid), 55P‐11L (55% protein and 11% lipid), 55P‐15L (55% protein and 15% lipid) and 55P‐19L (55% protein and 19% lipid) diets. Feed consumption of fish was affected by dietary protein level, but not by dietary lipid levels. Feed efficiency ratio (FER) of fish was affected by dietary protein level, but not by dietary lipid level. Protein efficiency ratio (PER) of fish was affected by dietary protein level, but not by dietary lipid level. Nitrogen retention efficiency (NRE) of fish fed the 45P‐19L diet was higher than that of fish fed the 45P‐11L, 50P‐11L, 50P‐15L, 50P‐19L, 55P‐11L, 55P‐15L and 55P‐19L diets, but not different from that of fish fed the 45P‐15L diet. Moisture, crude protein and crude lipid contents of fish was affected by dietary protein and/or lipid level. Plasma triglyceride of fish was affected by dietary lipid level, but not by dietary protein level. In conclusion, optimum protein and lipid levels for growth and feed utilization (PER and NRE) for juvenile rockfish were 50% and 15%, and 45% and 19%, respectively, and the optimum dietary protein‐to‐energy ratio of 27.4 and 23.9 mg protein kJ?1.  相似文献   

4.
This study was conducted to investigate the influence of dietary lipid source and n‐3 highly unsaturated fatty acids (n‐3 HUFA) level on growth, body composition and blood chemistry of juvenile fat cod. Triplicate groups of fish (13.2 ± 0.54 g) were fed the diets containing different n‐3 HUFA levels (0–30 g kg?1) adjusted by either lauric acid or different proportions of corn oil, linseed oil and squid liver oil at 100 g kg?1 of total lipid level. Survival was not affected by dietary fatty acids composition. Weight gain, feed efficiency and protein efficiency ratio (PER) of fish fed the diets containing squid liver oil were significantly (P < 0.05) higher than those fed the diets containing lauric acid, corn oil or linseed oil as the sole lipid source. Weight gain, feed efficiency and PER of fish increased with increasing dietary n‐3 HUFA level up to 12–16 g kg?1, but the values decreased in fish fed the diet containing 30 g kg?1 n‐3 HUFA. The result of second‐order polynomial regression showed that the maximum weight gain and feed efficiency could be attained at 17 g kg?1 n‐3 HUFA. Plasma protein, glucose and cholesterol contents were not affected by dietary fatty acids composition. However, plasma triglyceride content in fish fed the diet containing lauric acid as the sole lipid source was significantly (P < 0.05) lower than that of fish fed the other diets. Lipid content of fish fed the diets containing each of lauric acid or corn oil was lower than that of fish fed the diets containing linseed oil or squid liver oil only. Fatty acid composition of polar and neutral lipid fractions in the whole body of fat cod fed the diets containing various levels of n‐3 HUFA were reflected by dietary fatty acids compositions. The contents of n‐3 HUFA in polar and neutral lipids of fish increased with an increase in dietary n‐3 HUFA level. These results indicate that dietary n‐3 HUFA are essential and the diet containing 12–17 g kg?1 n‐3 HUFA is optimal for growth and efficient feed utilization of juvenile fat cod, however, excessive n‐3 HUFA supplement may impair the growth of fish.  相似文献   

5.
Cachara, Pseudoplatystoma reticulatum, is a high commercial value carnivorous catfish in Brazil, but whose dietary protein requirement is still unknown. Aiming to determine this requirement, groups of 15 juveniles (16.08 ± 1.13 g) were fed isoenergetic diets (4600 kcal/kg gross energy) with increasing levels of crude protein (30, 35, 40, 45, 50, and 55%). After 60 d, regression analysis revealed a quadratic effect (P < 0.05) of increasing dietary crude protein concentration on growth variables. The highest weight gain and specific growth rate as well as the best feed conversion were shown by fish fed the 50% crude‐protein diet. Similarly, protease activities were significantly higher (P < 0.05) in fish fed 50% crude protein. However, the highest protein retention was observed in fish fed the 45% crude‐protein diet. Protein and dry matter digestibilities did not differ (P > 0.05) for diets containing 40, 45, or 50% crude protein. Therefore, based on weight gain and at a dietary energy concentration of 4600 kcal/kg, the estimated protein requirement for juvenile cachara between 16 and 85 g is 49.25% crude protein. This is equivalent to 44.79% digestible protein and a gross energy to digestible protein ratio of 10.27 kcal/g.  相似文献   

