首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 140 毫秒
1.
 丁香假单胞菌猕猴桃致病变种生物型3(Pseudomonas syringae pv. actinidiae biovar 3,Psa3)是猕猴桃溃疡病菌的世界流行群体,但仅在中国存在复杂的遗传多样性。开发适于Psa3群体分型的MLVA(multilocus variable-number tandem-repeat analysis)技术是探索中国Psa3起源与流行学特性的基础。本研究对7个Psa3菌株进行了全基因组测序,结合已公布的86个全基因组数据,进行比较分析发现,中国Psa3至少存在7个亚群;在各亚群间存在多态性的24个串联重复序列中,其中10个可以通过琼脂糖凝胶电泳区分开且变异指数合适,据此建立了适于Psa3的MLVA技术。采用该技术对分别来自贵州和陕西的62和9个Psa3菌株进行群体分型,分型结果与全基因组分析高度一致,证明该MLVA体系分型准确。MLVA分型结果表明:贵州主产区修文县Psa3有3个MLVA群体,其中亚群4的组内分化明显,代表最早发生的群体;而亚群 1和3的结构单一,且多在新果园发现,是新传入群体。总之,本研究建立了一套可用于Psa3群体分型的MLVA技术,将有助于解析中国各猕猴桃产区Psa3群体结构,以及探索中国Psa3的起源、传播和流行学特征。  相似文献   

2.
猕猴桃溃疡病菌biovar 3群体MLVA分型技术的建立与应用   总被引:1,自引:0,他引:1  
 丁香假单胞菌猕猴桃致病变种生物型3(Pseudomonas syringae pv. actinidiae biovar 3,Psa3)是猕猴桃溃疡病菌的世界流行群体,但仅在中国存在复杂的遗传多样性。开发适于Psa3群体分型的MLVA(multilocus variable-number tandem-repeat analysis)技术是探索中国Psa3起源与流行学特性的基础。本研究对7个Psa3菌株进行了全基因组测序,结合已公布的86个全基因组数据,进行比较分析发现,中国Psa3至少存在7个亚群;在各亚群间存在多态性的24个串联重复序列中,其中10个可以通过琼脂糖凝胶电泳区分开且变异指数合适,据此建立了适于Psa3的MLVA技术。采用该技术对分别来自贵州和陕西的62和9个Psa3菌株进行群体分型,分型结果与全基因组分析高度一致,证明该MLVA体系分型准确。MLVA分型结果表明:贵州主产区修文县Psa3有3个MLVA群体,其中亚群4的组内分化明显,代表最早发生的群体;而亚群 1和3的结构单一,且多在新果园发现,是新传入群体。总之,本研究建立了一套可用于Psa3群体分型的MLVA技术,将有助于解析中国各猕猴桃产区Psa3群体结构,以及探索中国Psa3的起源、传播和流行学特征。  相似文献   

3.
 选用16对毒性相关基因特异性引物对四川和重庆9个县(市)分离到的200个稻瘟病菌单孢菌株进行PCR扩增,并采用最长距离法进行聚类分析,结果显示各引物均能扩增出其目的条带,多态位点百分率(P)高达93.75%,扩增频率差异较大;200个菌株可归为70个不同的单元型,其中单元型SCH13为优势单元型;在0.86遗传相似水平上,200个菌株可划分为27个遗传宗谱,包括1个优势宗谱,3个亚优势宗谱,14个次要宗谱,9个小宗谱,层次丰富;在群体平均水平上,病菌群体具有丰富的遗传多样性(H=0.324 4,I=0.484 2),且群体间差异较大;9个种群在遗传距离为0.05水平上可分为4个类群,种群遗传谱系与地理区域分布呈一定相关性。同时,该地区的群体存在一定的遗传分化(HT=0.320 0),群体内多样性大于群体间多样性(Hs=0.179 6,Dst=0.140 4),总遗传变异的56.13%存在于群体内(Gst=0.438 7),群体间基因流动性较小(Nm=0.639 6)。本研究揭示了四川和重庆部分区域稻瘟病菌群体遗传结构、遗传多样性及其与地理分布之间的关系,为抗病育种和品种布局奠定了基础。  相似文献   

