首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
复合污染土壤中水稻根际元素特性及效应研究   总被引:1,自引:1,他引:0  
【目的】以广东大宝山重金属复合污染农田为生长介质,通过研究水稻不同部位生长量、 金属含量、 对金属的富集系数,及其与根际、 非根际土金属含量、 形态变化的相关关系,探讨根际效应可能对水稻体内金属积累转运以及生物量的影响。【方法】选取了广东大宝山稻田重金属复合污染(As、 Pb、 Fe、 Cu、 Zn)土壤及当地常见的20个水稻品种进行根际袋试验,即将根际袋内的土视为根际土,根际袋外的土视为非根际土,将供试水稻品种种植于根际袋土壤中60天后收获,测定水稻各部位的生长量、 不同金属的含量,根际土和非根际土中各金属有效态的含量。【结果】Fe、 Cu、 Pb、 Zn、 As在根部的富集系数均大于其在茎叶的富集系数,各金属在茎叶和根部的富集能力排序分别为Zn Cu As ≈ Pb ≈ Fe和Fe Zn As Cu Pb。根际土和非根际土中各种金属有效态含量均为Fe Cu Pb Zn As。研究还发现,有效态Fe、 Cu和Zn浓度对整株干重的影响显著,作用强弱顺序为Cu Zn Fe,对水稻生长影响作用显著的三种有效态金属Fe、 Cu和Zn均为植物生长所必需的元素。供试土壤中有效态Cu浓度对水稻的生长所起的作用最强。根际土有效态Fe浓度对根系Fe的积累作用效果显著,有效态As浓度显著抑制了根系Fe的积累,且有效态As浓度的作用强于有效态Fe。【结论】根际土中有效态Fe对株高、 根干重、 茎叶干重和整株干重均起着抑制作用,有效态Cu对水稻生长起到了促进作用。根际土有效态As和非根际土有效态Zn对根部Fe的积累起到了抑制作用,根际土有效态Fe和非根际土有效态Cu则起到了促进作用。非根际土有效态Fe和有效态Zn对水稻根长的增加均起到了促进作用。  相似文献   

3.
Increasing the mobilization and root uptake of chromium (Cr) by synthetic and plant‐borne chelators might be relevant for the design of phytoremediation strategies on Cr‐contaminated sites. Short‐term uptake studies in maize roots supplied with 51CrCl3 or 51Cr(III)‐EDTA led to higher apoplastic Cr contents in plant roots supplied with 51CrCl3 and in Fe‐sufficient plants relative to Fe‐deficient plants, indicating that Fe stimulated co‐precipitation of Cr. Concentration‐dependent retention of Cr in a methanol:chloroform‐treated cell‐wall fraction was still saturable and in agreement with the predicted tendency of Cr(III) to precipitate as Cr(OH)3. To investigate a possible stimulation of Cr(III) uptake by phytosiderophores, Fe‐deficient maize roots were exposed for 6 d to Cr(III)‐EDTA or Cr(III)‐DMA (2'‐deoxymugineic acid). Relative to plants without Cr supply, the supply of both chelated Cr species in a subtoxic concentration of 1 µM resulted in alleviation of Fe deficiency–induced chlorosis and higher Cr accumulation. Long‐term Cr accumulation from Cr(III)‐DMA was similar to that from Cr(III)‐EDTA, and Cr uptake from both chelates was not altered in the maize mutant ys1, which is defective in metal‐phytosiderophore uptake. We therefore conclude that phytosiderophores increase Cr solubility similar to synthetic chelators like EDTA, but do not additionally contribute to Cr(III) uptake from Cr‐contaminated sites.  相似文献   

