首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 70 毫秒
1.
2.
We determined the complete genomic RNA sequence of a new type of betanodavirus Korea shellfish nervous necrosis virus (KSNNV) isolated from shellfish. Compared with other isolates representing four genotypes of betanodaviruses, the identity of the whole nucleotide sequence of the virus was in the range of 76%–83% with the presence of specific genetic motifs and formed a separate new branch in the phylogenetic analysis. In pathogenic analysis by immersion method, KSNNV‐KOR1 shows 100% cumulative mortality like SFRG10/2012BGGa1 (RGNNV) in newly hatched sevenband grouper and mandarin fish, which is clearly different from those found in negative control groups. There were no significant differences in increasing rates of mortality and viral intra‐tissue concentration of larval fishes infected with KSNNV‐KOR1 at both 20 and 25°C water temperature. Histopathological examination of each fish species in the moribund stage revealed the presence of clear vacuoles in both brain and retinal tissues similar to typical histopathology features of RGNNV. In the present study, we first report a new betanodavirus from shellfish as the aetiological agent of viral nervous necrosis disease in fish with complete genomic nucleotide sequence and pathogenic analysis.  相似文献   

3.
4.
Betanodavirus infection was diagnosed in larvae of farm‐raised tilapia Oreochromis niloticus (L.), in central Thailand. Extensive vacuolar degeneration and neuronal necrosis were observed in histological sections with positive immunohistochemical staining for betanodavirus. Molecular phylogenetic analysis was performed based on the nucleotide sequences (1333 bases) of the capsid protein gene. The virus strain was highly homologous (93.07–93.88%) and closely related to red‐spotted grouper nervous necrosis virus (RGNNV).  相似文献   

5.
Asian sea bass, Lates calcarifer (Bloch), exhibited strong immune responses against a single injection of the formalin-inactivated red-spotted grouper nervous necrosis virus (RGNNV), a betanodavirus originally isolated in Japan. Fish produced neutralizing antibodies at high titre levels from days 10 (mean titre 1:480) to 116 (1:1280), with the highest titre at day 60 post-vaccination (1:4480). When fish were challenged with the homologous RGNNV at day 54 post-vaccination, there were no mortalities in both the vaccinated and unvaccinated control fish. However, a rapid clearance of the virus was observed in the brains and kidneys of vaccinated fish, followed by a significant increase in neutralizing-antibody titres. Furthermore, the vaccine-induced antibodies potently neutralized Philippine betanodavirus isolates (RGNNV) in a cross-neutralization assay. The present results indicate the potential of the formalin-inactivated RGNNV vaccine against viral nervous necrosis (VNN) of Asian seabass.  相似文献   

6.
Piscine nodaviruses (betanodaviruses) have been tentatively divided into four genotypes (SJNNV, RGNNV, TPNNV and BFNNV) and it is suggested that host specificity is different among these genotypes. In the present study, a betanodavirus [sevenband grouper nervous necrosis virus (SGNNV)] belonging to the redspotted grouper nervous necrosis virus (RGNNV) genotype, to which most betanodaviruses from warm water fish are identified, was evaluated for its pathogenicity to hatchery-reared juveniles of several marine fish species. When challenged with the virus by a bath method (10(5.1) TCID50 mL(-1)), sevenband grouper, Epinephelus septemfasciatus, Japanese flounder, Paralichthys olivaceus, and tiger puffer, Takifugu rubripes, displayed behavioural abnormalities and mortalities with distinct histopathological signs of viral nervous necrosis and heavily immunostained cells were observed in the central nervous tissues and retina. Bath-challenged rock fish, Sebastiscus marmoratus, and a hybrid of sevenband grouper and kelp grouper, E. moara, did not display any behavioural abnormality or mortality during the experimental period, although many fish showed slight signs of viral infection in nerve cells. Kelp grouper and red sea bream, Pagrus major, showed no behavioural abnormality, mortality or immunohistopathological changes after the virus challenge. These results are, in part, consistent with the natural host range of RGNNV, indicating the complexity in the host specificity of betanodaviruses.  相似文献   