4.
为探索田间猕猴桃溃疡病菌Pseudomonas syringae pv. actinidiae(Psa)致病力丧失的分子机制,针对从猕猴桃果园中分离获得的1株不致病菌株G230,通过特异性引物检测和多基因序列分析明确其分类地位,并设计引物检测其是否由已知遗传变异引起,通过比较基因组学、基因表达、超敏反应和荧光素酶报告菌株检测确定引起菌株G230致病力丧失的原因。结果表明,不致病菌株G230为Psa生物型3(Psa3),其致病缺陷不是由已报道的遗传变异引起;基于基因组比较分析发现菌株G230中的hrpS基因被转座子ISPsy36插入破坏,导致Ⅲ型分泌系统(type Ⅲ secretion system,T3SS)不能正常表达;而在不致病菌株G230中表达hrpS基因后能恢复其T3SS功能,使其具备致病能力及激发非寄主超敏反应的能力。表明转座子ISPsy36插入hrpS基因内部可以破坏Psa的T3SS功能进而使其丧失致病力,这是自然条件下Psa3丧失致病力的一种新型机制。  相似文献   

5.
安徽省水稻条斑病菌群体遗传结构分析   总被引:1,自引:0,他引:1  
 水稻条斑病菌是近年来影响安徽水稻生产的主要有害生物。本研究利用rep-PCR指纹技术分析了来自安徽11个不同县市的水稻条斑病菌群体遗传结构。用引物BOX、REP和ERIC分别对94个菌株的基因组DNA进行了PCR扩增,结果表明3组引物共扩增出了49条指纹条带,且所扩增出的DNA条带均为多态带。在群体平均水平上,安徽省水稻条斑病菌群体Nei’s基因多样性指数(H)为 0.32,Shannon 信息指数(I)为 0.49,表明安徽省水稻条斑病菌的遗传多样性丰富,但病菌的遗传多样性在地区间存在差异。UPGMA聚类分析表明,来自毗邻地区的水稻条斑病菌种群大都聚为一类,水稻条斑病菌种群遗传谱系与地理区域分布呈现一定相关性。同时,安徽省水稻条斑病菌群体存在一定的遗传分化,遗传变异主要来源于群体内部。  相似文献   

6.
内蒙古地区天然臭柏种群遗传多样性的RAPD分析   总被引:7,自引:0,他引:7  
应用随机扩增多态性DNA(RAPD)标记法研究了内蒙古地区臭柏种群的遗传分化,所用的18条引物对4个臭柏种群的55个样本扩增出124个位点,其中多态位点100个,多态率达80.7%。种内的平均Nei's多样性指数和Shannon's多样性指数分别为0.286和0.428,种群内分别为0.232和0.347,基因多样性变化趋势为毛乌素沙地(0.258,0.386)>阴山山脉西部(0.258,0.376)>浑善达克沙地(0.231,0.345)>内蒙古贺兰山(0.184,0.281)。臭柏种群总的基因多样性(Ht=0.288),大于种群间的基因多样性(Hs=0.233)。种群间的遗传分化系数(Gst)为0.183,种群内的遗传变异占总遗传变异的81.7%。臭柏种群间的平均遗传距离为0.086,平均相似性系数为0.918,4个种群之间有比较相似的遗传多样性,由于地理隔离,种群间也存在分化。  相似文献   

7.
 由Pseudomonas syringae pv. actinidiae (Psa)引起的猕猴桃细菌性溃疡病是为害猕猴桃的一种毁灭性病害,1996年被列为我国森林植物检疫对象。本研究对来源于我国7个受溃疡病为害最严重地区的21个Psa菌株进行重测序分析,通过主成分分析和系统发育学分析将21个菌株分为三大类群;固定系数分析结果显示所有群体的FST值均小于0.05;核苷酸多态性分析结果显示所有菌株的Θπ值仅为3.74×10-6,且各群体间的差异不明显。这些结果表明Psa在我国的遗传多样性处于低水平状态。基因流(Nm)分析结果显示不同群体之间的Nm值均大于4,表明各群体病原菌之间存在较大的基因交流;Tajima′s D中性检验结果显示所有群体的Tajima′s D值均大于0,暗示各群体都经历平衡选择;Ka/Ks分析结果显示Psa的大部分基因都受到纯化选择,仅有极少数的基因受到正选择。本研究揭示了中国7个受溃疡病危害最严重地区Psa的遗传多样性,并且获得大量基因组数据,可为病害防治、病原菌耐药性以及抗病植株的选育提供理论依据。  相似文献   

8.
 由Pseudomonas syringae pv. actinidiae (Psa)引起的猕猴桃细菌性溃疡病是为害猕猴桃的一种毁灭性病害,1996年被列为我国森林植物检疫对象。本研究对来源于我国7个受溃疡病为害最严重地区的21个Psa菌株进行重测序分析,通过主成分分析和系统发育学分析将21个菌株分为三大类群;固定系数分析结果显示所有群体的FST值均小于0.05;核苷酸多态性分析结果显示所有菌株的Θπ值仅为3.74×10-6,且各群体间的差异不明显。这些结果表明Psa在我国的遗传多样性处于低水平状态。基因流(Nm)分析结果显示不同群体之间的Nm值均大于4,表明各群体病原菌之间存在较大的基因交流;Tajima′s D中性检验结果显示所有群体的Tajima′s D值均大于0,暗示各群体都经历平衡选择;Ka/Ks分析结果显示Psa的大部分基因都受到纯化选择,仅有极少数的基因受到正选择。本研究揭示了中国7个受溃疡病危害最严重地区Psa的遗传多样性,并且获得大量基因组数据,可为病害防治、病原菌耐药性以及抗病植株的选育提供理论依据。  相似文献   