4.
Heavy metal contamination causes significant environmental problems around the world and poses a threat to human health. Poplar hybrids present features for potential uses in phytoremediation systems in areas with heavy metal contamination. The purpose of this study was to assess the copper (Cu) accumulation level in five poplar inter-species hybrids [(Populus trichocarpa × Populus deltoides) × P. deltoides; P. deltoides × Populus nigra; P. trichocarpa × Populus maximowiczii; P. trichocarpa × P. nigra; and (P. trichocarpa × P. deltoides) × (P. trichocarpa × P. deltoides)] grown in a hydroponic system. The treatments entailed the application of low and high doses of Cu of 8.0 and 16.0 μM, respectively. Cu accumulation was observed in roots, stems, and leaves, which was determined using flame atomic absorption spectroscopy, prior acid digestion of each sample. The methodology was validated according to certified reference material (Cypress BIMEP 432). Significant differences in Cu accumulation were found among genotypes for both roots and leaves, but not for stems. In roots, the genotype P. deltoides × P. nigra had a Cu accumulation level of 169.8% higher than the average accumulation found in the other genotypes. The (P. trichocarpa × P. deltoides) × P. deltoides hybrid showed the least Cu accumulation in leaves. The results of this study can potentially be used for proper crossovers and hybrids selection within the genus Populus for phytoremediation of Cu contaminated land.  相似文献   

5.
用营养液培养方法研究了铁和两种形态氮素对玉米植株吸收铁、锰、铜、锌等微量元素及其在体内分布的影响。结果表明:与硝态氮(NO3--N)相比,铵态氮(NH4+-N)显著提高了玉米对铁的吸收,降低了对锰、铜及锌的吸收。供铁也明显提高了植株地上部铁的吸收总量,降低了锰及锌的吸收量,尤其是在供应No3--N时这种作用更为明显。在缺铁条件下,NH4+-N处理的玉米新叶中铁的含量明显高于NO3--N处理;而新叶、老叶、茎中锰、锌、铜含量以及根中锰、锌含量都明显低于NO3--N处理。但使用NH4+-N时,根中铜的含量较高。在供铁条件下,NH4+-N处理的玉米植株四个不同器官中锰和锌的含量显著低于NO3--N处理的植株,而铜的含量正好相反。在缺铁条件下,玉米新叶中活性锰、活性锌的含量显著高于供铁处理;与NO3--N相比,NH4+-N的供应也显著降低了玉米新叶中活性锰以及活性锌的含量。  相似文献   

6.
Abstract

Plants were grown in solution culture with different levels of Ca to further evaluate Ca relationships to trace metal uptake and to toxicity of trace metals. When tomato plants (Lycopersicon esculentum L., Tropic) were grown at a low level of Ca, the Zn, Cu, Fe, Mn, Al, and Ti concentrations of leaves, stems, and roots were considerably increased. The use of an excess of CaCO3 which increased pH did not influence the trace metal concentrations of plants any more than did Ca++. In a factorial experiment with bush beans (Phaseolus vulgaris L. C.V. Improved Tendergreen) with Ca (10‐4,10‐2, 10‐2 N) and Ni (0, 2 × 10‐6 M, 2 X10‐5 M), Ni phytotoxicity and Ni uptake were decreased somewhat at the highest Ca level. High Ni tended to decrease the Ca concentration in leaves. High Ca and Ni both tended to decrease Fe, Cu, Zn, and Mn concentrations in leaves. The Ni had some interactions on the P concentrations of shoots.  相似文献   

7.
This research was conducted to correct the ion of zinc (Zn) deficiencies and to examine the efficiency of foliar Zn application on pear groves along with iron and boron. The treatments consisted of control, soil and foliar applications. Every foliar applied Zn elevated considerably Zn contents of the leaves. But, increases in fruit Zn contents were rather limited as compared to Zn contents of the leaves. It is thought that accumulation of Zn in the fruits was due to movement of Zn from the leaves well-supplied with Zn to the fruits. Therefore, foliar application of Zn should be conducted at least four times at the rate of 0.1% to increase Zn contents in the fruits in terms of human's daily Zn intake. Foliar applications of Zn alone and combined Zn + Fe, Zn + B and Zn + Fe + B applications significantly increased Zn, Fe and B concentrations, respectively, in the pear trees, as well.  相似文献   