6.
A 83‐d feeding experiment was undertaken to evaluate the effects of dietary protein and lipid levels on growth and body composition of spotted halibut, Verasper variegatus (initial average weight of 93.0 ± 1.0 g). Nine diets were formulated to contain three protein levels (40, 45, and 50%), each with three lipid levels (8, 12% and 16%). Each diet was randomly fed to triplicate groups of 20 fish per tank in the indoor culture system. Results showed that the survival rate of fish was not significantly affected by protein and lipid levels (P > 0.05). Weight gain, specific growth rate (SGR), and feed intake (FI) significantly decreased with the increasing dietary lipid levels (P < 0.05). Feed efficiency significantly increased while the feed conversion ration significantly decreased with increasing dietary protein levels (P < 0.05). Weight gain, SGR, FI, and feed efficiency of fish fed 50% protein and 8% lipid were significantly higher than that of the other groups. For each level of dietary lipid, the increase in dietary protein resulted in significant increases in whole‐body crude protein (CP) contents (P < 0.05); the increase in dietary lipid caused significant increases in whole‐body crude lipid content and gross energy at each protein level (P < 0.05). The muscle CP, lipid, and gross energy had the same tendency. The results of this study indicated that increasing dietary lipid levels did not result in a protein‐sparing effect. It could be recommended that the proper dietary protein and lipid levels of spotted halibut were 50 and 8%, respectively.  相似文献   

7.
A 10‐wk feeding trial was conducted to estimate the dietary protein requirements of juvenile Dianchi golden‐line barbell, Sinocyclocheilus grahami (initial average weight 7.55 g). Five isocaloric diets were formulated to contain graded levels of protein (29, 34, 39, 44, and 49%). Each diet was fed to triplicate groups of fish in a recirculating rearing system maintained at 18–22 C. Feed intake of fish fed the diet with 39% protein was significantly higher than those fed the diet with 29, 34, and 49% protein (P < 0.05). Weight gain, specific growth rate (SGR), and protein gain significantly increased with increasing dietary protein levels up to 39% (P < 0.05), whereas no significant differences were observed among fish fed the diet with 39, 44, and 49% protein (P > 0.05). In contrast, feed conversion ratio was significantly decreased with increasing dietary protein levels up to 39%. Maximum protein retention and protein efficiency ratio were observed in fish fed the diet with 39% protein. The regression analysis based on SGR and protein gain showed that the dietary protein requirements of juvenile S. grahami were 38.57% or 41.09% (equivalent to ca. 32.94% or 35.42% estimated digestible protein) of diet with a calculated digestible energy of 3.6 kcal/g.  相似文献   

8.
An 83‐day feeding trial was carried out to determine the effect of different dietary protein and lipid levels on the growth performances and carcass composition of white seabream. Juveniles (10.7±0.2 g) were fed to satiation on four diets, varying in protein (15% and 28%) and lipid (12% and 16%) levels. The best growth performance was observed in fish fed on diets with higher protein level. Dietary lipids did not affect growth performance. Voluntary feed intake decreased with a increasing dietary protein level at both dietary lipid levels. Feed conversion ratio improved with the increase in dietary protein and lipid levels. Carcass composition remained unaltered by dietary protein levels (P>0.05). Carcass protein content tended to decrease, while lipid content tended to increase in groups fed on 16% lipid, compared with the 12% lipid groups. Additionally, protein retention was higher in fish fed on low‐protein and low‐lipid levels, compared with the high‐protein and high‐lipid group (29% vs. 19%). Lipid retention increased significantly with dietary protein level (P<0.001). Energy retention improved with dietary protein, but was not affected by dietary lipid levels. On the basis of our results, feeding white seabream on 15% dietary protein had a negative effect on growth and feed utilization. Dietary lipid did not induce a protein‐sparing action in Diplodus sargus juveniles.  相似文献   