7.
An aquabirnavirus (ABV) and a formalin-inactivated betanodavirus [redspotted grouper nervous necrosis virus (RGNNV)] were investigated for their potential to prevent RGNNV-induced viral nervous necrosis (VNN) in the sevenband grouper, Epinephelus septemfasciatus (Thunberg). Three groups of fish were injected intramuscularly with ABV, intraperitoneally with inactivated RGNNV (iRGNNV) or with both ABV and iRGNNV. At 3, 7, 14, 21 and 28 days post-injection (p.i.), fish were challenged by intramuscular injection of RGNNV. Control fish, which received neither ABV nor iRGNNV, showed high mortalities in all RGNNV challenges. Fish that received only ABV exhibited relative percent survival (RPS) of >60 against RGNNV challenges at 3, 7, 14 and 21 days p.i., but not at 28 days p.i., while fish that received only iRGNNV showed significantly higher protection against RGNNV challenges only at 21 and 28 days p.i. In contrast, fish that received both ABV and iRGNNV showed 60 or higher RPS against all RGNNV challenges. Fish inoculated with iRGNNV with or without ABV exhibited similar high titres of neutralizing antibodies to RGNNV at 14, 21 and 28 days p.i. These results indicate that combined inoculation with iRGNNV and ABV conferred both rapid non-specific and delayed specific protection against VNN.  相似文献   

8.
9.
Senegalese sole has been shown to be highly susceptible to betanodavirus infection, although virulence differences were observed between strains. To study the mechanisms involved in these differences, we have analysed the replication in brain tissue of three strains with different genotypes during 15 days after bath infection. In addition, possible portals of entry for betanodavirus into sole were investigated. The reassortant RGNNV/SJNNV and the SJNNV strain reached the brain after 1 and 2 days postinfection, respectively. Although no RGNNV replication was detected until day 3–4 postinfection, at the end of the experiment this strain yielded the highest viral load; this is in accordance with previous studies in which sole infected with the reassortant showed more acute signs and earlier mortality than the RGNNV and SJNNV strains. Differences between strains were also observed in the possible portals of entry. Thus, whereas the reassortant strain could infect sole mainly through the skin or the oral route, and, to a minor extent, through the gills, the SJNNV strain seems to enter fish only through the gills and the RGNNV strain could use all tissues indistinctly. Taken together, all these results support the hypothesis that reassortment has improved betanodavirus infectivity for sole.  相似文献   

10.
11.
This work describes betanodavirus infection in two species of groupers (family Serranidae) from the Algerian coast: the dusky grouper Epinephelus marginatus and the golden grouper Epinephelus costae. At necropsy, characteristic clinical signs, external injuries, clouded eyes and brain congestion, generally associated with viral encephalopathy and retinopathy (VER) infection were observed. The partial sequences of RNA1 and RNA2 from two viral strains were obtained, and the phylogenetic analysis revealed the presence of the red-spotted grouper nervous necrosis virus (RGNNV) genotype closely related to strains previously detected in groupers in the same geographic area. Results obtained in this study support the hypothesis that VER disease is endemic in the Algerian grouper population.  相似文献   

12.
Using two serially executed PCRs, the discriminative multiplex two‐step RT‐PCR (DMT‐2 RT‐PCR) following the detection seminested two‐step RT‐PCR (DSN‐2 RT‐PCR), we found a high frequency presence of BFNNV genotype as well as RGNNV in various domestic and imported shellfish. This was definitely different from the previous reports of outbreaks and asymptomatic infection only by the RGNNV genotype in cultured finfish in Korea. Cultivation of NNV entrapped in shellfish was performed successfully by a blind passage. Thus, in an attempt to elucidate the epidemiology of betanodavirus, experiments conducted on 969 shellfish samples concluded that (i) distribution of NNV genotype, especially BFNNV, in shellfish is clearly different from that found in finfish of the world; (ii) unlike RGNNV, which showed a high rate in summer, BFNNV showed no seasonal variation and this result suggests BFNNVs in the marine environment remain fairly constant throughout the year; and (iii) the entrapped virus in shellfish was alive and culturable in vitro. These results are the first report of high level prevalence of in vitro culturable NNV in shellfish, for both BFNNV and RGNNV, which may present a potential risk in transmitting nodaviruses to host species in a marine environment.  相似文献   