8.
《Journal of plant nutrition》2013,36(10-11):1985-1996
Abstract

A field experiment was carried out in a drip‐irrigated orchard of Clementine (Citrus clementina Ort. ex. Tan) grafted on Troyer citrange (C. sinensis × Poncirus trifoliata) rootstock located in the Valencian Citrus area (Spain). The trees received a single iron (Fe) EDDHA (ethylene diamine diorthohydroxyphenyl acetate) rate (3 g Fe tree?1) supplied in different application frequencies from April to September (8‐, 4‐, 2‐, or 1‐week intervals). Leaf chlorophyll (Chl) concentrations were estimated every month by using an SPAD‐502 meter. The foliar contents of Fe were also evaluated with time. Mineral composition of leaves, total Chl concentration, yield, and fruit quality were also evaluated at the end of the assay. SPAD readings, Chl, N, K, Mg, Fe, and Mn concentration in leaves increased as a result of Fe application. The concentration of Zn, however, significantly decreased in comparison to the control trees. Iron treatment increased yield and some of the fruit quality parameters, like total juice, sugar, and acid contents. Iron application frequency had not a consistent effect on the concentrations of macro and micronutrients in leaves, yield, and fruit quality. The highest values of SPAD readings and the leaf Chl content were obtained when Fe was applied at 4‐week intervals along the year. These results suggest that soil Fe‐EDDHA application with a moderate frequency could be recommended to the Citrus farmers in the area for a more rational Fe application along the growth cycle in Citrus orchards.  相似文献   

9.
Cadmium (Cd) accumulation and distribution was studied in sunflower (Helianthus annuus L., public line HA‐89) plant. From an uncontaminated sandy loam brown forest soil with 162 μg kg‐1 HNO3/H2O2 extractable Cd the HA‐89 sunflower public line accumulated 114 ug kg‐1 Cd in its kernels under open field conditions. This value is rather low as compared to data found by others. Sandy loam brown forest soil was treated with 0, 1 or 10 mg kg‐1 of Cd to study the interaction of this heavy metal with young sunflower plants in a greenhouse pot experiment. The fresh weight and dry matter accumulation of sunflower plant organs (roots, shoots, leaves or heads) was unaffected by cadmium treatment of soil. The nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), copper (Cu), iron (Fe), manganese (Mn), or zinc (Zn) uptake of sunflower plant organs was not influenced by lower or higher Cd‐doses, except sunflower heads where 10 mg kg‐1 of Cd treatment of soil significantly reduced the uptake of Ca, Fe, and Mn. Although Cd reduced the Zn uptake of roots, its rate was statistically not significant. Cadmium was accumulated prevalently in roots (1.21 mg kg‐1,4.97 mg kg‐1, or 13.69 mg kg‐1 depending on Cd‐dose), and its concentration increased also in shoots or leaves. In spite of the short interaction time, elevated concentrations of cadmium (0.78 mg kg‐1, 1.34 mg kg‐1, or 3.02 mg kg‐1 depending on Cd‐dose) were detected in just emerged generative organs (heads) of young sunflower plants.  相似文献   