9.
Three 9‐wk feeding trials were performed to assess the effects of dietary protein and lipid levels on the growth, feed utilization, and body composition of turbot, Scophthalmus maximus Linnaeus, at three different growth stages with initial average weight 4.5 ± 0.01, 59.1 ± 0.24, and 209.1 ± 0.21 g, respectively. Six practical test diets were formulated to contain three protein levels (45, 50, and 55%), each of which was supplemented with two lipid levels (12.0 and 16.0%), to produce a range of P : E ratios (from 87.4 to 110.0 mg protein/kcal). The results of three experiments suggested that growth performance generally improved with increasing dietary protein irrespective of dietary lipid. Fish fed diets with 55% protein (12 and 16% lipid, P : E ratio of 110.9 and 107.1 mg protein/kcal) had the highest specific growth rates (SGRs), feed efficiency ratios (FERs), and energy retention. At the same protein level, FER and protein efficiency ratio (PER) increased significantly with the increase of lipid except in large fish (initial average weight 209.1 ± 0.21 g). SGR of medium turbot (initial average weight 59.1 ± 0.24 g) was also improved by the lipid increase, indicating a protein‐sparing effect of lipid.  相似文献   

10.
To allow for the initial identification of practical diet formulations for red snapper culture, the present study was conducted to evaluate the effects of feeding varying levels of dietary protein and lipid on growth and body composition of juvenile and sub‐adult red snapper. Twelve diets were formulated to contain varying levels of dietary protein and lipid. In trial 1, juvenile red snapper (initial mean weight 5.9 g) were offered diets with graded levels of dietary protein (32%, 36%, 40%, 44%) and practical energy to protein ratios. In trial 2, juvenile red snapper (initial mean weight 8.64 g) were offered isonitrogenous diets (44% protein) containing graded levels of dietary lipid (8%, 10%, 12%, 14%). Sub‐adult fish (initial mean weight 151.5 g) were used in trial 3 and maintained on diets similar to those of trial 1 (32–44% protein). Sub‐adult fish (initial mean weight 178.3 g) in trial 4 were offered isonitrogenous diets containing 32% dietary protein and graded levels of dietary lipid (6%, 8%, 10%, 12%). There were no significant differences in growth, feed efficiency ratio (FER) or survival in juvenile fish. Juvenile fish offered 32% dietary protein exhibited a significantly greater (P=0.0497) protein conversion efficiency (PCE) than fish offered a diet containing 44% dietary protein. Juvenile fish in trial 2 also had significantly higher (P=0.005) intraperitoneal fat ratios (IPFRs) at 14% dietary lipid than fish offered diets containing 8–10% dietary lipid, and displayed trends towards greater protein as a percent of whole‐body composition at 8–10% dietary lipid. Sub‐adult snapper in trials 3 and 4 showed no significant differences in growth, FER or survival. However, in trial 4 there was a general trend towards increased % weight gain (P=0.0615), FER (P=0.0601) and final mean weight (P=0.0596) with increasing levels of dietary lipid. Fish in trial 4 offered 6% dietary lipid also had significantly lower (P=0.0439) IPFR and PCE (P=0.0188) than fish offered 12% dietary lipid. Based on data obtained from these trials, inclusion of dietary protein at levels of 32–36% appears sufficient to support growth. For this level of protein, dietary lipid should be ~10% in order to meet the energetic demands of the fish and to spare dietary protein for growth.  相似文献   

11.
A 74‐day trial was undertaken to evaluate the effects of temperature (16 and 22 °C) and dietary protein/lipid ratio on the performance of juvenile Senegalese sole (mean body weight: 6.4 g). Four experimental diets were formulated to contain two protein levels (550 g kg?1 and 450 g kg?1) combined with two lipid levels (80 g kg?1 and 160 g kg?1). Growth was higher at 22 °C and within each temperature in fish fed diets 55P8L and 45P16L. Feed efficiency, N retention (% NI) and energy retention (% EI) were higher at 22 and at both temperatures in fish fed diet 55P8L. Temperature affected whole‐body composition, with dry matter, protein, lipid and energy being higher and ash lower in fish kept at higher temperature. Independently of temperature, whole‐body lipid, energy and ash were higher and protein was lower in fish fed the high‐lipid diets. Visceral and hepatosomatic indices were not affected by diet composition but were higher in fish kept at 16 °C. Liver glycogen and lipid contents and activities of glutamate dehydrogenase, alanine and aspartate aminotransferases were not affected by diet or water temperature. Malic enzyme (ME) and glucose 6‐phosphate dehydrogenase activities were higher in fish fed the low‐lipid diets. ME activity was higher at lower temperature. In conclusion, increasing water temperature from 16 to 22 °C improves growth and feed efficiency of Senegalese sole juveniles; regardless of water temperature, the diet with 550 g kg?1 protein and 80 g kg?1 lipid promoted the best growth and feed efficiency.  相似文献   