9.
毛乌素沙地臭柏群体是一个生态过渡带。为了进一步阐明分子变异和基因流与生境或生态过渡带的联系,应用RAPD标记开展了臭柏群体的分子生态学研究。采用随机扩增多态性DNA(RAPD)方法对臭柏(Sabina vulgaris.)的3个种群进行了研究.用11个随机引物扩增出129条清晰谱带,其中117条为多态性谱带。利用POPGENE3.2软件对数据进行处理,结果如下:(1)臭柏有着较丰富的遗传多态性,多态位点百分率达90.70%,各种群多态位点百分比在69.77%~72.87%之间.(2)臭柏的种群间分化较小Gst=0.1872,81.38%的遗传变异存在于种群内,各种群的遗传一致度都在86.22%.(3)聚类分析显示,生境相近的种群被聚到了一起,反映了臭柏种群的遗传分化和生境有着一定的相关性.又利用Nei,s指数统计了RAPD数据,也证实了大部分的遗传变异存在于群体之内。臭柏群体内的遗传多样性与土壤总钾呈显著的负相关。  相似文献   

10.
陕西省苹果树腐烂病菌基因多态性的ISSR分析   总被引:3,自引:1,他引:2  
为了从分子水平上揭示苹果树腐烂病菌的群体遗传多样性,采用正交设计对ISSR-PCR体系进行了4因素3水平的筛选,并从47条ISSR引物中筛选出11条多态性较好的引物。对供试的87个分离株进行扩增的结果显示,11条引物在129个位点扩增出稳定的条带,其中多态性位点119个,多态性位点率为92.25%。POPGENE分析显示,病菌种群的遗传多样性和基因多态性丰富,群体间的遗传分化系数(Gst)为0.109,群体内为0.891,群体内多样性大于群体间多样性。两个地理种群间的居群每代迁移数(Nm)为2.046,两者之间存在广泛的基因交流。在遗传相似系数为0.88时,可将21个自然种群划分为9个不同的类群,表明陕西省苹果树腐烂病菌的各个自然种群之间的遗传亲缘关系与其地理来源之间无明显的相关性。  相似文献   

11.
Since 2008, bacterial canker of kiwifruit (Actinidia deliciosa and A. chinensis) caused by Pseudomonas syringae pv. actinidiae (Psa) has resulted in severe economic losses worldwide. Four biovars of Psa can be distinguished based on their biochemical, pathogenicity and molecular characteristics. Using a range of biochemical, molecular and pathogenicity assays, strains collected in France since the beginning of the outbreak in 2010 were found to be genotypically and phenotypically diverse, and to belong to biovar 3 or biovar 4. This is the first time that strains of biovar 4 have been isolated outside New Zealand or Australia. A multilocus sequence analysis based on four housekeeping genes (gapA, gltA, gyrB and rpoD) was performed on 72 strains representative of the French outbreak. All the strains fell into two phylogenetic groups: one clonal corresponding to biovar 3, and the other corresponding to biovar 4. This second phylogenetic group was polymorphic and could be divided into four lineages. A clonal genealogy performed with a coalescent approach did not reveal any common ancestor for the 72 Psa strains. Strains of biovar 4 are substantially different from those of the other biovars: they are less aggressive and cause only leaf spots whereas Psa biovars 1, 2 and 3 also cause canker and shoot die‐back. Because of these pathogenic differences, which were supported by phenotypic, genetic and phylogenetic differences, it is proposed that Psa biovar 4 be renamed Pseudomonas syringae pv. actinidifoliorum pv. nov. Strain CFBP 8039 is designated as the pathotype strain.  相似文献   