13.
In recent years, the use of cleaner fish for biological control of sea lice has increased considerably. Along with this, a number of infectious diseases have emerged. The aim of this study was to investigate the susceptibility of lumpfish (Cyclopterus lumpus) to Betanodavirus since it was detected in asymptomatic wild wrasses in Norway and Sweden. Three betanodaviruses were used to challenge lumpfish: one RGNNV genotype and two BFNNV genotypes. Fish were injected and monitored for 4 weeks. Brain samples from clinically affected specimens, from weekly randomly selected fish and survivors were subjected to molecular testing, viral isolation, histopathology and immunohistochemistry. Reduced survival was observed but was attributed to tail‐biting behaviour, since no nervous signs were observed throughout the study. Betanodavirus RNA was detected in all samples, additionally suggesting an active replication of the virus in the brain. Viral isolation confirmed molecular biology results and revealed a high viral titre in BFNNV‐infected groups associated with typical lesions in brains and eyes of survivor fish. We concluded that lumpfish are susceptible to Betanodavirus, as proven by the high viral titre and brain lesions detected, but further studies are necessary to understand if Betanodavirus can cause clinical disease in this species.  相似文献   

14.
15.
Viral encephalopathy and retinopathy (VER) is one of the most devastating and economically relevant diseases for marine aquaculture. The presence of betanodavirus in freshwater fish is recorded, but very little is known about VER outbreaks in marine species reared in freshwater. Our study investigated the ability of betanodavirus to cause disease in European sea bass, Dicentrarchus labrax, reared at different salinity levels. Fish were challenged with RGNNV or mock infected by bath at different salinity levels (freshwater, 25‰ and 33‰). Fish were checked twice a day and the dead ones were examined by standard virological techniques, by rRT‐PCR and by histochemical and immunohistochemical analyses. All the infected groups showed a significant higher mortality rate than the one of the mock‐infected group. VERv presence was confirmed by rRT‐PCR. Histochemical and immunohistochemical analyses highlighted the typical lesions associated with VER. Our results highlight that salinity does not affect the ability of betanodavirus to induce clinical signs and mortality in European sea bass infected under experimental conditions. These results underline the great adaptation potential of VERv, which in combination with its already known high environmental resistance and broad host range, may explain the diffusion of this disease and the threat posed to aquaculture worldwide.  相似文献   

16.
Viral nervous necrosis (VNN) affects more than 120 species mostly belonging to the order Perciformes. However, none of the brackishwater species belonging to the family Cichlidae under the order Perciformes are reported to be susceptible. Hence, the present experiment was undertaken to study the susceptibility of the brackishwater cichlid, pearlspot, Etroplus suratensis to NNV. Thirty‐day‐old pearlspot larvae were infected with NNV by immersion. Mortality was recorded till 14 days post‐infection, and the infected larvae were subjected to nested RT‐PCR and histology. The virus was isolated from infected larvae using SSN‐1 cells. To study the replication of the virus in vitro, primary cultured brain cells of E. suratensis and IEK cells were infected with NNV. No mortality was observed in any of the control or experimentally infected larvae. However, the experimentally infected larvae were positive for NNV by nested RT‐PCR and the virus was isolated using SSN‐1 cells. Further, the infected pearlspot brain cells and IEK cells showed cytopathic effect at second and third passage of the virus and they were positive for NNV by nested RT‐PCR. Pearlspot is relatively resistant to VNN although the virus could replicate in the larvae and in cell culture.  相似文献   