12.
A 12‐wk experiment was conducted to determine the dietary biotin requirement of the fingerling Catla catla (7.9 ± 0.37 cm; 3.5 ± 0.12 g). Eight diets (35% crude protein, 16.72 kJ/g gross energy) with different levels of biotin (0, 0.05, 0.1, 0.5, 1.0, 1.5, 2.0, and 2.5 mg/kg diet) were fed to triplicate groups of fish to apparent satiation. Highest percent weight gain, protein retention efficiency, and best feed conversion ratio were observed in fish fed 0.5 mg biotin per kg diet. However, fish fed diets containing dietary biotin of 1.0, 1.5, 2.0, and 2.5 mg/kg did not show significant (P > 0.05) differences compared to those fed on dietary biotin of 0.5 mg/kg. Hematological indices, including hematocrit value, hemoglobin content, and red blood cell counts were found to be directly proportional (P < 0.05) to the dietary biotin levels up to 0.5 mg/kg, beyond which a plateau was recorded. Pyruvate carboxylase activity (PCA) was also found to increase with the incremental levels of dietary biotin up to 0.5 mg/kg and further increasing dietary biotin concentration led to stagnation in PCA of fish. Liver biotin concentrations responded positively (P < 0.05) until saturation, which occurred at 1.0 mg/kg diet. Broken‐line analysis of percent weight gain, protein retention efficiency, PCA, and liver biotin concentrations demonstrated that fingerling C. catla require biotin in the range of 0.41–0.87 mg/kg diet.  相似文献   

13.
An experiment was conducted to determine the effect of dietary lipid levels on growth performance and body composition of grouper Epinephelus coioides juveniles cultured in floating netcages (1.5 m × 1 m × 1.5 m). Six isonitrogenous diets (53% dietary protein) with increasing dietary lipid concentration (5.16, 7.38, 9.73, 12.36, 14.13, 16.04% of dry material, DM) were fed to satiation to triplicate groups of 20 fish (mean weight: 10.9 ± 0.1 g) for 56 days. Dietary energy levels were 300, 322, 340, 371, 382, 400 kcal/100 g DM, respectively. Fish fed the 9L diet had the highest weight gain (WG) and specific growth rate (SGR), but they were not significantly different from that of fish fed the 7L or 12L diet (p > 0.05). FI varied inversely with dietary lipid levels. The poorest FCR and the lowest PER were observed in fish fed the 5L diet but these parameters showed no significant differences (p > 0.05) for fish fed the dietary lipid level ranging from 9 to 16%. Nitrogen intake decreased with dietary lipid levels. Fish fed the 7L diet showed the highest N gain, which was not markedly different from that of fish fed the 9L and 12L diets (p > 0.05). N retention was significantly lower in fish fed the 5L diet than in the other groups. Lipid intake and lipid gain increased with dietary lipid levels. Lipid retention (%) of the 7L diet was lowest but showed no significant differences among other treatments (p > 0.05). Proximate composition of fish body was significantly affected by dietary lipid level (p < 0.05). Body lipid content increased in direct proportion to dietary lipid levels. In contrast, moisture content of whole-body was correlated negatively to dietary lipid level. Dietary lipid content had no significant effect on protein content in whole-body and white muscle (p > 0.05). Condition factor (CF), hepatosomatic index (HSI) and viscerosomatic index (VSI) increased with increasing dietary lipid level. Based on second-order polynomial regression analysis of WG against dietary lipid level, a breakpoint of 10.0% was indicated to be the optimal dietary lipid concentration for maximum growth for grouper Epinephelus coioides juveniles cultured in floating netcages.  相似文献   