10.
The Fe‐inefficient T203 and the Fe‐efficient A7 and Pioneer 1082 (P1082) soybeans (Glycine max (L.) Merr.) were grown hydroponically with no (0 mg Fe L‐1 ; ‐Fe) and a minute level (0.025 mg Fe L‐1 ; +Fe) of Fe to (a) compare their responses to Fe‐deficiency stress and (b) relate Fe‐efficiency in soybeans to their ability to initiate the Fe‐stress‐response mechanism at low levels of Fe. With no Fe in solution, P1082 released similar levels of H+ ions, but released less reductant from their roots and there was less reduction of Fe3+ to Fe2+ by their roots than by A7 roots. These responses were also one day later and occurred after a more severe chlorosis and a lower leaf Fe had developed in P1082 than in A7. With 0.025 mg L‐1 of solution Fe, it was not necessary for the Fe‐stress response mechanism to be fully activated to make Fe available in A7 soybean, whereas a strongly enhanced Fe stress response was observed in P1082. Increased Fe uptake and regreening of leaves immediately succeeded initiation of the Fe stress response in both cultivars and at both levels of Fe. Thus, P1082 was slightly less efficient than A7 soybean, but would be classed more efficient than the previously studied soybean cultivars A2, Hawkeye, Bragg, Pride, Anoka, and T203. These results support the hypothesis that the most efficient soybeans are those which can initiate the Fe‐stress response mechanism with little or no Fe in the growth medium. The near simultaneous occurrence of the factors in the Fe‐stress response mechanism (H ion and reductant release, reduction of Fe to Fe by roots), and the immediate increase in leaf Fe and chorophyll contents following that response suggest that all these factors act in concert, not independently, to aid in the absorption and transport of Fe to plant tops.  相似文献   

11.
Bush bean plants (Phaseolus vulgaris L. cv Contender) were grown for twenty days in nutrient solution (pH=5), containing 0.13, 0.3, 0.5 or 0.75 mg 1‐1 Zn as ZnSO4‐7H2O. The plant yield decreased linearly with the increase of the Zn concentration supplied. The phytotoxic threshold content (for 10% growth reduction) was about 486, 242, 95 and 134 μg Zn g‐1 for roots, steins, mature primary and trifoliate leaves, and developing leaves, respectively. High inverse correlation coefficients with the Zh concentration supplied were found for the Mn content of all organs, for the P content of roots, and for the Cu and Ca contents of developing leaves. Significant positive relations were found for the Fe, Zn and Cu contents in roots and for the Zn con‐ tents in stems and fully expanded leaves. The ratios of the mineral contents between organs suggest inhibition of uptake of Mn and P, and inhibition of translocation of Fe, Cu and Ca. The relation between dry weight decrease and Zn‐induced nutrient content disorders were discussed.  相似文献   

12.
Abstract

Mobilization of iron (Fe) chelated by humic acids (HA) of low (HA10,000) and high molecular weight (HA100,000) fractions and its uptake by plants were investigated in growth experiments with sunflower seedlings. The iron chelates (labeled with 59Fe) contained in dialysis bags (mw. cutoff=3500) were placed in minus iron Hoagland solutions as the Fe source and at the same time fulvic acid (FA), EDTA, and low and high molecular weight HA fractions were added in the solutions as mobilizators. Characterization of FA, HA10,000, and HA100,000 were performed by infrared spectroscopy and chemical analysis, e.g., total acidity, COOH, and phenolic‐OH content. Roots and leaves were harvested, dried, and ground for Fe activity determination. Iron contents and pH in the nutrient solutions were measured before and after treatments. The supply of Fe to the plants was apparently sufficient, because no Fe deficiency has been detected in the test plants but during the whole absorption period, the pH of the nutrient solution was about 4.5. The Fe contents in leaves indicated that part of the Fe was rapidly transported from roots to leaves. Judging from the Fe contents in leaves, it was assumed that the small size HA10,000 and EDTA were the most efficient in affecting transport of Fe from root to leaf tissue. FA, HA10,000, and especially HA100,000 were unable to penetrate the dialysis bags and, hence, were effective in Fe mobilization only after the Fe, dissociated from the Fe‐HA chelate, has passed the dialysis membrane into the nutrient solutions. In contrast, the small size EDTA was expected to have penetrated the dialysis bags, permitting mobilization of chelated Fe by ligand exchange inside the bags, and transporting the Fe to the roots. The results suggested that the humic substances used in this study were able to form with the Fe3+ ion complexes that maintained the iron available to the sunflower plants. In the chemical form of Fe.L, where L was FA o HA, the iron within the bags or in solution or in the roots free space, was available for exchange reactions with the natural sunflower plant chelators for its transport to the leaves.  相似文献   