12.
Pseudomonas syringae pv. actinidiae (Psa) is responsible for bacterial canker of kiwifruit. Biovar 3 of Psa (Psa3) has been causing widespread damage to yellow‐ and green‐fleshed kiwifruit (Actinidia spp.) cultivars in all the major kiwifruit‐producing countries in the world. In some areas, including New Zealand, P. syringae pv. actinidifoliorum (Pfm), another bacterial pathogen of kiwifruit, was initially classified as a low virulence biovar of Psa. Ability to rapidly distinguish between these pathovars is vital to the management of bacterial canker. Whole genome sequencing (WGS) data were used to develop PCR assays to specifically detect Psa3 and Pfm from field‐collected material without the need to culture bacteria. Genomic data from 36 strains of Psa, Pfm or related isolates enabled identification of areas of genomic variation suitable for primer design. The developed assays were tested on 147 non‐target bacterial species including strains likely to be found in kiwifruit orchards. A number of assays did not proceed because although they were able to discriminate between the different Psa biovars and Pfm, they also produced amplicons from other unrelated bacteria. This could have resulted in false positives from environmental samples, and demonstrates the care that is required when applying assays devised for pure cultures to field‐collected samples. The strategy described here for developing assays for distinguishing strains of closely related pathogens could be applied to other diseases with characteristics similar to Psa.  相似文献   

13.
Bacterial canker disease of kiwifruit currently occurs in at least 15 countries, causing serious damage. The causative agent of the disease is Pseudomonas syringae pv. actinidiae (Psa), which is genetically diverse and is currently classified into five biovars, namely, biovars 1, 2, 3, 5 and 6. In Japan, four biovars except biovar 2 have been found so far. These biovars have been confirmed to have differences in the virulence and composition of pathogenicity-related genes, such as toxin biosynthesis and type III effector genes. Biovars 1 and 6 possess the tox island, a genomic island of approximately 38 kb, which contains phaseolotoxin biosynthesis genes (argK-tox cluster) and is confirmed to have been acquired from other bacteria through horizontal transfers. Also, on the megaplasmid possessed by biovar 6, there exist coronatine biosynthesis genes, and biovar 6 has the ability to produce two phytotoxins, phaseolotoxin and coronatine. In 2014, biovar 3, considered to be of foreign origin, was confirmed for the first time in Japan. Biovar 5, whose virulence is relatively weak, is distributed only in a limited area. In addition to the tox island and various plasmids, a large number of mobile genetic elements are confirmed to be present on the Psa genomes, which might have played a major role in helping Psa to acquire new features. In order to understand how Psa acquired the ability to infect kiwifruit systemically, it is important to make polyphasic comparisons with related pathovars, such as Psyringae pv. theae and pv. actinidifoliorum.  相似文献   

14.
Since 2008, Pseudomonas syringae pv. actinidiae virulent strains (Psa‐V) have quickly spread across the main areas of kiwifruit (Actinidia deliciosa and A. chinensis) cultivation causing sudden and re‐emerging outbreaks of bacterial canker to both species. The disease caused by Psa‐V strains is considered worldwide as pandemic. Recently, P. syringae strains (ex Psa‐LV, now called PsD) phylogenetically related to Psa‐V have been isolated from kiwifruit, but cause only minor damage (i.e. leaf spot) to the host. The different biological significance of these bacterial populations affecting kiwifruit highlights the importance of having a diagnostic method able to detect Psa‐V, which is currently solely responsible for the severe damage to the kiwifruit industry. In order to improve the specific molecular detection of Psa‐V, a real‐time PCR assay has been developed based on EvaGreen chemistry, together with a novel qualitative PCR (PCR‐C). Both methods are based on specific primer sets for the hrpW gene of Psa. The real‐time PCR and PCR‐C were highly specific, detecting down to 50 and 200 fg, respectively, and were applied to a range of organs/tissues of kiwifruit with and without symptoms. These methods are important tools for both sanitary and certification programmes, and will help to avoid the spread of Psa‐V and to check possible inoculum sources. In addition to being used as routine tests, they will also enable the study of the biology of Psa‐V and the disease that it causes, whilst avoiding the detection of other populations of related P. syringae present in kiwifruit.  相似文献   

15.
猕猴桃溃疡病菌在中国的适生性分析   总被引:2,自引:0,他引:2  
通过分析猕猴桃溃疡病菌在中国的适生性,为科学制定有效的检疫监管措施,防范其入侵和扩散,确保猕猴桃产业健康发展提供理论依据。本研究根据前人研究结果,采用模糊数学综合评判的原理和方法,定量分析猕猴桃细菌性溃疡病菌(Pseudomonas syringae pv.actinidiae)在我国各个地区的适生性。猕猴桃溃疡病菌在我国最适宜的省份主要分布在四川、云南、贵州、福建、安徽、湖南、湖北、河南、江西、陕西、浙江、重庆、西藏。鉴于该病具有发生发展迅速,危害性强,防治难度大等特点,应当加强猕猴桃种苗等繁殖材料的检疫,加强对果园的管理和病害监测,积极采取有效的防治措施并加强抗病育种方面的研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号