14.
An 11‐week feeding trial was conducted to evaluate the effects of dietary protein and/or energy levels on growth, feed efficiency and proximate composition of juvenile (average weight: 21.5 g) common carp (Cyprinus carpio L.) fed various diets based on constant daily protein input. Five experimental diets were prepared. One group of diets (diets 1, 2 and 3) contained three crude protein (P) levels (35%, 40% and 45%) with a constant gross energy (GE) of 3.8 kcal g?1 diet. The second group of diets (diets 4 and 5) were formulated to contain a GE of 4.3 or 4.9 kcal g?1 diet and 40% or 45% protein levels, respectively, where GE/P was constant at 10.8 kcal g?1 protein. Fish receiving diet 1 served as the control; they were hand‐fed to visual satiety. Feed allowance for diets 2 and 4 was 87.5% of the control. Feed allowance for fish receiving diets 3 and 5 was 77.8% of the control. Thus, all tanks received the same daily protein input. When gross energy in the diets was constant, 3.8 kcal g?1 diet, weight gain of fish fed diet 2 at 87.5% satiation was significantly higher than that of fish fed diet 3 at 77.8% of satiation. When the GE/P in the diets was constant, 10.8 kcal g?1 protein, weight gain of fish fed diet 1 was significantly higher than that of fish fed diet 5 at 77.8% satiation. The feed efficiency ratio (FER) for diets 2–5 was significantly higher than for diet 1 at constant GE and GE/P, and this improved linearly as dietary protein levels increased. The protein efficiency ratio (PER) for diet 2 was significantly higher than for diet 3 at constant GE. However, PER was not significantly different at constant GE/P. Protein retention of fish fed diet 2 was significantly higher than that of fish fed diet 3 at constant GE. Protein retention of fish linearly decreased at constant GE/P. The energy efficiency ratios (EER) for diets 2 and 3 were significantly higher than for diet 1 at constant GE. Moisture and protein contents of the whole body of fish were not significantly different at constant GE, but they decreased linearly at constant GE/P. The lipid content of fish fed diet 1 was significantly lower than that of fish fed diet 2 at constant GE, and body lipid content linearly increased at constant GE/P. These results indicate that growth and feed efficiency for common carp fed a 40% protein diet with 3.8 kcal g?1 diet GE at 87.5% satiation rate was superior to those for the fish fed either a 35% protein diet with 3.8 kcal g?1 diet GE at 100% satiation rate or a 45% protein diet with either a 3.8 or 4.9 kcal g?1 diet GE at 77.8% satiation rate.  相似文献   

15.
A feeding trial was conducted in aquaria with juvenile largemouth bass Micropterus salmoides to examine the effects of increasing dietary lipid levels on growth and body composition. Feed‐trained largemouth bass fingerlings were graded to a similar size (16.3 ± 2.4 g) and randomly stocked into 15 113.6‐L glass aquaria at 25 fish/aquarium. Fingerlings were fed twice daily to apparent satiation with one of five isonitrogenous extruded experimental diets based on practical ingredients. Diets contained approximately 40% crude protein and either 0, 5, 10, 15, or 20% added lipid. Due to background lipids in the ingredients, this equated to total lipid levels of 7, 10, 16, 20, and 23%, respectively. These diets had protein to energy ratios of 137, 120, 106, 95, and 86 mg/kcal, respectively. There were three replicate aquaria per dietary treatment. After 12 wk, there were no statistically significant differences (P > 0.05) in average weight (g), specific growth rate (% body weight/d), survival (%), or protein efficiency ratio (PER, %) among fish fed the five diets, which averaged 79.3 ± 5.6, 1.9 ± 0.1, 99.5 ± 1.5, and 2.11 ± 0.19, respectively. Juvenile largemouth bass fed diets containing 15 and 20% added lipid had significantly lower (P± 0.05) feed conversion ratios (FCR) (1.1 ± 0.0 and 1.1 ± 0. 1, respectively) than fish fed diets containing 0, 5, and 10% added lipid (1.4 ± 0.1, 1.3 ± 0. 1, and 1.3 ± 0.2, respectively). Proximate analysis of whole body samples indicated a significantly higher (P ± 0.05) lipid content in fish fed 15 and 20% added lipid compared to fish fed lower lipid levels. While FCR was lowest in fish fed the 15 and 20% added lipid diets, increased whole body lipid deposition may indicate that these levels are above optimal levels for juvenile largemouth bass. It appears that 7–16% total dietary lipid (P/E:137–106 mg/kcal) is sufficient to support efficient growth without impacting body composition in juvenile largemouth bass when fed a diet containing 40% crude protein.  相似文献   