13.
The spatial distribution and speciation of iron (Fe), manganese (Mn) and arsenic (As) around rice roots grown in an As‐affected paddy field in Bangladesh were investigated on soil sampled after rice harvest. Synchrotron micro‐X‐ray fluorescence spectrometry on soil thin sections revealed that roots influence soil Fe, Mn and As distribution up to 1 mm away from the root–soil interface. Around thick roots (diameter around 500 µm), Mn was concentrated in discrete enrichments close to the root surface without associated As, whereas concentric Fe accumulations formed farther away and were closely correlated with As accumulations. Near thin roots (diameter < 100 µm), in contrast, a pronounced enrichment of Fe and As next to the root surface and a lack of Mn enrichments was observed. X‐ray absorption fine structure spectroscopy suggested that (i) accumulated Fe was mainly contained in a two‐line ferrihydrite‐like phase, (ii) associated As was mostly As(V) and (iii) Mn enrichments consisted of Mn(III/IV) oxyhydroxides. The distinct enrichment patterns can be related to the extent of O2 release from primary and lateral rice roots and the thermodynamics and kinetics of Fe, Mn and As redox transformations. Our results suggest that in addition to Fe(III) plaque at the root surface, element accumulation and speciation in the surrounding rhizosphere soil must be taken into account when addressing the transfer of nutrients or contaminants into rice roots.  相似文献   

14.
Woody plant species that produce high biomass have been proposed for use in phytoremediation technology. We investigated the accumulation of cadmium (Cd) and zinc (Zn) in Salix babylonica, S. caprea, S. dasyclados, S. matsudana × alba, S. purpurea, S. smithiana, Populus tremula, and P. nigra clones grown in a pot experiment on a Calcaric and a Eutric Cambisol (pH 7.2 and 6.4) of different levels of contamination (total metal concentrations in mg kg–1 in soil A: 32.7 Cd, 1760 Zn; soil B: 4.34 Cd, 220 Zn). Generally, the tested clones tolerated large metal concentrations in soils and had larger Cd and Zn concentrations in leaves compared to the roots. The largest Cd concentrations in leaves were found in two clones of S. smithiana (440 mg kg–1 on soil A; 70 mg kg–1 on soil B). One of the S. smithiana clones had also the largest Zn concentrations (870 mg kg–1) on soil B but accumulated slightly less Zn than a S. matsudana × alba clone (2430 mg kg–1) on soil A. The Cd concentrations in leaves of both S. smithiana clones on soil A are the largest ever reported for soil‐grown willows. The bioconcentration factors of the best performing clone reached 15.9 for Cd and 3.93 for Zn on the less contaminated soil B. Also based on the metal contents in leaves, this clone was identified as the most promising for phytoextraction. The metal concentrations in leaves observed in the pot experiment do not reflect those found in a previous hydroponic study and the leaf‐to‐root ratios are clearly underestimated in hydroponic conditions. This demonstrates the need for testing candidates for phytoextraction crops on soils rather than in hydroponics. Our data also show that the phytoextraction potential should be tested on different soils to avoid misleading conclusions.  相似文献   

15.
Abstract

An experiment was conducted in Yolo loam soil with bush beans (Phaseolus vulgaris L. C.V. Improved Tendergreen) with single and combination treatments of moderately high levels of Cd, Li, Cu, and Ni to test whether or not effects could be additive or synergistic. Copper and Ni together were more toxic than either alone. Copper, Ni, and Cd were more toxic together than any one alone. These effects were probably additive and may be related to a 0.2 pH change caused by Cu which increased uptake of Ni and Mn. Synergistic effects were observed in the Cd and Ni concentrations, especially in the stems of the plants. Because of these interactions, the effects were then tested in solution culture. In solution culture with bush beans Cu and Ni when applied together had synergistic effects on plant concentrations of P, Zn, and Fe (all were decreased) and on the Ni concentration in roots. Also, in solution culture with (2.5 × 10‐5 M) Zn, Cu, and Cd added singly, in pairs, and together, Zn and Cu additively decreased Cd concentrations in roots. Synergistic effects on yield depressions were observed in solution culture for 5 × 10‐5 M Zn + 3 × 10‐5 M Cu+ 2 x10‐5 M Ni. An additive effect on yield depression was observed for 2 × 10‐4 MCd + 2 × 10‐5 M Ni. There were many complex interactions among the trace metal concentrations in these plants.  相似文献   