17.
2012和2013年,山东某育苗场15–20日龄的半滑舌鳎(Cynoglossus semilaevis Günther)鱼苗出现暴发性大规模死亡,7 d内死亡率高达90%–100%。本研究调查了疾病的发生情况和临床特征,采集病鱼样品进行了组织病理学检查,并运用RT-PCR方法进行了病原的检测和基因序列分析。结果发现,半滑舌鳎鱼苗一般在7月和8月发病,发病时养殖水温为22–24℃。病鱼游泳行为异常,表现为上下翻游、螺旋性游动、全身大幅度波浪状浮动症状,但病鱼体表无出血和溃疡症状。组织病理检查发现,病鱼脑和视网膜组织出现严重的空泡化及坏死。病鱼样品的RT-PCR检测结果全部呈鱼类神经坏死病毒阳性。对得到的RT-PCR产物测序,进行BLAST比对,发现该病毒与鱼类神经坏死病毒的赤点石斑鱼神经坏死病毒(Red-spotted grouper nervous necrosis virus, RGNNV)基因型的相似性达98%以上,而与鱼类神经坏死病毒的其他3个基因型:黄带拟鲹神经坏死病毒(Striped jack nervous necrosis virus,SJNNV)、红鳍东方鲀神经坏死病毒(Tiger puffer nervous necrosis virus, TPNNV)和条斑星鲽神经坏死病毒(Barfin flounder nervous necrosis virus,BFNNV)的相似性仅为71%–78%。由此可以判定,本研究发现的引起半滑舌鳎鱼苗大规模死亡的神经坏死病毒为RGNNV基因型,半滑舌鳎也是鱼类神经坏死病毒的天然宿主。该发现在半滑舌鳎疾病防治和鱼类神经坏死病毒的流行机制研究方面都具有重要意义。  相似文献   

18.
Betanodaviruses are small ssRNA viruses responsible for viral encephalopathy and retinopathy, otherwise known as viral nervous necrosis, in marine fish worldwide. These viruses can be either horizontally or vertically transmitted and have been sporadically detected in invertebrates, which seem to be one of the possible viral sources. Twenty‐eight new betanodavirus strains were retrieved in three molluscs species collected from different European countries between 2008 and 2015. The phylogenetic analyses revealed that strains retrieved from bivalve molluscs are closely related to viruses detected in finfish in Southern Europe in the period 2000–2009. Nevertheless, a new betanodavirus strain, markedly different from the other members of the RGNNV genotype, was detected. Such a massive and varied presence of betanodaviruses in bivalve molluscs greatly stresses the risks of transmission previously feared for other invertebrates. Bivalve molluscs reared in the same area as farmed and wild finfish could act as a reservoir of the virus. Furthermore, current European regulations allow relaying activities and the sale of live bivalve molluscs, which could pose a real risk of spreading betanodaviruses across different geographic regions. To our knowledge, this is the first study, which focuses on the detection and genetic characterization of betanodaviruses in bivalve molluscs.  相似文献   

19.
20.
Viral encephalopathy and retinopathy disease caused by betanodavirus, genus of the family Nodaviridae, affects marine, wild and farmed species including sea bass, one of the most important farmed species in Europe. This work describes a reliable and sensitive indirect ELISA assay to detect betanodavirus in biological samples using a polyclonal antiserum (pAb 283) against the 283/I09 virus strain, the most common red‐spotted grouper nervous necrosis virus (RGNNV) genotype in the Mediterranean area, and a capture‐based ELISA using a monoclonal antibody (mAb 4C3) specific to a common epitope present on the capsid protein. Using adsorbed, purified VERv preparation, the detection limit of indirect ELISA was 2 μg mL?1 (3 × 105 TCID50 per mL), whereas for capture‐based ELISA, the sensitivity for the antigen in solution was 17 μg mL?1 (35 × 105 TCID50 per mL). The capture‐based ELISA was employed to detect VERv in brain homogenates of in vivo infected sea bass and resulted positive in 22 of 32 samples, some of these with a high viral load estimates (about 1.1 × 108 TCID50 per mL). The ELISA system we propose may be helpful in investigations where coupling of viral content in fish tissues with the presence of circulating VERv‐specific IgM is required, or for use in samples where PCR is difficult to perform.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号