16.
A 120-day feeding trial was designed to determine the effects of different dietary protein and lipid levels and protein to energy ratio (P:E) on growth performance and feed utilization of hatchery-reared juvenile spotted babylon, Babylonia areolata, cultured under a flow-through seawater system. Six diets were formulated to contain three protein levels (18, 28, and 36%) and two lipid levels (10 and 15%) in a 3 × 2 factorial design with three replicates to provide six different dietary P:E ratios (50.17, 49.09, 68.50, 65.85, 88.66, and 85.36 mg protein/kcal). Each replicate was stocked with 50 snails (0.12 + 0.01 g, initial weight) and fed to satiation once daily. The results showed that survival was above 96% at the end of the feeding trial in all groups and was not affected by either dietary protein level or dietary lipid level. The highest significant (P < 0.05) growth and feed utilization were observed for juveniles fed diet with a P:E ratio of 88.66 kcal g−1 diet. With respect to dietary protein and lipid levels, the highest (P < 0.05) values for growth and feed efficiency were observed for snails fed a diet containing 36% protein level and the same trend was observed for snails fed a diet with 10% lipid level. This results indicated that the diet containing 36% protein and 10% lipid level with a dietary P:E ratio of 88.66 mg protein/kcal would be suitable for optimum growth and feed utilization of B. areolata juveniles.  相似文献   

17.
The approximate levels of dietary protein and energy that would sustain good growth and survival of the mangrove red snapper Lutjanus argentimaculatus (Forsskal) were determined in two feeding experiments. In the preliminary experiment, six fish meal‐based diets were formulated to contain three protein levels (35%, 42.5% and 50%) and two lipid levels (6% and 12%) for each protein, with dietary energy ranging from 14.6 MJ kg?1 to 20.5 MJ kg?1. The protein to energy (P/E) ratios of diets ranged from 20.6 mg protein kJ?1 to 27.5 mg protein kJ?1. Diets were fed for 100 days to triplicate groups of snappers with an average initial weight of 24.8 ± 0.4 g. No significant interaction between different levels of protein and lipid was observed. Survival rates (93.8% to 100%), feed conversion ratios (FCR) (2.61–3.06) and condition factors (K) were not affected by different dietary treatments. Regardless of lipid level, fish fed 50% protein diets had a significantly higher specific growth rate (SGR) than fish fed the 35% protein diets, but not compared with the 42.5% diets (P < 0.05). Increasing lipid to 12% in all protein levels resulted in no improvement in growth over the 6% level. Fish body moisture did not vary while lipid levels based on dry matter were high (27.9% to 33.7%). Snapper appear to require more than 40% dietary protein and a high dietary energy level for good growth. In the second experiment, fish (21.1 ± 0.1 g) in four replicate groups were fed for 94 days with three diets (39%, 44% and 49% protein with P/E ratios of 21.1, 23.3 and 25.5 mg protein kJ?1 respectively) containing similar dietary energy levels of about 19 MJ kg?1. Average final weight, SGR and FCR were significantly higher in diets containing 44% and 49% protein diets (P > 0.05). There were no differences in survival rates, protein efficiency ratio (PER) and nutrient composition of snapper flesh. All fish had fatty livers. Results indicated that the diet containing 44% protein with a P/E ratio of 23.3 mg protein kJ?1 was optimum for snapper growth under the experimental conditions used in the study.  相似文献   

18.
To examine the effects of dietary lipids on the growth and feed utilization of jade perch juveniles, Scortum barcoo, diets containing 36.3% crude protein supplemented with increasing lipid levels (6, 9, 12, and 15% of the dry matter) were used to feed triplicate groups of 30 fish for 60 d. At the end of the experiment, more than 95% fish survived well from all diet groups (P > 0.05). Measurements on the weight gains and the daily specific growth rates indicated that fish fed with diets of 12 and 15% lipids exhibited higher growth rates (P < 0.05); evaluations for the feed conversion ratio and the protein efficiency ratio indicated that fish fed with 12 and 15% lipid diets used their feed and dietary proteins more efficiently (P < 0.05). The muscle lipid and dry matter contents increased dramatically in fish fed with higher dietary lipid levels (P < 0.05). The highest lipid contents were obtained from fish in the 15% lipid diet group and the highest amount of dry matters from the 12% lipid diet group. On the other hand, protein contents in fish muscles declined with increasing dietary lipid levels (P < 0.05), and the lowest values were shown in the 15% lipid diet group. Ash contents showed no significant differences from muscles of fish fed with four different diets (P > 0.05). Together, increasing lipid levels in fish diets was effective to improve fish growth, feed efficiency, and protein utilization.  相似文献   