16.
Heavy metal-polluted water has become a problem for sustainable environment, agriculture, and human health. Phyto-accumulation is an eco-friendly technique for decontamination of metal-polluted water and soil. The efficiency of phyto-accumulation and rhizo-filtration can be enhanced by the application of certain nutrients to accumulator plants. In this study, we focused on the role of iron (Fe) in rhizo-filtration and phyto-accumulation of cadmium (Cd) from polluted water/media, using Ricinus communis plant. Medium was contaminated with 10 ppm Cd while Fe (2.50, 5.00, and 7.50 ppm) was applied both as foliar spray and medium addition separately. Accumulation of Cd and concentrations of soluble proline, phenolic compounds, and chlorophylls were measured in plant tissues. Addition of Fe into media significantly increased biomass in the plants but decreased Cd absorption by roots and its accumulation in other tissues of the plants. Foliar application of Fe, especially 7.5 ppm, significantly increased biomass as well as accumulation of Cd in tissues of the plants. Contents of soluble proline (41.88?±?3.56 ppm) and phenolics (171.00?±?4.98 ppm) in leaves were highly increased by foliar spray of 7.5 ppm Fe on the plants. On the other hand, highest concentrations of free proline (67.00?±?2.00 ppm) and total phenolics (82.67?±?2.52 ppm) in plant roots were observed in 7.5 ppm Fe added to media and as foliar spray, respectively. Strong correlations were observed between phenolics content in roots and leaves with Cd accumulation after foliar application of 7.5 ppm Fe.  相似文献   

17.
Abstract

The accumulation of heavy metals in tea leaves is of concern because of its impact on tea quality. This study characterized long‐term changes of soil properties and heavy‐metal fractions in tea gardens and their effect on the uptake of metals from soils by the plants. Soil and tea leaf samples were collected from five plantations with a history of 2–70 years in Jinghua, Zhejiang Province, southeast China. The six chemical fractions (water‐soluble, exchangeable, carbonate‐bound, organic‐matterbound, oxide‐bound, and residual forms) of cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), nickel (Ni), manganese (Mn), lead (Pb), and zinc (Zn) in the soils were characterized. Dissolved organic‐matter accumulation in the soils and effects of low‐molecular‐weight organic acids on solubility of soil heavy metals were also tested. Long‐term tea plantation use resulted in accumulation of dissolved organic matter, decrease of soil pH, and elevation of water‐soluble and exchangeable metal fractions, thereby increasing metal contents in leaves. The influence was more significant when soil pH was less than 4.4. The results indicated that both acidification and accumulation of dissolved organic matter induced by tea plantations were also important causes of increased accumulation of the metals in the tea leaves. This was particularly true for the soils polluted with low concentration of heavy metals, because availability of the metals in these soils was mainly controlled by pH and dissolved organic matter.  相似文献   