19.
Excessive carbohydrates (CHO) in diets for largemouth bass (LMB), Micropterus salmoides, are suspected of accumulating glycogen in hepatocytes, which may result in liver dysfunction. This study evaluated the effect of graded levels of dietary CHO on growth, survival, and liver histology of LMB. One hundred feed‐trained advanced fingerling LMB (128.5 ± 21.5 g) were stocked into each of nine 3400 ‐ L polyethylene tanks. Tanks were randomly assigned one of three experimental diets containing different CHO levels (13, 19, or 25% of diet). The extruded diets were approximately isonitrogenous (42% crude protein) and isocaloric (3 kcal/g energy). There were three replicate tanks per dietary treatment. Bass were fed to apparent satiation twice daily for 148 d. Survival was significantly higher (P ≤ 0.05) for fish fed the 13 and 19% CHO diets (89 and 90%, respectively) compared to those fed the 25% CHO diets (82%). Average harvest weight of fish fed the 13% CHO diet (380 g) was significantly greater (P ≤ 0.05) than for fish fed other diets. Average harvest weight of fish fed the 19% CHO diet (347 g) was significantly greater (P ≤ 0.05) than for fish fed the 25% CHO diet (310 g). Specific growth rates (%/d) were significantly higher (P ≤ 0.05) in fish fed the 13 and 19% CHO diets than in fish fed 25% CHO diet. Feed conversion ratios for fish fed the 13 and 19% CHO diets (2.3 and 2.4, respectively) were both significantly lower (P ≤ 0.05) than in fish fed the 25% CHO diet (3.6). There were no significant differences (P > 0.05) in condition factor, protein efficiency ratio, hepatosomatic index, or liver glycogen concentration among fish fed the different experimental diets. Overall, mean blood glucose levels in fish fed the 13 and 19% CHO diets (61.0 and 71.2 mg/dL, respectively) were significantly lower (P ≤ 0.05) than in fish fed the 25% CHO diet (87 mg/dL). Histopathological examination of livers from fish fed the three diets was used to score the degree of vacuolization of hepatic tissues (0 = normal, 1 = slight, 2 = mild, 3 = moderate, and 4 = severe). Regression of vacuolization scores on dietary CHO levels was statistically significant (P ≤ 0.05) and indicated a direct positive relationship between liver vacuolization and dietary CHO level (R2 = 0.57). These data indicate that LMB grow faster and use feeds more efficiently when CHO are maintained at <20% of diet. CHO levels >20% negatively impacted liver histology, but a liver tissue analyses did not document glycogen accumulation.  相似文献   

20.
Effect of dietary protein and lipid levels on growth and body composition of juvenile turbot was determined at optimum salinity and temperature conditions of 17 g L?1 and 19.2 °C, respectively, by using 3 × 2 (protein levels: 550, 600 and 650 g kg?1; lipid levels: 69 and 168 g kg?1) factorial design with three replications of each. Fish were hand‐fed to satiety twice daily throughout the feeding trial. Weight gain and specific growth rate of fish were significantly (P < 0.05) increased with increased dietary lipid level, but not by dietary protein level. Daily feed intake was significantly (P < 0.05) affected by both dietary protein and lipid levels. Feed efficiency ratio and protein efficiency ratio were significantly (P < 0.05) affected by dietary lipid level, but not by dietary protein level. Moisture content of whole body was significantly (P < 0.05) affected by dietary lipid level, but not by dietary protein level. Crude lipid content of whole body was significantly (P < 0.05) affected by dietary lipid level, but not by dietary protein level. Significantly higher 20:5n?3, 22:6n?3 and n?3 highly unsaturated fatty acids were observed in turbot fed the low lipid diet than fish fed the high lipid diet in all protein levels, but significantly lower 18:2n?6 was observed in fish fed the former compared with the latter. In considering results of growth, specific growth rate and efficiency of feed, optimum dietary protein and lipid levels for juvenile turbot seemed to be 550 and 168 g kg?1 of the diet, respectively, under optimum salinity and temperature conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号