18.
铝和镉胁迫对两个大麦品种矿质营养和根系分泌物的影响   总被引:7,自引:0,他引:7  
A hydroponic experiment was carried out to study the effect of aluminum (Al) and cadmium (Cd) on Al and mineral nutrient contents in plants and Al-induced organic acid exudation in two barley varieties with different Al tolerance. Al- sensitive cv. Shang 70-119 had significantly higher Al content and accumulation in plants than Al-tolerant cv. Gebeina, especially in roots, when subjected to low pH (4.0) and Al treatments (100 μmol L^-1 Al and 100 μmol L^-1 Al +1.0 μmol L^-1 Cd). Cd addition increased Al content in plants exposed to Al stress. Both low pH and Al treatments caused marked reduction in Ca and Mg contents in all plant parts, P and K contents in the shoots and leaves, Fe, Zn and Mo contents in the leaves, Zn and B contents in the shoots, and Mn contents both in the roots and leaves. Moreover, changes in nutrient concentrations were greater in the plants exposed to both Al and Cd than in those exposed only to Al treatment. A dramatic enhancement of malate, citrate, and succinate was found in the plants exposed to 100 μmol L^-1 Al relative to the control, and the Al-tolerant cultivar had a considerable higher exudation of these organic acids than the Al-sensitive one, indicating that Al-induced enhancement of these organic acids is very likely to be associated with Al tolerance.  相似文献   

19.
Abstract

The effect of additional iron (Fe) on arsenic (As) induced chlorosis in barley (Hordeum vulgare L. cv. Minorimugi) was investigated. The treatments were: (1) 0?μmol?L?1 As?+?10?μmol?L?1 Fe3+ (control), (2) 33.5?μmol?L?1 As?+?10?μmol?L?1 Fe3+ (As-treated) and (3) 33.5?μmol?L?1 As?+?50?μmol?L?1 Fe3+ (additional-Fe3+) for 14?days. Arsenic and Fe3+ were added as sodium-meta arsenite (NaAsO2) and ethylenediaminetetraacetic acid-Fe3+, respectively. Chlorosis in fully developed young leaves was observed in the As-treated plants. The chlorophyll index and the Fe concentration decreased in shoots of the As-treated plants compared with the control plants. Arsenic reduced the concentration of phosphorus, potassium, calcium, magnesium, manganese, zinc and copper. The additional-Fe3+ treatment increased the chlorophyll index in plants compared with the As-treated plants. Among the elements, Fe concentration and accumulation specifically increased in the shoots of additional-Fe3+ plants compared with As-treated plants, indicating that As-induced chlorosis was Fe-chlorosis. Arsenic and Fe were mostly concentrated in the roots of the As-treated plants. Despite inducing chlorosis in the As-treated plants, phytosiderophores (PS) accumulation in the roots and release from the roots did not increase, rather PS accumulation decreased, indicating that As toxicity hindered PS production in the roots. The PS accumulation in the roots was further reduced in the additional-Fe3+ treatment.  相似文献   

20.
为了探索外源油菜素内酯对番茄Cu胁迫的缓解效应及机理,采用营养液水培的方法,以‘改良毛粉802F1’番茄为材料,研究外源2,4-表油菜素内酯(2,4-EBR,简称EBR)对Cu胁迫下番茄生长及矿质元素吸收的影响。结果表明:外源EBR能够缓解Cu胁迫对番茄植株的生长抑制。与Cu胁迫处理相比,喷施EBR的番茄叶绿素含量和生物量分别提高39.6%和20.0%,差异均达显著水平;Cu胁迫条件下,外源EBR显著降低番茄根系对Cu的吸收与转运,提高叶片中因Cu过多而降低的Fe、Zn含量,有效调控Cu、Fe、Zn的化学提取态和亚细胞分布水平,降低Cu在细胞内的生物毒性,使之向着有利于番茄生长的方向发展,从而保证Cu胁迫下植株正常的生理生化代谢。Cu胁迫提高了番茄叶片和根系各种化学形态的Cu含量,而外施EBR降低了番茄叶片中除NaCl提取态Cu以外的其他各种形态Cu含量。Cu胁迫下易移动态Cu在叶片中的比例升高,而根系中却下降;外施EBR后,番茄植株中难移动态和易移动态Cu的所占比例接近CK,说明Cu胁迫下EBR对Cu的番茄体内分配具显著调控作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号